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oscillatory activity using a whole-brain beamform-
ing approach. Our primary findings indicated robust 
behavioral differences in task performance based on 
the type of interference, as well as stronger beta oscil-
lations with increasing age in the right dorsolateral 
prefrontal cortices (flanker and multi-source condi-
tions), left parietal (flanker and Simon), and medial 
parietal regions (multi-source). Overall, these data 
indicate that healthy aging is associated with altera-
tions in higher-order association cortices that are crit-
ical for attention and motor control in the context of 
cognitive interference.

Keywords  Magnetoencephalography · Multi-source 
interference task · Motor control · Superadditivity

Introduction

Motor control relies on proper movement planning 
and execution, which is frequently computed in the 
context of cognitive interference. While the motor 
dynamics underlying such processes have been shown 
to undergo continuous modulation in the primary 
motor cortex [1–4], there is substantial evidence that 
fronto-parietal recruitment is even more crucial in the 
context of interference [4–6]. Specifically, neuronal 
engagement in the fronto-parietal cortices is thought 
to form a key element of the preparatory and execu-
tory phases of motor function, as the region can exert 
downstream effects to suppress irrelevant inputs in 

Abstract  Age-related changes in the neurophysiol-
ogy underlying motor control are well documented, 
but whether these changes are specific to motor func-
tion or more broadly reflect age-related alterations in 
fronto-parietal circuitry serving attention and other 
higher-level processes remains unknown. Herein, 
we collected high-density magnetoencephalogra-
phy (MEG) in 72 healthy adults (age 28–63  years) 
as they completed an adapted version of the multi-
source interference task that involved two subtypes 
of cognitive interference (i.e., flanker and Simon) 
and their integration (i.e., multi-source). All MEG 
data were examined for age-related changes in neural 
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the primary and supplementary motor cortices given 
its additional spatial representations and the visuomo-
tor transformations carried out in the parietal lobes 
[5, 7–11].

A handful of magnetoencephalographic (MEG) 
studies have characterized the spectral and temporal 
parameters of the neural oscillations serving motor 
control. These studies have revealed strong decreases 
in the beta rhythm, termed event-related desynchro-
nizations (ERD), shortly before and during move-
ment, which are thought to index motor planning and 
selection [12–16], 2014). There are also transient 
increases in gamma activity that coincide with the 
onset of movement and are generally termed, move-
ment-related gamma synchronizations (MRGS; [1–3, 
15, 17–19]. Finally, following movement termina-
tion, there is a robust increase in beta activity, termed 
the post-movement beta rebound (PMBR), which is 
thought to reflect sensory feedback on the parameters 
of the completed movement [20–24]. Several recent 
studies have examined how the abovementioned neu-
ral responses are impacted by different forms of cog-
nitive interference in healthy young adults [1, 17, 25]. 
One recent study by Wiesman and colleagues found 
that movement-related oscillatory dynamics were 
affected equally by different subtypes of interference, 
and that regions of the contralateral premotor corti-
ces exhibited altered MRGS responses during super-
additive interference trials (i.e., stimulus-stimulus and 
stimulus–response; [4, 26, 27].

Though the neurophysiology of cognitive motor 
control continues to change throughout the adult lifes-
pan [28–30], very little is known about whether the 
increased susceptibility to interference that comes 
with aging extends to motor control and the underly-
ing movement-related oscillatory dynamics. Impor-
tantly, in a previous aging study, we found increased 
neural activity in the motor cortices of older partici-
pants compared to their younger counterparts, when 
engaged in a Flanker, stimulus-stimulus interfer-
ence task [2, 3]. Such additional neural recruitment 
may indicate age-related compensatory mechanisms, 
which have been formally described in the compen-
sation-related utilization of neural resources hypoth-
esis (i.e., CRUNCH;  [31] and frequently reported in 
the aging neuroscience literature [32–36]. While the 
study by Spooner and colleagues provided valuable 
insights into how motor-related neural signatures are 
modulated by cognitive interference in healthy aging 

adults, it was limited to only one subtype (i.e., stimu-
lus-stimulus interference or the “flanker effect”) and 
the effects were only examined in the motor cortices. 
Importantly, other subtypes including Simon interfer-
ence or concurrent presentation of both flanker and 
Simon (i.e., multi-source) are known to have accen-
tuated effects in the aging population [37–39], but 
surprisingly almost no work to date has evaluated 
whether these other subtypes also affect the oscilla-
tory dynamics serving motor control.

In the present study, we collected high-density 
MEG data in 72 healthy participants (age range 
28–63  years) who completed an adaptation of the 
multi-source-interference task [4, 40, 41] to exam-
ine how motor oscillatory signatures are affected by 
different cognitive interference subtypes in healthy 
aging. We also aimed to characterize the possibility 
of convergent, divergent, and superadditive effects of 
interference subtypes on movement-related responses. 
In accordance with the literature, we hypothesized 
age-related compensatory recruitment of neuronal 
pools mainly within not only fronto-parietal corti-
ces, but also motor-specific regions [2, 3]. We further 
hypothesized spatially distinct responses based on 
different interference subtypes, with the flanker effect 
(i.e., stimulus-stimulus interference) mostly discern-
able in frontal regions and the Simon effect (i.e., 
stimulus–response) interference in the parietal corti-
ces [42, 43].

Methods

It should be noted that this study is a comprehensive 
re-analysis of data reported in a previous study [44]. 
Importantly, the neural analyses differ substantially 
from the previous study and do not overlap. The cur-
rent study examined the effects of cognitive interfer-
ence on the neural activity locked to the movement 
onset, as opposed to the visual stimulus that was the 
focus of the previous study.

Participants

Seventy-two healthy adults (14 females, six left-
handed) with a mean age of 50.33  years (range 
28–63  years) were enrolled in this study. Histo-
gram for age can be found in the supplementary 
material (Fig.  S1). Exclusionary criteria included 
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any medical illness affecting CNS function (e.g., 
HIV/AIDS, lupus), any neurological or psychiatric 
disorder, history of head trauma, current substance 
use, and the MEG laboratory’s standard exclusion 
criteria (e.g., ferromagnetic implants). All experi-
mental procedures conformed to the standards set 
by the Declaration of Helsinki. The study proto-
col was approved by the local Institutional Review 
Board (IRB). A full description of the study was 
given to all participants, followed by written 
informed consent, adhering to the IRB guidelines.

MEG experimental paradigm

A modified version of the multi-source interference 
task (MSIT; [4, 40, 41, 45, 46] was used to assess 
cognitive interference effects (Fig.  1 A). Each trial 
began with a central fixation presented for a ran-
domly varied interstimulus interval of 2000–2400 ms. 
The fixation was then replaced by a vertically cen-
tered horizontal row of three equally spaced integers 
between 0 and 3. These integer stimuli were presented 
for 1500 ms. Two of these numbers were always iden-
tical (task-irrelevant) and the third was different (task-
relevant). Prior to beginning the experiment, partici-
pants were given a right-handed five-finger button 

Fig. 1   Experimental paradigm and behavioral performance. 
(A) Each trial began with a central fixation presented for a ran-
domly varied interstimulus interval of 2000–2400 ms. The fix-
ation was then replaced by a vertically centered horizontal row 
of three equally spaced integers between 0 and 3. The presen-
tation of the integer stimuli lasted for 1500 ms. Two of these 
integers were always identical (task irrelevant) and the third 
was different (task relevant). Prior to beginning the experi-
ment, participants were given a five-finger button pad and 
instructed that the index, middle, and ring finger locations rep-
resented the integers 1, 2, and 3, respectively. Participants were 
then instructed that on each trial they would be presented with 
a horizontal row of three integers, and that the objective was 
to indicate the “odd-number-out” by pressing the button corre-

sponding to its numerical identity (and not its spatial location). 
Using these stimuli, four interference conditions were possible: 
(1) control (no interference), (2) Simon (stimulus–response 
interference), (3) flanker (stimulus–stimulus interference), 
and (4) multi-source. (B) Results from the behavioral analy-
ses showed a main effect of interference condition, with each 
condition differing in a stair-step pattern. Reaction time is dis-
played on the y-axis with interference conditions on the x-axis. 
(C) Behavioral results from the superadditivity model, with 
reaction time on y-axis and inference conditions (i.e., multi-
source and additive effect) on the x-axis. (D) The scatterplot 
denotes the positive association between chronological age (in 
years) on the x-axis and reaction time collapsed across all four 
conditions on the y-axis. *p = 0.05, **p = / < 0.001
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pad and instructed that the index, middle, and ring 
finger locations represented the integers 1, 2, and 3, 
respectively. Participants were then instructed that on 
each trial, they would be presented with a horizontal 
row of three integers and that the objective was to 
indicate the “odd number-out” by pressing the but-
ton corresponding to its numerical identity (and not 
its spatial location). Speed and accuracy were also 
stressed to the participant at this point. Using these 
stimuli, four interference conditions were possible: 
(1) control (no interference; i.e., 1 0 0/0 2 0/0 0 3); (2) 
Simon (stimulus–response interference; i.e., 0 1 0/0 0 
1/2 0 0/0 0 2/0 3 0/3 0 0); (3) Flanker (stimulus–stim-
ulus interference; i.e., 1 2 2/1 3 3/1 2 1/3 2 3/1 1 3/2 
2 3); and (4) multi-source (both stimulus–response 
and stimulus–stimulus interference; i.e., 2 1 2/3 1 3/2 
2 1/3 3 1/2 1 1/2 3 3/1 1 2/3 3 2/1 3 1/2 3 2/3 1 1/3 2 
2). Trial types and responses were pseudorandomized 
over the course of the experiment, such that no inter-
ference condition nor any response was repeated 
more than twice in a row. Participants completed 100 
trials of each interference condition, for a grand total 
of 400 trials, and a total recording time of ∼24 min. 
Custom visual stimuli were programmed in MatLab 
(Mathworks, Inc.) using the Psychophysics Toolbox 
Version 3 [47] and back-projected onto a nonmag-
netic screen.

MEG data acquisition

All recordings were conducted in a one-layer mag-
netically shielded room with active shielding engaged 
for environmental noise compensation. With an 
acquisition bandwidth of 0.1–330 Hz, neuromagnetic 
responses were sampled continuously at 1 kHz using 
a MEGIN MEG system (Helsinki, Finland) with 306 
sensors, including 204 planar gradiometers and 102 
magnetometers. During data acquisition, participants 
were monitored via real-time audio-visual feeds from 
inside the shielded room. Each MEG dataset was 
individually corrected for head motion and subjected 
to noise reduction using the signal space separation 
method with a temporal extension [48].

Structural MRI processing and MEG co‑registration

Prior to MEG measurement, four coils were attached 
to the subject’s head and localized, together with the 
three fiducial points and scalp surface, with a 3-D 

digitizer (FASTRAK 3SF0002, Polhemus Navigator 
Sciences, Colchester, VT, USA). Once the subjects 
were positioned for MEG recording, an electric cur-
rent with a unique frequency label (e.g., 322 Hz) was 
fed to each of the coils. This induced a measurable 
magnetic field and allowed each coil to be localized 
in reference to the sensors throughout the record-
ing session. As coil locations were also known with 
respect to head coordinates, all MEG measurements 
could be transformed into a common coordinate sys-
tem. With this coordinate system, each participant’s 
MEG data were co-registered with their T1-weighted 
structural MRI prior to source space analysis using 
BESA MRI (Version 2.0). Structural T1-weighted 
MRI images were acquired using a Siemens Prisma 
3-Tesla MRI scanner with a 64-channel head coil and 
an MP-RAGE sequence with the following param-
eters: TR = 2300  ms; TE = 2.98  ms; flip angle = 9°; 
FOV = 256  mm; slice thickness = 1  mm (no gap); 
voxel size = 1 × 1 × 1  mm. These data were aligned 
parallel to the anterior and posterior commissures 
and transformed into standardized space. Following 
source analysis (i.e., beamforming), each subject’s 
functional MEG images were also transformed into 
standardized space using the transform that was pre-
viously applied to the structural MRI volume and spa-
tially resampled.

MEG preprocessing, time–frequency transformation, 
and sensor‑level statistics

Eye blinks and cardiac artifacts were removed from 
the data using signal space projection (SSP), which 
was accounted for during source reconstruction 
[49]. The continuous magnetic time series was then 
divided into 3500  ms epochs, with movement onset 
as time 0 and the baseline extending from –1600 
to –1100  ms prior to movement (i.e., button press). 
Epochs containing artifacts were removed based on 
a fixed threshold method, and supplemented with 
visual inspection. In brief, for each individual, the 
distributions of amplitude and gradient values across 
all trials were computed, and those trials containing 
the highest amplitude and/or gradient values relative 
to the full distribution were rejected by selecting a 
threshold that excluded extreme values. Importantly, 
these thresholds were set individually for each partici-
pant, as inter-individual differences in variables such 
as head size and proximity to the sensors strongly 
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affect MEG signal amplitude. An average amplitude 
threshold of 1282.29 (SD = 263.47) fT/cm and an 
average gradient threshold of 263.47 (SD = 124.78) 
fT/(cm*ms) were used to reject artifacts. Across the 
group, an average of 362 (SD = 22) trials per partici-
pant were used for further analysis. To ensure there 
were no systematic differences in the number of tri-
als per participant, an ANCOVA was run, and this 
showed no significant main effect of condition, age, 
or the interaction, all p’s > 0.05.

Artifact-free epochs were transformed into the 
time–frequency domain using complex demodulation 
[50], with a time/frequency resolution of 2 Hz/25 ms 
and a bandwidth of 4–100 Hz. The resulting spectral 
power estimations per sensor were averaged across 
trials to generate a mean time series per sensor. These 
sensor-level data were normalized per time–frequency 
bin using the respective bin’s baseline power, which 
was calculated as the mean power during the –1600 
to –1100  ms baseline period. The specific time–fre-
quency windows used for source reconstruction were 
determined by statistical analysis of the sensor-level 
spectrograms across all participants using the entire 
array of 204 gradiometers. Briefly, each data point 
in the spectrogram was initially evaluated using a 
mass univariate approach based on the general lin-
ear model. To reduce the risk of false-positive results 
while maintaining reasonable sensitivity, a two-stage 
procedure was followed to control for type 1 error. In 
the first stage, two-tailed paired-sample t-tests against 
baseline were conducted on each data point, and the 
output spectrogram of t-values was thresholded at 
p < 0.001 to define time–frequency bins containing 
potentially significant oscillatory deviations across 
all participants. In stage 2, time–frequency bins that 
survived the threshold were clustered with tempo-
rally and/or spectrally neighboring bins that were also 
above the threshold (p < 0.01), and a cluster value was 
derived by summing the t-values of all data points in 
the cluster. Nonparametric permutation testing was 
then used to derive a distribution of cluster values, 
and the significance level of the observed clusters 
(from stage 1) were tested directly using this distribu-
tion [51, 52]. For each comparison, 10,000 permuta-
tions were computed. Note that our initial statistical 
threshold and nonparametric approach to multiple 
comparisons was based on the recommendations of 
Eklund et al. [53] and are considered among the most 
rigorous approaches in human neuroimaging. Based 

on these analyses, the time–frequency windows that 
contained significant oscillatory events across all par-
ticipants and conditions were subjected to the beam-
forming analysis. The sensor-level analysis was per-
formed in Brain Electrical Source Analysis (BESA) 
statistics software 2.0. For further details on our data 
processing pipeline, see 45, 46.

MEG source imaging and statistics

Oscillatory neural responses were imaged using 
the dynamic imaging of coherent sources (DICS) 
beamformer [54], which applies spatial filters in 
the time–frequency domain to calculate voxel-wise 
source power for the entire brain volume. The single 
images were derived from the cross-spectral densi-
ties of all combinations of MEG gradiometers aver-
aged over the time–frequency range of interest and 
the solution of the forward problem for each location 
on a grid specified by input voxel space. Following 
convention, we computed noise-normalized source 
power for each voxel per participant using active 
(i.e., task) and passive (i.e., baseline) periods of 
equal duration and bandwidth [55] at a resolution of 
4.0 × 4.0 × 4.0 mm. Such images are typically referred 
to as pseudo-t maps, with units (pseudo-t) that reflect 
noise-normalized power differences (i.e., active ver-
sus passive) per voxel. MEG preprocessing and imag-
ing used the BESA research (V7) software. To assess 
the neuroanatomical basis of the significant oscil-
latory responses identified through the sensor-level 
analysis, mean whole-brain maps were computed 
across all interference conditions and participants for 
the selected time–frequency windows.

To evaluate age-dependent interference-related dif-
ferences in oscillatory power, we performed a voxel-
wise subtraction of the control condition from each of 
the three interference conditions for each participant 
per time–frequency component. This resulted in par-
ticipant-level whole-brain subtraction maps for each 
of the Simon, flanker, and multi-source interference 
conditions. Additionally, to investigate the potential 
for superadditivity of multi-source interference on 
neural activity, the voxel-wise power values of the 
Simon and flanker interference maps were summed 
to produce a whole-brain map (per participant, per 
neural response), which was then subtracted from the 
multi-source map and subjected to whole-brain voxel-
wise correlation analyses, with age as the covariate of 
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interest. To control for type I error, maps were thres-
holded at  p < 0.001 to define potentially significant 
clusters and then nonparametric permutation testing 
was conducted, similar to that performed on the sen-
sor-level spectrograms, with at least 10,000 permuta-
tions per comparison. All the correlational analyses 
were performed in BESA statistics (2.0). Following 
which, Bayesian testing was conducted on all our 
findings which indicated evidence for the alternative 
hypothesis.

Results

Behavioral performance

Repeated-measures ANCOVA on the behavioral data 
revealed significant effects of interference condition 
on reaction time (RT), F(3,69) = 47.18, p < 0.001, and 
age, F(1,69) = 9.32, p = 0.003. Post hoc comparisons 
showed that participants were significantly slower 
to respond on the Simon, t(71) =  − 19.57, p < 0.001, 
flanker, t(71) =  − 22.18, p < 0.001, and multi-source, 
t(71) =  − 36.68, p < 0.001, conditions compared to 
the control trials. Furthermore, participants were sig-
nificantly slower in the multi-source condition than 
both the Simon, t(71) = 16.83, p < 0.001, and flanker, 
t(71) = 26.42, p < 0.001, conditions and responded 
significantly slower on flanker than Simon trials, 
t(71) = 9.58, p < 0.001 (Fig. 1 B). Additionally, reac-
tion time increased significantly with advancing age 
across all conditions, r = 0.360, p = 0.001 (Fig. 1 C), 
and the age-by-condition interaction effect was not 
significant, F(3, 74) = 2.57, p = 0.080. To probe poten-
tial age-related superadditivity effects on MSIT per-
formance, a 1 × 2 ANCOVA comparing the effects 
of multi-source interference and the additive model 
(Simon interference + flanker interference) was con-
ducted, which showed a significant main effect of 
condition for RT, F(1, 70) = 4.28, p = 0.042, such that 
the concurrent presentation of the two interfer-
ence sources (i.e., multi-source condition) wors-
ened behavior, as compared to the additive effects 
of Simon and flanker interference in isolation (Fig. 1 
D). Post hoc were corrected using Holm’s method. 
Finally, neither the main effect of age F(1, 70) = 0.36, 
p = 0.553, nor the interaction F(1, 70) = 0.29, p = 0.589, 
was significant for the superadditivity reaction time 

effect. Finally, no main effects or interactions with 
accuracy were found, all p’s > 0.100.

MEG sensor and source‑level oscillatory analysis

After transforming the data into time–frequency 
space, we observed robust activity in the beta and 
gamma bands in sensors near the  sensorimotor cor-
tices (Fig.  2). Specifically, a significant decrease or 
desynchronization was observed in the beta band 
(16–26  Hz; − 400 to 100  ms, p < 0.001, corrected), 
while a strong increase from baseline or synchroni-
zation was seen in the gamma band (68–76 Hz; − 50 
to 100 ms, p < 0.001, corrected) The time–frequency 
windows of interest were then imaged using a beam-
former and the resulting maps per response were 
averaged over all participants and conditions. Source 
imaging of these time–frequency windows revealed 
that the beta and gamma responses were originating 
from the hand-knob region of the precentral gyrus, 
suggesting these responses likely reflect the motor 
components of the behavioral response. Finally, we 
did not image the PMBR response, as it was after 
movement offset and the condition-wise reaction time 
differences would potentially confound any signifi-
cant findings.

Age‑related conditional differences on beta and 
gamma oscillatory responses

To examine the impact of aging on neural oscilla-
tory activity serving movement during the three 
types of cognitive interference, interference effect 
maps were computed by subtracting the control 
condition power map from each conditional map 
and then performing voxel-wise correlations with 
age. For flanker interference, an increase in beta 
oscillatory response strength (i.e., more nega-
tive) with increasing age was observed in the right 
dorsolateral prefrontal cortex (r =  − 0.487, pcorr = 
0.005, puncorr < 0.0005, BF10 = 316.26), left inferior 
parietal (r =  − 0.528, pcorr = 0.014, puncorr = 0.0005, 
BF10 = 1846.09), and right parietal (r =  − 0.457, 
pcorr = 0.037, puncorr < 0.0005, BF10 = 126.93; 
Fig.  3). Similarly, for Simon interference, stronger 
beta oscillations (i.e., more negative) with increas-
ing age were found in the bilateral parietal corti-
ces (L: r =  − 0.472, pcorr = 0.065, puncorr < 0.0005, 
BF10 = 212.81; R: r =  − 0.457, pcorr = 0.084, 
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Fig. 2   Sensor-level time–frequency analysis. The MEG sensor 
spectrograms (left) display the time–frequency representations 
of neural responses identified by cluster-based permutation 
analysis (see “Methods” section), highlighted using the white 
dotted boundaries. Time (in ms) is denoted on the x-axis and 
frequency (in Hz) on the y-axis, with the dashed white line at 
0  ms indicating the motor response. The color scale bar for 
percent change from baseline is displayed above each plot. 

Each spectrogram represents group- and condition-averaged 
data from one gradiometer sensor that was representative of 
the neural response in sensors near somato-motor regions. 
On the far right is the source-imaged representation of each 
response (beta ERD and MRGS), grand-averaged across all 
conditions and participants, with the color scale bar to the right 
denoting response amplitude in pseudo-t units

Fig. 3   Effects of aging on flanker interference: Whole-brain 
voxel-wise correlational analysis of flanker interference maps 
with age revealed stronger beta oscillations (i.e., more nega-

tive) in (B) the right dorsolateral prefrontal cortex, (C) left 
parietal, and (E) right parietal. ** p < 0.001, uncorrected
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puncorr < 0.0005, BF10 = 115.11; Fig.  4). Similar 
results were found for the multi-source condition, 
with stronger beta oscillations with increasing age 
in the right dorsolateral prefrontal, r =  − 0.456, 
pcorr = 0.07, puncorr < 0.0005, BF10 = 110.71, and left 
medial parietal cortices, r =  − 0.526, pcorr = 0.02, 
puncorr < 0.0005, BF10 = 1433.15 (Fig. 5 A, B).

Finally, we examined the superadditivity effect 
by subtracting the additive model (flanker + Simon 
interference) from the multi-source interference 
condition and correlating the output with age. This 
revealed that the stronger beta oscillations during the 
multi-source condition became weaker in the right 
DLPFC with increasing age, r = 0.419, pcorr = 0.059, 
puncorr < 0.0005, BF10 = 36.77 (Fig. 6). Lastly, for the 
gamma band, the only significant age correlation was 
observed in the left cerebellum during the flanker 

condition, r =  − 0.483, pcorr = 0.067, puncorr < 0.0005, 
BF10 = 362.22.

Discussion

In this study, we used an adaptation of the MSIT par-
adigm [4] and whole-brain statistical analyses to char-
acterize how healthy aging impacts neural dynamics 
serving motor planning and execution in the face 
of distinct cognitive distractors. Behavioral perfor-
mance reflected progressively increasing difficulty 
of the interference conditions from control to Simon, 
flanker, and then multi-source, while aging showed 
an overall decline (i.e., increased reaction time) irre-
spective of the interference condition. Meanwhile, 
the neural oscillations serving motor control were 

Fig. 4   Effects of aging on 
Simon interference: Whole-
brain voxel-wise correla-
tional analysis of Simon 
interference maps with age 
revealed stronger beta oscil-
lations with increasing age 
in the (A, B) left, and (C, 
D) right parietal cortices. 
** p < 0.001, uncorrected
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modulated by aging in an interference subtype-spe-
cific way, which suggests that the aging brain adapts 
differential patterns of neural responses based on 
the nature of interference. Stronger beta interfer-
ence effects with increasing age were observed in the 
right DLPFC (flanker and multi-source), left parietal 
(flanker and Simon), medial parietal (multi-source), 
and other brain regions. Interestingly, the superaddi-
tivity model suggested that the stronger beta response 
in the right DLPFC during multi-source interference 
was becoming weaker with increasing age. Finally, 
in contrast to beta, age-sensitive gamma interfer-
ence effects were found only in the cerebellum and 

limited to flanker-type interference. Below, we dis-
cuss the implications of these novel findings to bet-
ter understand interference-related changes in the 
neural dynamics serving motor control in the aging 
population.

As mentioned earlier, higher-order inputs are 
critical in resolving cognitive conflicts. For example, 
flanker interference prompts selective attention pro-
cessing to suppress inappropriate responses by induc-
ing inhibitory signals from the prefrontal and parietal 
cortices [42, 56–58]. Likewise, Simon interference, 
where there is a spatial incompatibility between stim-
ulus and response location, is conditional not only on 

Fig. 5   Effects of aging on multi-source interference and 
superadditivity model: Whole-brain voxel-wise correlational 
analysis of multi-source interference maps with age revealed 

stronger beta oscillations power in (A) left medial parietal and 
(B) right dorsolateral prefrontal cortices. **p < 0.001, uncor-
rected

Fig. 6   Superadditivity 
effects: Whole-brain voxel-
wise correlational analysis 
of the superadditivity 
model showed decreases in 
the stronger beta oscilla-
tions during multi-source 
interference with increasing 
age in the right dorsolat-
eral prefrontal cortices. 
**p < 0.001, uncorrected
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the top-down feedback but also on continual updating 
of the spatial representation by the parietal cortices 
for successful task execution [59]. Importantly, it has 
been recently reported that similar top-down execu-
tive control is required to modulate movement-related 
oscillations in the motor system in response to cog-
nitive interference [4]. Our findings not only support 
previous reports, but also delineate how these neural 
signatures of motor control are impacted by healthy 
aging. Broadly, significant age-related increases in 
beta neural response power (i.e., more desynchroni-
zation) that were observed in the presence of cogni-
tive interference suggest compensatory recruitment 
of interference-subtype–dependent cortical regions 
to meet the increasing demands of the task. However, 
interestingly, our data also suggest that such neural 
hyperactivity with aging does not directly translate 
into improved behavioral performance. This may indi-
cate the exhaustion of such compensatory strategies 
or that other parts of the output system also experi-
ence some form of aging-related cost (e.g., muscular/
non-neural). The prefrontal cortices are considered 
most vulnerable to the effects of aging with a collec-
tion of studies reporting cortical thinning [60], gray 
matter atrophy, and volume reduction in these regions 
in older participants [61, 62]. Similar changes have 
also been shown in the parietal lobes with advancing 
age [63, 64].

Importantly, an alternative interpretation for such 
age-related cortical hyperactivity during interference 
could also be tied to the dedifferentiation theory of 
aging [65], which postulates non-selective engage-
ment of neuronal pools and thus neural inefficiency 
secondary to neuromodulatory changes with age 
[66–68]. Future investigations using multi-modal 
approaches may help elucidate the complex inter-
play between altered neurotransmission, reduction 
in neural selectivity, and cortical hyper-activity with 
increasing age.

Surprisingly, the beta superadditive effects were 
found to decrease with age in the right DLPFC, which 
is probably suggestive of age-related convergence 
of neural resource allocation when two interference 
models with higher cognitive loads (i.e., Simon and 
flanker subtypes presented in tandem versus individu-
ally) are juxtaposed. Contrasting this pattern of neural 
activity in the right DLPFC with our previous find-
ings of age-related increase in DLPFC beta power 
in the case of flanker interference alone may suggest 

neural resource depletion, such that the cumulative 
interference load may have exceeded the process-
ing capacity for interference resolution with aging 
thus manifesting “cognitive fatigue” [69]. Moreover, 
our superadditive effects can be tied to “the process-
ing speed theory of adult age” [70], with cognitive 
overload further impacting processing speed with 
advancing age, reflected in decreased DLPFC recruit-
ment during multisource as compared to additive 
interference [71]. Lastly, in contrast to the beta find-
ings, weaker gamma interference effects with age 
were elicited by the flanker subtype in the left cer-
ebellum. The contribution of cerebellar circuitry in 
motor control has been highlighted by multiple stud-
ies in both health and disease [72, 73]. Additionally, 
an fMRI study posited changes in the connectivity of 
the cerebellum with frontal and motor cortices dur-
ing response inhibition [74]. Further support for cer-
ebellar-cerebral interactions during inhibitory control 
comes from brain stimulation studies where anodal 
transcranial direct current stimulation (tDCS of the 
cerebellum resulted in potentiated cerebellar brain 
inhibition (i.e., CBI: pathway extending between the 
cerebellum and motor cortices; [75], whereas a later 
study suggested CBI reduction following cathodal 
tDCS of the cerebellum [76]. Taken together with the 
loss of Purkinje cells in the cerebellum reported by 
both animal and human studies with aging [77, 78], 
our gamma finding may indicate age-related defi-
cits in inhibitory control and thus impaired response 
inhibition.

Before closing, it is important to acknowledge sev-
eral limitations of the current work. First, our most 
robust age-related findings were in the flanker inter-
ference condition, which survived our stringent non-
parametric permutation testing approach to control 
for type 1 error. This could reflect that flanker type 
interference is most susceptible to aging effects [79], 
but future studies are needed to confirm this. Sec-
ond, not all of the age-related Simon and multisource 
neural interference effects survived correction with 
nonparametric permutation testing. While the Bayes 
factors for all of these comparisons were large and 
suggested strong or extremely strong evidence for the 
alternative hypothesis, these findings should still be 
interpreted with caution. Similar caveats apply to the 
age-related superadditivity effects that we reported 
here. Finally, there are known limitations with using 
cross-sectional approaches in the context of aging 
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and developmental studies and these limitations apply 
to the current work and must be kept in mind when 
interpreting and generalizing our age-related findings.

To close, our findings indicate that the impact of 
cognitive interference on the cortical dynamics serv-
ing motor control is subtype specific and involves 
higher order frontal and parietal cortices. Overall, 
our data corroborate prior literature by implicating 
age-related alterations in the top-down control of 
movement and provide novel insight into how dif-
ferential brain regions and neural response patterns 
are leveraged to overcome cognitive interference 
subtypes with advancing age. Future studies should 
investigate potential changes in functional connectiv-
ity with increasing age in the regions indicated in this 
study. Importantly, along with conventional computa-
tion of motor beta response (i.e., spectral averaging 
approach), emerging literature has provided mecha-
nistic insight into the functional role of transient 
high-power “burst-like” events during motor task per-
formance, with their different parameters (i.e., count, 
timing, and/or peak event power) predicting behavio-
ral outcomes [2, 3, 80]. Specifically, in the context of 
aging, it has been suggested that the changes in beta-
induced activity observed with increasing age may in 
part be due to alterations in the cortical burst char-
acteristics embedded within the averaged trials [81]. 
Future aging studies on movement dynamics could 
likely help draw parallels between the two approaches 
and advance our understanding of how trial-to-trial 
variations in motor responses may contribute to the 
mean beta power.
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