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Abstract Aging primarily affects memory and execu-
tive functions, a relationship that may be underpinned by 
the fact that almost all adults over 60 years old develop 
small vessel disease (SVD). The fact that a wide range 
of neuropathologies could only explain up to 43% of the 
variation in age-related cognitive impairment suggests 
that other factors, such as cognitive reserve, may play a 
role in the brain’s resilience against aging-related cog-
nitive decline. This study aims to examine the relation-
ship between structural–functional-connectivity coupling 
(SFC), and aging, cognitive abilities and reserve, and 
SVD-related neuropathologies using a cohort of n = 176 
healthy elders from the Harvard Aging Brain Study. The 
SFC is a recently proposed biomarker that reflects the 

extent to which anatomical brain connections can pre-
dict coordinated neural activity. After controlling for the 
effect of age, sex, and years of education, global SFC, as 
well as the intra-network SFC of the dorsolateral somato-
motor and dorsal attention networks, and the inter-net-
work SFC between dorsolateral somatomotor and fron-
toparietal networks decreased with age. The global SFC 
decreased with total cognitive score. There were signifi-
cant interaction effects between years of education versus 
white matter hyperintensities and between years of edu-
cation versus cerebral microbleeds on inter-network SFC. 
Enlarged perivascular space in basal ganglia was associ-
ated with higher inter-network SFC. Our results suggest 
that cognitive ability is associated with brain coupling at 
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the global level and cognitive reserve with brain coupling 
at the inter-functional-brain-cluster level with interaction 
effect from white matter hyperintensities and cerebral 
microbleed in a cohort of healthy elderlies.

Keywords Structural–functional-connectivity 
coupling · Small vessel disease · Aging · Cognitive 
reserve · Harvard Aging Brain Study

Introduction

The human brain is made up of a vast and complicated 
network of anatomical connections (i.e., structural brain 
network) that permits efficient communication between 
different parts of the brain (i.e., functional brain connec-
tions or network) for segregation and integration of neu-
ral information [1]. Because of the strong correspond-
ence between structural and functional brain networks 
[2, 3], recent efforts have focused on devising new bio-
markers that can jointly characterize these two types of 
networks in the hope of improving our understanding on 
the relationship between brain versus behavior and cog-
nition [4, 5]. One of the potential biomarkers is the struc-
tural–functional-connectivity coupling (SFC), which is 
estimated from the correlation between structural and 
functional connections [2, 6, 7]. It reflects the extent to 
which anatomical brain connections can predict coordi-
nated neural activity, or the extent to which anatomical 
connections support brain communications [4].

The SFC of healthy youth [4], young adults [5], and 
patients with neuropsychiatric diseases and disorders 
[6, 8–14] has been investigated. In healthy participants, 
the regional pattern of SFC of both adolescent [4] and 
young adult brain [5] follows the cortical hierarchies, 
whereby unimodal sensory areas exhibit high coupling, 
and transmodal association areas exhibit low coupling. 
Significant association between regional SFC versus 
age and cognition was also demonstrated [4, 5].

Compared to healthy controls, decrease in SFC at the 
level of the whole brain were observed in patients with 
epilepsy [2, 6, 7], bipolar disorder [8], multiple scle-
rosis [11], Alzheimer’s disease [10], and Parkinson’s 
disease [9], whereas increase in SFC at the level of the 
whole brain was observed in participants with cogni-
tive impairment with no dementia [13]. At the level of 
functional brain clusters (i.e., a group of functionally 
similar brain regions) and rich-club connections, increase 
in SFC was observed in the default-mode network and 

rich-club connections of patients with Alzheimer’s dis-
ease [14], and the non-rich-club connections of patients 
with mild cognitive impairment and Alzheimer’s disease 
[12], whereas decrease in SFC was observed in the sali-
ence, visual, and somatomotor networks of patients with 
multiple sclerosis [11]. At the level of individual brain 
regions, decrease in SFC was observed in the hippocam-
pus, insula, frontal gyrus, and middle temporal gyrus of 
patients with Alzheimer’s disease [14], and the bilateral 
superior and middle occipital gyri, and right cuneus, 
precuneus, and calcarine gyrus of patients with Parkin-
son’s disease [9]. On the other hand, several studies dem-
onstrated the association between SFC and cognition. 
Higher whole brain SFC was associated with better cog-
nitive functions in patients with mild cognitive impair-
ment and Alzheimer’s disease [12] and worse cognitive 
functions in participants with cognitive impairment with 
no dementia [13]. Higher SFC of right calcarine was cor-
related with better cognitive functions for patients with 
Parkinson’s disease [9]. Taken together, the pattern of 
change in SFC depends not only on the disease cohort 
but also on the scale at which coupling was measured.

Aging primarily affects memory and executive 
functions [15]. This connection may be underpinned 
by the fact that almost all adults over 60  years old 
develop small vessel disease (SVD), a common cause 
of stroke and vascular dementia that was previously 
considered innocuous [16, 17]. Common neuro-
pathologies of SVD are white matter hyperintensities 
(WMH), lacunes, enlarged perivascular space (ePVS), 
and cerebral microbleeds (CMBs) [17]. Previously, 
the neuropathologies of Alzheimer’s disease, infarcts, 
and Lewy bodies were also thought to be the primary 
cause of age-related cognitive decline [18]. However, 
it is subsequently demonstrated that a wider array of 
neuropathologies, including markers of Alzheimer’s 
disease, limbic predominant age-related TDP-43 
encephalopathy, hippocampal sclerosis, Lewy bodies, 
macroscopic infarcts, microinfarcts, cerebral amyloid 
angiopathy, atherosclerosis, and arteriolosclerosis, 
could only account for up to 43% of the variation in 
age-related cognitive impairment [19]. These findings 
suggest that alternative factors, such as the concept 
of cognitive reserve, brain reserve, and brain mainte-
nance [20], may underpin the resilience of the brain 
to aging-related cognitive decline. Of note is that 
years of education, a proxy of cognitive reserve, is a 
potential modifiable risk factor for SVD-related cog-
nitive decline [16, 21].
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Considering the intricate link between aging, 
cognitive abilities, SVD-related neuropatholo-
gies and cognitive reserve, the primary aim of this 
study was to examine the degree to which SFC 
varied with these characteristics in a cohort of 
healthy elders from the Harvard Aging Brain Study 
(HABS) [22]. The SFC of the entire brain and that 
of the intra- and inter-functional-brain-clusters was 
investigated.

Methods

Participants

Demographic (e.g., age, sex, and education), 
clinical (e.g., Preclinical Alzheimer Cogni-
tive Composite-96, PACC96) [23], and 3  T MRI 
(T1, T2, FLAIR and SWI images, diffusion, and 
resting-state fMRI) data were obtained from the 
HABS cohort of n = 284 healthy elders (age 62 to 
92 years). The informed consent for all participants 
was obtained by HABS, and our data usage was 
approved by HABS [22].

Cohort-specific inclusion criteria for recruitment 
included being 62 years or older, obtaining a score of 
0 on the Clinical Dementia Rating Scale, scoring over 
25 on the Mini-Mental State Examination, achieving 
scores above the thresholds adjusted for age and edu-
cation on the 30-Minute Delayed Recall of the Logi-
cal Memory Story A, and getting a score lower than 
11 on the Geriatric Depression Scale. The criteria for 
exclusion encompassed a history of alcoholism, drug 
abuse, head trauma, or a current serious medical/
psychiatric illness. [22]. The participants diagnosed 
with mild cognitive impairment and dementia were 
excluded from all analyses. For all statistical analy-
sis of SFC, we used the subset of n = 176 participants 
with both the first year and 4th year follow-up data. 
For the GLM analysis, all n = 176 participants with 
the data from two visits, n = 44 participants with the 
first-year data only, and n = 7 participants with the 4th 
year follow-up data only were used.

Small vessel disease (SVD) scoring

The scoring system for SVD used in this study 
has been well-established by Staals et  al. [24]. 

The SVD scoring was conducted by consensus of 
a panel comprising one neuroradiologist (HKFM) 
and one neuroscientist (HZ). Lacunes manifest as 
round or ovoid, subcortical fluid-filled cavity and 
appear as a central CSF-like hypointensity with 
a surrounding rim of hyperintensity on FLAIR. 
Occasionally, other sequences such as T1-weighted 
and T2-weighted MRI are required for discern-
ing lacunes when there is no hyperintense rim 
on FLAIR [25]. White matter hyperintensities 
are common in older adults and characterized by 
T2-weighted MR images. Deep and periventricular 
WMH were scored using the Fazekas scale between 
0 and 3 [26]. Enlarged perivascular space (ePVS) 
is defined as small, sharply delineated structures 
of CSF intensity (< 3  mm following the tract of 
perforating vessels) that can be easily seen on 
T2-weighted images [27]. Cerebral microbleeds are 
defined as small (< 5  mm), homogeneous, round 
foci in the brainstem, white matter, cortico-sub-
cortical junction, basal ganglia, and cerebellum on 
SWI images [24].

The SVD score is the total of four closely cor-
related features: lacunes, WMH, CMBs, and ePVS 
in basal ganglia. It is on an ordinal scale from 0 
to 4. One point is given for each of the following: 
the presence of lacunes and CMBs was defined as 
the presence of one or more lacunes (1 point if pre-
sent) or CMB (1 point if present); the presence of 
moderate to severe (grade 2–4) ePVS in the basal 
ganglia (1 point if present); and the presence of 
either confluent deep WMH (Fazekas score 2 or 3) 
or irregular periventricular WMH extending into 
the deep white matter (Fazekas score 3) (1 point if 
present) [24].

Cognitive outcome

Participants in the HABS were evaluated annually 
with a battery of cognitive assessments. For this 
study, we evaluated cognition using the Preclini-
cal Alzheimer Cognitive Composite (PACC-96), 
a mean of z score performances on four tests sen-
sitive to cognitive decline in at-risk individuals: 
mini-mental state examination, logical memory, 
digit symbol coding, and the free and cued selec-
tive reminding test (sum of free recall and total 
score added together) [28].
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Construction of the structural connectomes

HABS participants underwent MRI examination 
using a 3 T MR scanner (Siemens Tim Trio) with 
a 12-channel head coil. Structural images were 
acquired with 3D T1-weighted sequence using 
magnetization prepared rapid gradient echo imag-
ing (MPRAGE, 256 sagittal slices, repetition time 
(TR) = 2300  ms, echo time (TE) = 2.95  ms, inver-
sion time (TI) = 900  ms, flip angle (FA) = 9°, 
FOV = 270 × 253  mm, matrix = 256 × 240, voxel 
size = 1.05 × 1.05 × 1.2  mm). The diffusion ten-
sor images (DTI) were acquired using spin-echo 
echo-planar imaging with TR/TE of 3900/81  ms, 
2 × 2 × 2  mm3 voxel size, b-values of 1000  s/mm2, 
and 30 diffusion encoding directions.

We used the Pipeline for Analyzing braiN Diffu-
sion imAges (PANDA, http:// www. nitrc. org/ proje 
cts/ panda) to process the DTI data [29]. PANDA 
is a MATLAB toolbox for automated process-
ing of brain diffusion images based on the Diffu-
sion Toolkit (http:// www. track vis. org/ dtk/) and 
the fMRI Software Library (FSL, http:// fsl. fmrib. 
ox.ac.uk/fsl). Firstly, the DTI data were corrected 
for motion and eddy current geometric distortions, 
and non-brain tissues were removed. Participants 
with head movements of more than 3  mm in any 
direction of x, y, z, or over 3° were excluded. The 
fractional anisotropy (FA) of each voxel was subse-
quently estimated. The FA images were then coreg-
istered with T1 image in the native space. Proba-
bilistic tractography was subsequently performed 
using ProbtrackX of FSL (Fibers = 3, weight = 1, 
burnin = 1000). The Gordon brain parcellation [30] 
in the standard Montreal Neurological Institute 
(MNI) space were warped to the individual’s native 
space by the inverse transformations of image nor-
malization and coregistration. Each region of the 
brain was defined as a brain network node. Finally, 
a 333 × 333 structural connectivity matrix (SC) was 
estimated by counting the number of streamlines 
between all pairs of brain parcels.

Construction of the functional connectomes

Resting-state fMRI data were acquired using 
gradient-echo echo-planar sequence with TR/
TE = 3000/30  ms, flip angle = 90°, voxel 
size = 3 × 3 × 3  mm3. The analysis of fMRI data was 

performed using the Data Processing Assistant for 
Resting-State fMRI (DPARSF) and Statistical Para-
metric Mapping (SPM12). The first 10 volumes were 
discarded, and the differences in image acquisition 
time of the remaining fMRI images were corrected. 
Next, the time series of images for each participant 
were realigned using a six-parameter linear transfor-
mation with a two-pass procedure (registered to the 
first image and then registered to the mean of the 
images after the first realignment). Participants with 
head motion more than 3 mm in x, y, and z or 3° were 
excluded. In addition, the Diffeomorphic Anatomi-
cal Registration Through Exponentiated Lie alge-
bra (DARTEL) tool [31] normalized the structural 
images and tissue maps, which were obtained from 
structural images, to Montreal Neurological Institute 
(MNI) space and created transformation parameters. 
Mean WM and CSF (from tissue maps) time series 
were regressed out from the time course in each 
voxel. All the fMRI images were spatially normal-
ized to the MNI space and resampled to 3 × 3 × 3 
 mm3 using the transformation parameters that were 
estimated through DARTEL segmentation. After 
the normalization, the data were band-pass filtered 
(0.01–0.08 Hz) to reduce high-frequency respiratory 
and cardiac noise and low-frequency drift. For each 
participant, the regional time series was obtained by 
averaging the time series over all voxels of each of 
the parcel in the Gordon parcellation. After retrieval 
of the mean individual regional time series, we calcu-
lated the correlation coefficients between all pairs of 
brain parcels to obtain a 333 × 333 functional connec-
tivity (FC) matrix for each participant. We applied the 
Fisher z-Transformation to the correlation coefficients 
so that all FC became normally distributed.

Functional brain clusters

Individual brain parcels can be assigned to specific 
functional brain clusters that have been implicated in 
different cognitive functions. In this study, we used the 
Gordon parcellation with 12 functional brain clusters 
(Fig.  1), namely, the visual (VIS), dorsal somatomo-
tor (SMhand), ventral somatomotor (SMmouth), audi-
tory (AN), cingulo-opercular (CON), cingulo-parietal 
(CPN), default mode (DMN), dorsal attentional (DAN), 
frontoparietal (FPN), retrosplenial temporal (RTN), 
ventral attentional (VAN), and salience (SN) networks 
[30]. These functional brain clusters or networks will 

http://www.nitrc.org/projects/panda
http://www.nitrc.org/projects/panda
http://www.trackvis.org/dtk/
http://fsl.fmrib
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be used for subsequent intra and inter-network SFC and 
modularity (see below).

Intra and inter-network modularity

The modularity of structural and functional brain 
clusters were computed using the same method using 
the GRETNA toolbox (https:// www. nitrc. org/ proje 
cts/ gretna/) [32]. Of note is that we used the Gor-
don’s 12 functional brain clusters as a prior modules 
for estimating the intra and inter-network modularity, 
instead of the data-driven method used in the original 
study by Newman.

Estimation of SFC

The global SFC was estimated by calculating the 
Spearman-rank correlation between the entire SC 
matrix with the FC matrix, similar to the algorithm 
previously described by Gu et  al. [5]. The intra and 
inter-functional-brain-network SFC were also com-
puted using the 12 functional brain clusters from the 
Gordon template [30]. For intra-network SFC, the SC 
and FC of brain regions within individual functional 
brain clusters were correlated. For inter-network SFC, 
the SC and FC between brain regions from different 
functional brain clusters were correlated (see Fig.  2 
for overview).

Statistical analysis

To investigate the relationships between Q , SFC ver-
sus age, sex, years of education (edu), PACC96, and 
individual SVD lesion type (WHM, lacunes, ePVS, 
and CMBs), the following linear mixed model was 
performed using R:

All the SVD lesion types and sex are within-par-
ticipant categorical fixed factors, and edu and age are 
within-participant continuous fixed factors. Partici-
pant is a random factor.

Imer
(

SFC ∼ 1 + sex + age∗PACC96 + edu∗PACC96

+ age∗WMH + edu∗WMH + age∗lacunes

+ edu∗lacunes + age∗ePVS + edu∗ePVS

+ age∗CMBs + edu∗CMBs +
(

1∕participant
))

Fig. 1  Spatial distribution of network modules. The 333 brain 
regions from the Gordon atlas were aligned to twelve different 
functional brain clusters [30], namely, A visual (VIS), B dorsal 
somatomotor (SMhand), C ventral somatomotor (SMmouth), 
D auditory network (AN), E cingulo-opercular network 
(CON), F cingulo-parietal network (CPN), G DMN, H dorsal 
attentional network (DAN), I frontoparietal network (FPN), J 
retrosplenial temporal network (RTN), K ventral attentional 
network (VAN), and L salience network (SN)

https://www.nitrc.org/projects/gretna/
https://www.nitrc.org/projects/gretna/
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To investigate the change in the brain network 
(intra and inter-network modularity) and SFC 
between the first and second visits after account-
ing for the effect of age, sex, and years of education, 
within-subject anova with covariate was performed 
using SPSS (SPSS, Inc., Chicago, IL, USA). All p 
values were FDR corrected for multiple comparisons. 
A significance level was set at p < 0.05 for all statisti-
cal tests.

Results

Table  1 summarizes the demographics and clinical 
variables of all healthy elders. The global SFC signifi-
cantly decreased, and PACC96 significantly increased 
in the second visit after accounting for the effect 
of age, sex, and years of education. The number of 
healthy participants with WMH and ePVS increased, 
respectively. The total SVD score also increased.

Figure 3A illustrates the difference in the modularity 
of structural brain network between the two visits (second 
visit–first visit). After accounting for the effect of age, 
sex, and years of education, significant decrease in intra-
network modularity of the VIS, SMhand, SMmouth, 
DMN, DAN, FPN, and SN and increase in that of the 
AN and RTN were observed. Significant decrease in 
the inter-network modularity between VIS × DMN, 
VIS × DAN, VIS × VAN, SMhand × SMmouth, 
SMhand × CON, SMmouth × CON, SMmouth × DAN, 
CON × DMN, CPN × DMN, CPN × DAN, DMN × FPN, 
and DAN × FPN was observed. Significant increase 
in the inter-network modularity between VIS × RTN, 
SMmouth × AN, DAN × VAN and RTN × VAN was 
observed. No significant difference was found in the 
modularity of functional brain network (Fig. 3B). 

Figure  4 shows the group-averaged intra- and 
inter-network SFC measured at the two visits (3 years 
apart), and the difference in coupling between the 
two visits (second visit–first visit). After accounting 

Intranetwork connectivity

of VIS

Internetwork connectivity

between VIS and DMN

correlation

Fig. 2  Illustration on the estimation of SFC at intra and inter-
functional-brain-cluster levels. Intra-network SFC was com-
puted from correlation between the structural and functional 
connections of brain regions within a single functional brain 

cluster, whereas inter-network SFC from correlation between 
the structural and functional connections of brain regions from 
a pair of different functional brain clusters
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Table 1  Demographics 
and clinical variables of 
a cohort of healthy elders 
from the HABS

Edu, years of education; 
WMH, white matter 
hyperintensities; ePVS, 
enlarged perivascular 
space; CMBs, cerebral 
microbleeds; SVD, small 
vessel disease; PACC96, 
Preclinical Alzheimer 
Cognitive Composite-96; N, 
no; Y, yes
Values in bold indicate 
significant difference 
between the 2 visits

Characteristics Participants scanned in both visits p value Participants 
scanned in one 
visit only

Number 176 - 51
Sex (F/M) 111/65 - 31/20
Edu 16.1 ± 3.0 - 15.5 ± 3.1

Visit 1 Visit 2 One visit
Age 73.1 ± 6.1 76.2 ± 6.1  < 0.001 74.1 ± 5.8
Global SFC 0.193 ± 0.043 0.187 ± 0.041 0.013 0.185 ± 0.045
PACC96 0.11 ± 0.59 0.25 ± 0.71  < 0.001  − 0.28 ± 0.86

Number
Lacunes N 149 150 - 40

Y 27 26 - 11
WMH N 76 58 ‑ 20

Y 100 118 ‑ 31
ePVS N 73 57 ‑ 23

Y 103 119 ‑ 28
CMBs N 135 132 - 41

Y 41 44 - 10
SVD score 0 36 23 ‑ 10

1 49 45 ‑ 15
2 57 65 ‑ 15
3 29 39 ‑ 9
4 5 4 ‑ 2

Fig. 3  The F-statistics for the comparison in the intra and 
inter-network modularity of the structural (A) and functional 
(B) brain network of healthy elderly between the first and 
second visit. Significant increase in modularity was indicated 
using + and decrease using − . VIS, visual; SMhand, dorsal 
somatomotor; SMmouth, ventral somatomotor; AN, auditory 

network; CON, cingulo-opercular network; CPN, cingulo-
parietal network; DMN, default mode network; DAN, dorsal 
attentional network; FPN, frontoparietal network; RTN, retros-
plenial temporal cortex; VAN, ventral attentional network; SN, 
salience network
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for the effect of age, sex, and years of education, sig-
nificant decrease in the intra-network SFC of SMhand 
and DAN (Fig.  4D) and the inter-network SFC 
between SMhand × FPN were observed (Fig. 4E).

Table  2 presents the significant relationships 
between SFC versus participant characteristics. A 
negative correlation between cognition (PACC96) 
and global SFC was observed ( �2(1) = 5.02 , 

p-value = 0.0251). The inter-network SFC of the 
RTN × CPN of participants with ePVS was higher 
than those without ( �2(1) = 14.06 , p-value = 0.0119). 
The WMH has an interaction effect on the associa-
tion between years of education and the inter-network 
coupling between DMN and SN ( �2(1) = 13.37 , 
p-value = 0.0171). Higher years of education was 
trending towards lower inter-network SFC between 

Fig. 4  Group-averaged intra and inter-network coupling A at 
the first visit (N = 176) and B at the second visit (3 years apart) 
(N = 176) C shows the F-statistics for the comparison in the 
intra and inter-network coupling. Significant decrease in SFC 

was indicated using − . D, E The brain regions of the func-
tional brain clusters with significant difference in SFC from 
baseline. All p values were FDR-adjusted
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DMN and SN for participants without WMH, but 
higher SFC for those with WMH. The CMBs has an 
interaction effect on the association between years of 
education and the inter-network coupling between 
CON and SN ( �2(1) = 18.53 , p-value = 0.0011). 
Higher years of education were trending towards 
higher inter-network SFC between CON and SN 
amongst participants with CMBs.

Discussion

The relationship between SFC versus age

In a cohort of healthy elders, after controlling for 
the effect of age, sex, and years of education, we 
have shown that the global SFC (see Table  1), as 
well as the intra-network SFC of the dorsolateral 
somatomotor and dorsal attention networks, and the 
inter-network SFC between dorsolateral somato-
motor and frontoparietal networks decreased with 
age (see Fig.  4C). Our results largely corroborated 
with those of a recent study of SFC across lifespan, 
wherein they have shown that this negative correla-
tion pattern existed not only globally but also within 
the somatomotor systems [33]. Of note is that the 
major discrepancy between our findings and those of 
Zamani-Esfahlani et al. [33] pertains to the fact that 
we observed age-related decreases in the SFC of the 

DAN and FPN and that we did not find age-related 
decrease in the SFC of VIS. This discrepancy may be 
caused by the difference in age ranges between the 
two datasets.

In another study of healthy aging, aging-related 
change in the functional connectivity of the soma-
tosensory and dorsal attention networks were also 
observed [34]. In a different study of cognitive 
reserve in healthy aging, elders with high cognitive 
reserve were shown to have different functional con-
nectivity of dorsal attention and frontoparietal net-
works compared to elders with low cognitive reserve, 
and these differences were correlated with better cog-
nition [35]. Taken together, these results suggest that 
changes in the constraint of brain communication by 
structural connections in the dorsolateral somatomo-
tor, dorsal attention, and frontoparietal networks may 
likely help to compensate for the effect of aging on 
brain functions.

The relationship between SFC versus cognition

We have shown that the SFC at the level of whole 
brain, but not individual functional brain clusters, 
decreased with higher cognitive score in healthy 
elders (see Table  2). Several prior studies have also 
demonstrated association between global brain cou-
pling versus brain function and behavior. Wang et al. 
have shown that global SFC also decreased with 

Table 2  Effects of demographics and clinical variables including age, sex, years of education, PACC96, and individual SVD scores 
(lacunes, WMH, CMBs, and ePVS) on the coupling between structural and functional brain clusters

S.E., standard error; df, degree of freedom; CON, cingulo-opercular; CPN, cingulo-parietal network; DMN, default mode network; 
RTN, retrosplenial temporal network; SN, salience network
# Data from all participants (regardless of whether he/she came for the second visit) have been used in this statistical analysis
* p values were FDR-corrected (except global SFC)

Linear mixed  model# Likelihood ratio

β S.E df t-value p value* �
2(1) p value*

Global SFC
PACC96  − 0.005 0.002 339  − 2.204 0.028 5.02 0.025
Inter-network SFC
RTN × CPN
ePVS 0.184 0.052 98 3.562 0.038 14.06 0.012
DMN × SN
Edu × WMH 0.086 0.024 316 3.601 0.025 13.37 0.017
CON × SN
Edu × CMBs 0.112 0.027 250 4.232 0.002 18.53 0.001
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cognition in a cohort of elders with cognitive impair-
ment and similar ages to those of our study. On the 
contrary, Medaglia et  al. have observed that the 
global alignment between structural and functional 
connectivities increased with cognitive flexibility in a 
cohort of young adults [36]. Taken the results from 
studies of normal and cognitively impaired elderlies 
together, lower global brain coupling was associated 
with higher cognitive functions. These results likely 
suggest that the cognition in healthy elderlies may be 
supported by cognitive processes that are less con-
straint by structural connections at the global level, 
while those with worse cognitive abilities have more 
tethered structure–function associations [37, 38].

At the level of local regions, the relationship 
between coupling and cognition is varied. Higher 
executive function was associated with higher SFC of 
the rostro-lateral frontal and medial occipital regions, 
and lower executive function with higher SFC of the 
primary motor cortex in youth [4]. Total cognition 
score was shown to be positively correlated with the 
SFC of anterior insula/putamen, and negatively cor-
related with the SFC of middle cingulate and supple-
mentary motor areas of young adults [5]. Together 
with our findings on the lack of association between 
total cognitive score and the SFC of functional brain 
clusters, these results likely indicated that the brain 
structure of the individual brain regions of youth and 
young adult can flexibly constrain functional con-
nections for supporting different cognitive functions, 
whereas the cognitive functions of elderlies are sup-
ported by minimal variations in the structure–function 
association of individual functional brain clusters.

Modulation on the relationship between years 
of education and brain coupling by white matter 
hyperintensities and cerebral microbleeds

Our results have demonstrated that there were sig-
nificant interaction effects by WMH and CMBs on 
the relationship between years of education versus 
inter-network SFC, but no significant linear effect 
between years of education and inter-network SFC 
(see Table 2). More specifically, higher education was 
trending towards lower inter-network SFC between 
DMN and SN for participants without WMH, but 
higher SFC for those with WMH. On the other hand, 
there was a positive trend between years of educa-
tion and the inter-network SFC between CON and SN 

amongst participants with CMBs. In other words, in 
the presence of either of the two SVD neuropatholo-
gies, healthy elders with higher education may tend to 
have higher inter-network SFC. Benson et al. demon-
strated that the functional connectivity of SN signifi-
cantly moderated the impact of WMH on executive 
functions in a cohort of healthy elders and patients 
with mild cognitive impairment [39]. In another study 
of healthy elders, high functional connectivity of 
SN was associated with higher education and better 
cognitive functions [40]. Considering that cognitive 
reserve, of which years of education is a proxy [21], 
has a protective effect against aging-related cognitive 
decline [21] and SVD-related clinical manifestations 
[41–43], these results, together with ours, likely sug-
gest that stronger alignment of functional activation 
patterns to the underlying structural brain connections 
may be necessary for healthy elders with higher cog-
nitive reserve to protect against the insidious effects 
of WMH and CMBs.

Effect of enlarged perivascular space in basal ganglia 
on SFC

Our study demonstrated that healthy elders with 
ePVS in basal ganglia exhibited higher inter-network 
SFC between RTN and CPN than those without 
ePVS. Previous studies of healthy elderlies have dem-
onstrated that age-related increase in the visibility of 
basal ganglia PVS was found primarily in elders [44]; 
that the burden of ePVS in basal ganglia positively 
correlated with the decline in language, information 
processing, executive function, and episodic memory 
over a 4.7-year follow-up of healthy elderlies [45] 
and that the retrosplenial cortex, part of the RTN, has 
been implicated in the episodic memory [46]. Taken 
together, our results suggest that higher SFC between 
RTN and CPN may be necessary to protect against 
the insidious effect of ePVS in basal ganglia on cog-
nitive functions in healthy elders.

The DTI and fMRI modularity

The study found that there was a significant differ-
ence in modularity of structural brain network, but 
not functional brain network, between two visits. 
This suggests that there may be alterations in the 
wiring or organization of white matter tracts, which 
could reflect changes in the anatomical basis of brain 
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function. The lack of significant change in the modu-
larity of functional brain network could potentially be 
attributed to compensatory mechanisms within the 
brain. Compensatory mechanisms refer to the brain’s 
ability to adapt and reorganize its functional networks 
in response to changes or damage in certain areas to 
maintain overall function. These findings highlight 
the importance of considering both structural (DTI) 
and functional (fMRI) aspects of brain imaging when 
studying brain alterations. While DTI may provide 
insights into the underlying anatomical changes, 
fMRI can provide information about functional con-
nectivity and compensatory mechanisms that may 
not be evident in structural imaging alone. Integrat-
ing both modalities can offer a more comprehensive 
understanding of brain changes and their implications 
for brain function.

Limitations

First, several approaches have been proposed to esti-
mate the coupling between structural and functional 
brain connections, namely, statistical, biophysical, 
and communication models [47]. Esfahlani et al. have 
demonstrated that SFC estimated using correlation 
model could be improved using communication mod-
els [33, 47]. The major limitation of the correlative 
approach is that it is non-mechanistic and thus offers 
limited sight on the mechanism underlying SFC 
[48]. On the contrary, communication models could 
account for the flow of signal through the underly-
ing structural connections [49]. Esfahlani et al. have 
demonstrated that the communication model that 
best explains the variance in functional connections 
depends on functional brain clusters (i.e., system-
specific) [33]. We will therefore investigate the effect 
of demographics and clinical variables on the SFCs 
estimated from different models in future studies. 
Second, it is noteworthy that common SVD neuro-
pathologies, such as WMH, CMBs, may not cause 
symptoms individually, but are associated with clini-
cal manifestations, such as cognitive impairment and 
dementia, when there is increasing number and differ-
ent combinations of individual lesion types [17]. Pre-
vious studies have also shown that cognitive reserve 
may protect against some of these SVD-related clini-
cal manifestations, including cognitive decline [41], 
motor impairment [42], and age at stroke [43]. It was 
also postulated that cognitive reserve may underpin 

the individual difference in cognition albeit similar 
SVD burden [50]. Future studies of a larger cohort 
of elders should thus also investigate the relationship 
between SFC versus burden of individual SVD lesion 
type and cognitive reserve. Final limitation pertains 
to the fact that our findings are limited to the scale of 
whole brain and individual functional brain clusters, 
thereby precluding the ability to identify individual 
brain regions that are most susceptible to the effect of 
aging and SVD.

Conclusion

Our results suggest that cognitive ability is associ-
ated with brain coupling at a global scale, while the 
relationship between cognitive reserve and the brain 
coupling at the inter-functional-brain-cluster level 
was modulated by white matter hyperintensities and 
cerebral microbleed in a cohort of healthy elderlies.
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