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healthy elderly subjects, matched for age and gender. 
EEG were recorded for each participant and ApEn 
values were computed in the beta 1 (13–20 Hz) and 
beta 2 (20–30  Hz) frequency bands for each EEG-
channel and for ROIs. PD patients showed statisti-
cally lower ApEn values compared to controls in both 
beta 1 and beta 2 bands. Regarding electrodes analy-
sis, beta 1 band alterations were found in frontocen-
tral areas, while beta 2 band alterations were observed 
in centroparietal and frontocentral areas. Considering 
ROIs, statistically lower ApEn values for PD patients 
has been reported in central and parietal ROIs in the 
beta 2 band. Complexity reduction in these areas may 
underlie beta oscillatory activity dysfunction, reflect-
ing impaired cortical mechanisms associated with 
motor dysfunction in PD. The results suggest that 
ApEn analysis of resting EEG activity may serve as 
a potential tool for early PD detection. Further studies 
are necessary to validate this approach in PD diagno-
sis and rehabilitation planning.

Abstract  Parkinson’s disease (PD) is a progressive 
neurodegenerative disorder primarily associated with 
motor dysfunctions. By the time of definitive diagno-
sis, about 60% of dopaminergic neurons have already 
been lost; moreover, even if dopaminergic drugs are 
highly effective in symptoms control, they only help 
maintaining a near-healthy condition when started 
as soon as possible. Therefore, interest in identify-
ing early biomarkers of PD has grown in recent years, 
especially using neurophysiological techniques such 
as electroencephalography (EEG). This study aims 
to investigate brain complexity differences in PD 
patients compared to healthy controls, focusing on the 
beta band using approximate entropy (ApEn) analy-
sis of resting-state EEG recordings. Sixty partici-
pants were recruited, including 25 PD patients and 35 
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Introduction

Parkinson’s disease (PD) is the second most common 
progressive neurodegenerative disorder of the central 
nervous system after Alzheimer’s disease [1] and the 
most common neurodegenerative movement disorder 
[2]. Moreover, PD ranks among the most prevalent 
neurological diseases in the aging population and 
the risk of the disease rises steeply with aging [3–6]. 
Despite the clinical picture including other non-motor 
symptoms, such as cognitive impairments or psychi-
atric disturbance, the PD is primarily associated to 
motor dysfunctions, such as bradykinesia/akinesia, 
rigidity, tremor, and postural instability [7]. PD is 
pathologically characterized by the loss of dopamin-
ergic neurons in the substantia nigra pars compacta 
and by the presence of Lewy bodies. Several studies 
on non-human primates [5, 8] reported that physi-
ological aging and degeneration of dopaminergic 
neurons in PD are linked by the same cellular mecha-
nisms arguing that aging induces a pre-parkinsonian 
state and that the cellular mechanisms of dopaminer-
gic neuron breakdown during normal aging are accel-
erated or exaggerated in Parkinson’s disease through 
a combination of genetic and environmental factors. 
Moreover, recent studies [9–11] have shown that 
mitochondrial dysfunction and neuroinflammation, 
age-related alterations, have been identified as mecha-
nisms implicated in the pathophysiology of PD con-
tributing to the onset and progression of the disease.

PD clinical diagnosis is mainly based on individu-
al’s history, symptoms observation including bradyki-
nesia in combination with a resting tremor or rigidity 
[2, 7, 12] and physical exams. There is not a specific 
lab or imaging test that can diagnose PD. However, 
certain tests such as magnetic resonance imag-
ing of the brain (MRI brain), specific single-photon 
emission computerized tomography (SPECT) scan 
called a dopamine transporter (DAT) scan, or blood 
work can be used to support the diagnosis of PD or 
to rule out other medical conditions that can mimic 
PD [13, 14]. PD diagnosis, especially in the early 
stages, is difficult and takes time, especially because 
it occurs when symptoms are already appearing. By 
the time of definitive diagnosis, an estimated 60% of 

dopaminergic neurons have already been lost mak-
ing the major part of the interventions ineffective due 
to the high degree of neural damage already present. 
Currently available therapies, aimed at slowing the 
progression of the disease and preserving patients’ 
autonomy, appear to be not entirely effective given 
the high degree of neuronal damage already present 
at the time of diagnosis [15]. Therefore, the low effi-
cacy of treating patients is due to the late diagnosis 
and start of therapy. It is believed that the develop-
ment of early diagnosis and preventive treatment 
will delay the onset of specific symptoms [16, 17]. 
Because of that, in the last few years, there was an 
increasing interest in investigating possible biomark-
ers of early stages of the disease to intercept it ear-
lier and make the pharmacological and rehabilitation 
treatments more effective.

In general, PD disorders were largely studied by 
structural and functional imaging methods [14, 18, 
19]; however, recently, there were an increment of 
scientific interest in exploring the disease using neu-
rophysiological techniques such as magnetoencepha-
lography (MEG) or electroencephalography (EEG). 
In particular, EEG is a non-invasive technique able 
to represent brain electrical activity with high tempo-
ral resolution and high test–retest reliability [20, 21]. 
This technique is more easily disseminated, cheaper 
and could be used for a broader population screening 
than imaging methods, which are expensive, invasive, 
and not widely disseminated.

Many studies have focused their attention in 
detecting linear and non-linear EEG features altera-
tions in PD patients by means of different analysis’s 
methods in time and frequency domains [19, 22, 23].

Since PD is a neurodegenerative disease that 
impacts on cortical activity recorded via EEG, many 
studies have focused on analyzing the alterations that 
occur in the EEG power spectral density (PSD), espe-
cially in the alpha and beta frequency ranges, which 
are those most involved in the sensorimotor activity. 
Mainly, the past literature found an increase of PSD of 
slower EEG frequency bands (delta and theta) and a 
decrease of faster bands (alpha and Beta), suggesting 
a global slowing of EEG activity in PD patients com-
pared with normal subjects [24–27]. In particular, this 
global slowing of EEG activity was correlated to the 
severity of cognitive impairment and motor disabil-
ity in both demented and non-demented PD patients 
compared to healthy subjects [24, 28, 29]. Moreover, 
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Polverino et  al. [30] highlighted similar behavior in 
alpha band between Alzheimer’s disease (AD) and 
PD-demented patients compared to healthy subjects 
and different behavior in beta band between demented 
PD patients respect to AD patients. The latter result in 
beta band was found also in non-demented PD group.

These results highlight how differences in the 
alpha band may be related to the patient’s cogni-
tive state, regardless they were caused by AD or PD, 
while the beta band seems to be more related to motor 
processes, and thus more specifically to PD.

Accordingly, the beta band investigation could lead 
to an understanding of the pathophysiology of PD 
and to enhanced therapeutic/rehabilitative interven-
tions [31].

Indeed, differences in beta band were reported 
both in resting state and during motor tasks during 
EEG recordings. Pollock et al. [32] reported increased 
sensorimotor cortical power in beta band during rest 
as well as during isometric contraction of the upper 
limbs in early PD compared to controls. Moreover, 
their results showed a significant positive correlation 
during isometric contraction between primary senso-
rimotor cortex power in beta frequency and the Uni-
fied Parkinson’s disease rating scale part III (UPDRS 
III), a validated scale used to assess the severity of 
PD motor complications [33].

Recently, since PD is a neurodegenerative disease 
involving disconnections between and within multi-
ple brain areas and basal ganglia, brain connectivity 
analysis has been applied to investigate the patho-
physiology of this disease, focusing the attention on 
the study of beta band. Moreover, because PD is char-
acterized by an excess of subcortical beta oscillations 
[34, 35], connectivity analyses have focused on study-
ing mainly the beta band.

Leviashvili et  al. [36] found reduced connectivity 
in the central-executive network and dorsal-attention 
network, and increased connectivity in the ventral-
attention network in beta band of PD patients com-
pared to healthy subjects demonstrating that reported 
results on resting-EEG data are in line with other 
functional magnetic resonance imaging (fMRI) stud-
ies on the same networks [37–39]. In a recent study, 
functional connectivity and spectral analysis were 
analyzed in the early stages of PD, showing a reduc-
tion in connectivity in beta frequency band [40]. A 
recent longitudinal study [41] reported a gradual con-
nectivity impairment in high-frequency alpha and 

beta bands correlating the global assessment of PD 
patients with the level of the networks’ disconnection.

These studies report how EEG data analysis 
may be useful in describing the modifications due 
to PD. However, it would be still necessary to use 
new analysis methods to explore EEG signals of PD 
patients and to reveal other features of brain organi-
zation crucial information underlying brain dysfunc-
tions. In recent years, with the possibility of applying 
advanced analysis and considering EEG non-linear 
and non-stationary signals, there has been a focus on 
the study of non-linear features by applying different 
parameters such as Fractal connectivity, correlation 
dimension, delay differential equations, higher Lya-
punov exponent and complexity parameters in order 
to detect differences existing both in physiological 
state, and in diseases such as Alzheimer’s and Parkin-
son’s [25, 42–51].

One method that is still in its infancy but is reveal-
ing important results is the complexity or entropy 
analysis of the EEG signals. Entropy is a non-linear 
approach representing the irregularity, complexity, or 
unpredictability of a signal [52]. Because neural sys-
tems have been exhibited non-linear chaotic behav-
ior, entropy measures can be successfully applied to 
the EEG signal to detect its variability or complex-
ity. Entropy analysis has been reported as a powerful 
method for EEG in order to quantify brain functions 
related to altered state due to neurodegenerative dis-
eases [53–56].

Pezard et al. [25] have investigated the EEG com-
plexity of PD patients brain dynamics by the means 
of local entropy. The local entropy index shows a 
significant increase in patients compared to healthy 
subjects.

Recently, Pappalettera et al. [56] applied approxi-
mate entropy (ApEn) analysis to EEG signals in order 
to explore the brain resting state differences between 
PD patients and healthy controls in terms of com-
plexity of the signals. They found statistically higher 
ApEn values in PD in the whole brain respect to the 
control group, highlighting differences in EEG signal 
complexity between healthy subjects and PD patients.

Although ApEn is an interesting analysis to inves-
tigate further, there are not many studies in the lit-
erature regarding the exploration of the EEG of Par-
kinson’s patients through this index. With the aim to 
fill this gap and further investigate the analysis done 
previously by our group [56, 57], here we investigated 
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the modulation of ApEn in the beta band, which is 
reported as specifically affected by PD [31, 58]. Dur-
ing resting-state recordings, ApEn index was com-
puted in the beta frequency range on each electrode 
first and splitting the scalp electrodes into regions 
of interest (ROIs), then comparing PD patients and 
healthy subjects’ outcomes.

Participants and methods

Participants

A total of 60 participants were involved in the study 
and divided into two groups, the CTRL group con-
sisting of healthy elderly subjects (n = 35) and the 
PD group consisting of Parkinson’s patients (n = 25), 
matched for age and gender as reported in Table  1. 
In particular, the PD group consisted of 11 non-
demented PD patients already included in a previ-
ous article [56] and 14 non-demented PD patients 
extracted from a public database [59]. All experi-
mental procedure were undertaken with the signed 
consent of each participant, according to the World 
Medical Association Code of Ethics (1997) and car-
ried out conforming to the Declaration of Helsinki 
and standards set by the Author’s Institutional Review 
Board.

For each PD patient, the disease was diagnosed 
considering the medical history and physical and 
neurological examinations as well as the response to 
levodopa drugs. Exclusion criteria were atypical Par-
kinsonism, neuroleptic drug use, dopamine blocking 
agents, alcohol abuse, presence of other neurological 
or psychiatric conditions, and any other severe illness. 
The Unified Parkinson’s Disease Rating Scale III 
(UPDRS) was used as measure of severity of motor 
disability [33]. The UPDRS score was 15.1 ± 1.2 
(mean ± standard error (SE)). All PD patients under-
went the MMSE scales, showing a mean score of 
28.2 ± 0.3 (mean ± standard error (SE)).

For the healthy elderly control group, the subjects 
enrolled were physically and intellectually healthy 
with no symptoms or history of any neurological or 
psychiatric disorder.

Data recordings and preprocessing

Resting-state EEG were recorded from each partici-
pant, in both the PD and CTRL groups, for at least 
4 min. In our laboratory, the EEG data were collected 
using 19-channels clinical headset for PD group of 
our clinical center and 32-channels headset for CTRL, 
positioned according to the International 10–20 sys-
tem. All channels’ impedance was kept below 5 KΩ 
and the sampling rate was set up at 256 Hz. Electro-
oculographic vertical and horizontal signals were 
recorded from two separate channels to monitor ocu-
lar movements and blinking.

EEG data of the online dataset were recorded with 
a sampling rate of 512 Hz, using a 32-channels Bio-
Semi ActiveTwo system (Fp1, AF3, F7, F3, FC1, 
FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, 
O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, 
F8, AF4, Fp2, Fz, Cz), performed off-medication, in 
resting-state condition.

In order to make all records consistent, the same 
19-channels obtained from our PD database were 
selected according to the International 10–20 system 
(Fp2, F4, C4, P4, O2, F8, T8, P8, Fp1, F3, C3, P3, 
O1, F7, T7, P7, Fz, Cz, Pz) for each recording, spe-
cifically in EEG data of public database and in CTRL 
group. Moreover, the EEG data of public database 
were downsampled to 256 Hz.

The participants were seated in a comfortable arm-
chair, placed in a dimly lit, sound-damped, and elec-
trically shielded room.

EEG data were processed in MATLAB (Math-
Works, Natick, MA, USA) employing already used 
in-home scripts based on the EEGLAB toolbox 
(Swartz Center for Computational Neurosciences, 
La Jolla, CA, USA) [60–62]. Firstly, the data were 
band-pass filtered from 0.2 to 47  Hz using a finite 
impulse response (FIR) filter. Then, EEG recordings 
were processed segmenting the signal in 2-s duration 
non-overlapped epochs in order to remove artifactual 
activity, such as eye movements, scalp muscle con-
traction, and cardiac activity first by an EEG expert 
visual inspection. The Infomax ICA algorithm, which 
allows the separation of statistically independent 

Table 1   Demographical data of all participants

CTRL PD

Sex (% F) 60% 64%
Age (mean ± SE) 61.72 ± 1.62 61.17 ± 2.73
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sources from multichannel EEG recordings as imple-
mented in the EEGLAB, was applied to remove sig-
nificant artifacts [63–65]. ICA-based artifact removal 
has been done via visual inspection, considering 
the localization on the scalp, the spectrum, and the 
time pattern of the single components. At the end of 
the artifact removal procedure, at least 3-min EEG 
recordings, so about 100 2-s epochs remained for 
each subject.

Entropy analysis

In the present study, we applied ApEn for complexity 
measures instead of other entropy measures because 
of ApEn that presents many advantages: it maintains 
a good reproducibility when used with time series 
[62, 66]; it is almost unaffected by noise, it is finite 
for composite, stochastic, and noisy deterministic 
processes [67]; and it detects the changes in underly-
ing episodic behavior undetected by peak occurrences 
or amplitudes [68]. Moreover, ApEn has been exten-
sively used in studies of time series of physiologic 
parameters to assess their degree of randomness [56, 
57, 62, 69–71].

For all the presented reasons, ApEn would be 
extremely helpful in brain function understanding, 
given the complex and dynamical characteristics of 
the cerebral systems.

ApEn values were computed, in each participant, 
for each EEG channel and for beta 1 (13–20 Hz) and 
beta 2 (20–30  Hz) frequency bands using in-house 
developed MATLAB software and settings applied in 
other previously studies by our group. Firstly, a value 
of ApEn was computed for each channel and each 
epoch in each of the beta frequency bands. Finally, 
for each EEG recording, those values were averaged 
among the epochs to obtain a single ApEn value for 
each channel in each frequency band [56, 57, 62, 70, 
71]. The software generates ApEn dimensionless val-
ues from 0 to 2: the higher the value of ApEn, the 
more irregular and less predictable the signal is; the 
lower this value, the more periodic and stable the sig-
nal tends to be [56].

The ApEn is computed using two input parame-
ters: m, the model length, that was set equal to 2 and 
r, the tolerance factor, that was equal to 0.2*vari-
ance (x) [66, 72–74], where x is a 2-s long epoch 
of a specific channel. These well-established values 

are selected because they have been demonstrated 
to produce good statistical reproducibility for time 
series of length N > 60 [75]. Normalizing r in this 
manner gives ApEn a translation and scale invari-
ance; in this way, it remains unchanged under uni-
form process magnification, reduction, or constant 
shift to higher or lower values [76]. In summary, the 
ApEn is calculated as ApEn = Φ

m
− Φ

m+1:

where Ni represents the number of points that are 
within r of their corresponding point in the original 
sequence Y, at point i:

After electrode-by-electrode analysis was con-
ducted, the scalp was subsequently divided into 
five ROIs (frontal: F3, Fz, F4; Central: C3, Cz, C4; 
parietal: P3, Pz, P4; temporal: F7, T7, P7, F8, T8, 
P8; occipital: O1, O2) and the entropy values of the 
electrodes belonging to a region were averaged with 
each other in order to have an ApEn value for each 
ROI considered.

Statistical evaluation

The two-tailed unpaired Student’s t-test was per-
formed to highlight the statistical differences of the 
ApEn values of each channel comparing PD and 
CTRL groups in beta 1 and beta 2 frequency bands, 
setting the statistical threshold level at 0.05. Before 
the application of the statistical t-test, the distribu-
tion of ApEn values was checked for each channel 
by the Kolmogorov–Smirnov normality test for both 
PD patients and the control group. The test showed 
that each channel presented a normal distribution of 
ApEn values, thus allowing the application of the 
two-tailed unpaired Student’s t-test.

Moreover, a statistical one-way ANOVA and a 
post hoc analysis with the Duncan’s test were applied 
to the ROIs ApEn values to evaluate the statistical 
differences between the PD and CTRL groups for 
each ROI in beta 1 and beta 2 frequency bands.

Φ
m
= (N − m + 1)−1

N−m+1∑

i=1

log(N
i
)

N
i
=
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i=1,i≠k
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Results

In order to investigate the differences between the 
PD and the CTRL group, ApEn values were com-
puted for each participant in beta 1 and beta 2 fre-
quency bands for each channel. Significant differ-
ences between PD and CTRL have been highlighted 
in beta 1 and beta 2 frequency bands. P-values of 
each studied channel are reported in the Supple-
mentary Table  1. Considering the beta 1 band, 
the Fz channel highlights a statistically significant 
difference between the two groups. In fact, PD 
patients showed statistically lower ApEn values in 
the frontal, premotor areas, respect to CTRL group, 
whereas, regarding the beta 2 band, the PDs showed 
statistically lower ApEn values in the centropari-
etal, motor, and frontocentral, sensorimotor areas 
compared to the CTRL group, reporting statisti-
cal differences in F4, C4, P4, P3, Cz, Pz, channels. 
The topographical maps of the ApEn values of both 
groups and the distribution of the statistically sig-
nificant differences between the two groups for each 
frequency band were reported in Fig. 1.

Subsequently, ApEn values for frontal, cen-
tral, parietal, temporal, and occipital ROIs were 
calculated in order to demonstrate regional dif-
ferences between groups in beta 1 and beta 2 fre-
quency bands. While no statistical differences were 
reported in beta 1, in beta 2 the ANOVA showed a 
main effect F (degrees of freedom = 4, error degrees 
of freedom = 232) = 5.5604, p = 0.00027 and a sig-
nificant reduction of PD ApEn values in the central 
(p = 0.043940) and in parietal (p = 0.036521) ROIs 
compared to CTRL group after the Duncan’s post 
hoc test was found (Fig. 2). P-values are reported in 
the Supplementary Table 2.

Discussion

Parkinson’s disease (PD) is a neurodegenerative dis-
ease widely known as a predominantly motor disor-
der produced by dopaminergic deficiency in the basal 
ganglia. In the last decades, considering the idea that 
the human brain can be modeled as a highly com-
plex dynamical system, non-linear analysis has been 
applied to deeper pathological conditions in neuro-
degenerative processes and to identify characteristics 

of disturbed cortical mechanisms, mainly on motor 
frequency. Among these, entropy is applied to meas-
ure the complexity and therefore the unpredictability 
and randomness of a time series; in particular, higher 
entropy values has been associated with randomness 
and less regular system [70, 71, 75].

In this framework, in order to make interventions 
more effective and thus diagnose Parkinson’s early, 
the goal of the current study has been to investi-
gate the brain complexity differences present in PD 
patients compared to healthy ones focusing on the 
beta band, the one most affected by PD and motor 
dysfunction, by the means of approximate entropy 
(ApEn).

The results of the current research highlighted the 
remarkable modifications of the signal complexity 
regarding the beta motor frequency band in the pre-
motor and sensorimotor brain regions due to the PD 
in both electrode-by-electrode and per ROIs analysis.

Our results showed that PD patients presented 
statistically lower ApEn values than CTRL subjects. 
Regarding the beta 2 band, PD patients showed sig-
nificantly lower ApEn values in the centroparietal, 
motor, and frontocentral, sensorimotor areas com-
pared with the CTRL group confirming the dif-
ferences in signal complexity and disease-related 
changes in sensorimotor regions and in the frequency 
band associated with motor dysfunction. These 
results were evident in both electrode-by-electrode 
analysis (Fig. 1) and ROIs (Fig. 2).

Considering the beta 1 band, the significant 
decrease in ApEn found in patients in the Fz chan-
nel of the premotor area (Fig.  1) is not confirmed 
in the analysis of ROIs, probably because the single 
channel information was smoothed in the averaging 
process of the frontal ROI while the result would 
appear to be more focal. However, a future study 
with higher numbers of subjects and electrodes 
could potentially confirm the observed beta 1 trend. 
In line with the results of the present study over the 
beta frequency band and the results of the previ-
ous study over the global frequency domain [56], 
Han et  al. examined the complexity of the global 
frequency domain and of the different frequency 
sub-bands, including the beta one, reporting higher 
complexity values in the global frequency domain 
and lower values in the beta band of PD patients 
compared to healthy subjects [77]. These results are 
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consistent with our evidence, and they revealed that, 
depending on the frequency band analyzed, there 
are different modulations made by PD.

Furthermore, our results are consistent with pre-
vious ApEn analysis of healthy elderly subjects 
that showed a reduction in complexity in the beta 2 
frequency band compared to healthy younger sub-
jects [57], highlighting a physiological reduction in 
entropy, which, based on our evidence, would seem 
to be more pronounced in the pathological condi-
tion of PD. However, in this case, our results are age 
unrelated, being balanced between the two groups, 
emphasizing that the decrease is closely related to the 
neurodegeneration of the pathology.

In the same framework, Chen et  al. reported a 
reduced complexity in oscillatory beta band activ-
ity of PD using the Lempel–Ziv complexity analy-
sis [78]. Even using the permutation entropy the 

complexity of beta band EEG resting-state was 
showed reduced in PD compared to healthy subjects 
[79].

Given that, it can be speculated that a loss of com-
plexity appears when the nervous system becomes 
functionally compromised and that the lower ApEn 
values, namely the loss of signal complexity, reported 
in PD could be directed linked to the functional 
impairment of the nervous system elicited by the 
neurodegeneration and to the loss of complexity of 
the networks that generate the rhythm. Our results 
provide further support for the suggestion that a 
loss of complexity appears when the nervous system 
becomes functionally compromised [43, 80–87].

Concerning our evidences reported in beta 1 
and beta 2, they may reflect the different activity 
of the beta sub-bands. The beta 1 and beta 2 differ-
ent changes which we observed for the PD patients 

Fig. 1   ApEn values of the CTRL and PD groups and the dis-
tribution of statistical differences between them, reported in 
the beta 1 and beta 2 bands, were plotted on the scalp in the 

first, second, and third columns, respectively. The significant 
p-values (< 0.05) are represented on the scalp by the red color
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support the hypothesis of Marceglia et  al. [88], that 
two distinct information channels in the cortico-basal 
ganglia–thalamo-cortical loop, involved in motor and 
non-motor information processing, are formed in the 
parkinsonian brain. The relative functional division 
between activities in the beta band might be sup-
ported by the evidence for different patterns of phar-
macological sensitivity [89] and cortico-subthalamic 
coupling [90].

Our results are consistent even in the regions 
where we found significantly lower ApEn values 
in PD compared to CTRL. Specifically, for beta 1 
the premotor and for beta 2 the sensorimotor areas, 
these areas are all directly affected by motor activity, 
as reported by numerous studies, thus being part of 
motor networks and are affected by the neurodegen-
eration implied in PD. Several studies based on fMRI 
have reported functional connectivity alterations of 
sensorimotor network in PD patients [91–93].

The reduction of complexity in the Beta band in the 
premotor (regarding beta 1) and sensorimotor (regard-
ing beta 2) areas may underlie the beta oscillatory 
activity disfunction resulting in motor impairment, 
such as bradykinesia, rigidity, and tremor [78, 94].

Levy et al. [95] reported that beta oscillatory activ-
ity in the basal ganglia associated with the pathology 
that gave rise to tremor in PD. Beta band resting-state 

activity getting less complex, namely more ordered, 
detected in our study may be related to the motor 
symptoms, such as resting tremor, in PD patients.

In summary, our article expands and reinforces the 
existing literature both about the application of ApEn 
and about the differences in brainwave complex-
ity Parkinson’s patients by reporting not only a loss 
of complexity in the beta band, which is related to 
sensorimotor processing and affected by the disease, 
but by finding these changes in specific sensorimotor 
areas, even considering the entire scalp.

Regarding the ApEn, although there are few appli-
cations in the literature to EEG data of patients with 
Parkinson’s disease, compared to other non-linear 
methods, it offers advantages such as straightforward 
interpretations, good reproducibility when applied to 
time series, scale invariance, and model independ-
ence. It is capable to detect changes in the underly-
ing episodic behavior that are not reflected in the 
occurrences or amplitudes of spikes [51]. Applied to 
resting-state EEG data, either by analyzing electrodes 
or ROIs, ApEn emerges as a powerful and easily 
available tool to distinguish PD patients from healthy 
elderly controls.

Overall, based on these considerations, we can 
state that ApEn could provide a potential way to 
have an innovative biomarker to distinguish the 

Fig. 2   ApEn values for 
each ROI of the PD (blue) 
and CTRL (red) groups in 
the beta 2 band. Significant 
differences between ROIs 
of PD and CTRL groups are 
marked with an asterisk (*)
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pathological conditions, or intercept stages prior to 
the disease manifestation. Early diagnosis, through 
such a simple analysis, could potentially help delay 
the onset of symptoms and improve patients’ quality 
of life by applying early treatments.

Certainly, some methodological limitations should 
be considered, first of all the sample size of PD 
patients, which was increased from the previous pub-
lished article [56] but still narrow, and that the EEG 
device has some technical limitations such as low 
spatial resolution which is counterbalanced by a very 
high temporal resolution. Moreover, the quality of the 
EEG recordings depends on the expertise of the tech-
nician, who must follow international guidelines for 
EEG headset application; it depends on the environ-
mental noise, which can be minimized by conducting 
the recordings in a room that is as soundproofed and 
electrically shielded as possible and on the coopera-
tion of the patients, who are undergoing recordings in 
a resting state to minimize any kind of movement.

Conclusions

Parkinson’s disease is a complex neurodegenerative 
disease primarily associated to motor dysfunctions. 
The ApEn analysis has been shown to be successful 
in detecting pathological features of activity in the 
beta band related to the nervous system functional 
impairments and to the disease development in early 
stages of PD.

In future studies, the results should be further deep-
ened concerning disease progression, for instance by 
investigating the correlation between ApEn values and 
motor scores of UPDRS scale.

Moreover, for the purpose of validating this 
approach, it will be necessary to enroll a larger num-
ber of PD patients. In line with this, it might be inter-
esting to use the ApEn as an input feature of a classi-
fier for early detection of PD. Furthermore, although 
in this study we focused on resting EEG to demon-
strate the potential of this simple recording analyzed 
with ApEn and to bring our research closer to a more 
clinical setting, it would be interesting to apply ApEn 
analysis on EEG recordings during cognitive and 
motor tasks to get a more complete picture of neuro-
degeneration implicated by PD from the early stage 
of the disease, highlighting the cognitive and motor 

changes brought about by Parkinson’s from the earli-
est stages of the disease.

Surely, as a step forward, the results of the present 
research showed that resting brain networks exhibit a 
different degree of complexity between Parkinson’s 
patients and control subjects in the beta bands and the 
related sensorimotor regions, suggesting that Parkin-
son modulates the underlying communications within 
these regions.

In conclusion, approximate entropy could be a use-
ful index to support an early diagnosis, follow the 
progression of Parkinson’s disease and plan rehabili-
tation interventions.
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