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Abstract A substantial portion of dementia risk can 
be attributed to modifiable risk factors that can be 
affected by lifestyle changes. Identifying the contribu-
tors to dementia risk could prove valuable. Recently, 
machine learning methods have been increasingly 
applied to healthcare data. Several studies have 
attempted to predict dementia progression by using 
such techniques. This study aimed to compare the 
performance of different machine-learning methods 
in modeling associations between known cognitive 
risk factors and future dementia cases. A subset of the 
AGES-Reykjavik Study dataset was analyzed using 
three machine-learning methods: logistic regression, 
random forest, and neural networks. Data were col-
lected twice, approximately five years apart. The data-
set included information from 1,491 older adults who 

underwent a cognitive screening process and were 
considered to have healthy cognition at baseline. Cog-
nitive risk factors included in the models were based 
on demographics, MRI data, and other health-related 
data. At follow-up, participants were re-evaluated for 
dementia using the same cognitive screening process. 
Various performance metrics for all three machine 
learning algorithms were assessed. The study results 
indicate that a random forest algorithm performed 
better than neural networks and logistic regression in 
predicting the association between cognitive risk fac-
tors and dementia. Compared to more traditional sta-
tistical analyses, machine-learning methods have the 
potential to provide more accurate predictions about 
which individuals are more likely to develop demen-
tia than others.
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Introduction

Many believe that cognitive decline is an inevitable 
part of aging and that developing dementia is a nor-
mal part of cognitive aging, which we as individuals 
have no control over [1, 2]. Research has, however, 
shown that some individuals maintain their cognitive 
abilities even though they reach a very high age and 
that individuals can influence their cognitive aging 
process [1–4]. In fact, while it is known that both 
age and genetics are strong risk factors for cogni-
tive decline [5, 6], a recent report on dementia pre-
vention, intervention, and care states that modifiable 
risk factors contribute to up to 40% of dementia cases 
worldwide [3]. The risk factors that are highlighted 
in the report and considered to have the strongest evi-
dence are low education level, hearing loss, traumatic 
brain injury, hypertension, excessive alcohol con-
sumption, obesity, smoking, depression, social isola-
tion, physical inactivity, diabetes, and air pollution. 
Other factors, such as diet [7, 8], multilingualism [9], 
sleep [10–12], and physical fitness [13–17], have also 
been shown to have an association with dementia and 
cognitive decline. All of these risk factors are modi-
fiable to some extent. Consequentially, by targeting 
these known risk factors for dementia and cognitive 
decline in a systematic way, a substantial proportion 
of dementia cases could be prevented or delayed. 
Pinpointing the individuals who could benefit from 
modifying their lifestyle to improve their habits relat-
ing to those risk factors could be of great value. One 
approach that could improve the ability to identify 
these individuals would be to apply mathematical 
models to the available data.

Machine learning algorithms have increasingly 
been applied to healthcare data [18, 19]. Studies have 
shown that machine-learning algorithms have proven 
helpful in risk prediction, disease diagnosis, and 
assessment of disease severity [18, 20]. Many of these 
studies have involved data collected from older adults. 
One example is a study that applied random forest 
algorithms to examine how sleep predicted mortality 
in older adults compared to other known predictors of 
mortality [21]. The results showed that although sleep 

was not the strongest predictor of mortality, multidi-
mensional sleep data can add to the predictive power 
of more routinely used predictors of mortality.

Another example is a study that compared the 
performance of different machine-learning methods 
in modeling social determinants of health using the 
Health and Retirement Study dataset [22]. Of the 
algorithms that were explored, neural networks per-
formed best. The study’s results suggested that inter-
active non-linear relationships between social factors 
and biological health indicators were identified by 
applying neural networks to the dataset.

Several machine-learning studies have been per-
formed on data relating to dementia, with the choice 
of method often being determined by the characteris-
tics of the dataset [23]. Spooner et al. [24] compared 
the performance of different machine learning meth-
ods in predicting the onset of dementia using high-
dimensional clinical data from two different datasets. 
According to their findings, random forest algorithms 
can outperform linear regression models when non-
linear data, with complex non-linear relationships, is 
present, which is the case with many datasets. Casa-
nova et  al. [25] used random forest classification to 
study predictors of cognitive trajectories. According 
to their results, nongenetic modifiable risk factors 
play an important role in the trajectory of cognitive 
decline. Qiu et  al. [26] used a deep learning frame-
work to classify individuals with Alzheimer’s disease 
using MRI data and cognitive scores. The model’s 
diagnostic performance was better than that of a team 
of neurologists. Garcia-Gutierrez et al. [27] assessed 
the ability of machine learning algorithms to clas-
sify individuals with and without dementia based on 
neuropsychological assessments. The algorithms per-
formed well, and the results indicated that by apply-
ing such algorithms, it might be possible to rely on 
the results of fewer neuropsychological tests than spe-
cialists usually do, reducing the resources needed to 
perform neuropsychological examinations. The focus 
of these studies differs, but all of them indicate that 
useful information about cognition and dementia can 
be obtained by applying machine learning methods to 
datasets that contain relevant information.

Present study

The work presented in this paper modeled associa-
tions between risk factors and future dementia cases 



739GeroScience (2024) 46:737–750 

1 3
Vol.: (0123456789)

using machine learning methods. Predicting which 
individuals are more likely to develop dementia can 
provide valuable insight for healthcare professionals 
and the healthcare system. By creating more accurate 
models, costs can be reduced, and healthcare work-
ers can provide care in a more targeted way. Individu-
als at risk could be identified sooner in the process, 
and dementia progression could possibly be delayed, 
improving the quality of life for those individuals. A 
previous analysis of the AGES-Reykjavik Study data-
set using a traditional statistical approach has shown 
that a logistic regression model analyzed in SPSS 
can pinpoint risk factors associated with whether an 
individual will have dementia five years later [28]. 
This study aimed to take that assessment further and 
explore whether machine learning algorithms could 
better estimate future dementia cases based on known 
risk factors for dementia and cognitive decline.

Methods

Study Sample

The dataset was collected through a study called the 
Age Gene/Environment Susceptibility-Reykjavik 
Study (AGES-Reykjavik Study). The participants were 
recruited through previous participation in the Reykja-
vik Study, a study sponsored by the Icelandic Heart 
Association (IHA). A randomly selected subgroup of 
the participants in the Reykjavik Study, all of whom 
lived in the Reykjavik area of Iceland at the time of 
the study and were born between 1907 and 1935, were 
invited to continue and participate in the AGES-Rey-
kjavik Study. Between 2002 and 2011, data were col-
lected twice for each participant, with approximately 
five years between baseline and follow-up. The purpose 
of the AGES-Reykjavik Study was to evaluate risk fac-
tors for disability and disease within the older popula-
tion. Data collected included results from cognitive 
tests and dementia assessments and information regard-
ing risk factors that could have associations with cogni-
tive performance. Overall, 5,764 participants took part 
in the baseline data collection of the study. Of those, 
3,316 also participated in the follow-up data collection. 
A more detailed description of the study design can be 
found in previously published material [29, 30].

The dataset used for all analyses in this study is 
based on the dataset used in a previous paper where 

logistic regression was used to assess the relationship 
between risk factors for cognitive aging and dementia 
based on traditional statistical methods [28]. It should 
be noted that a substantial portion of the original 
AGES-Reykjavik dataset was excluded from the analy-
sis. That is because many participants were excluded 
since they had missing data for any of the variables 
included in the logistic regression model analyzed 
using SPSS. Those who fulfilled the dementia criterion 
at the baseline measurement were not included in the 
final dataset since the purpose was to assess the like-
lihood of developing dementia later. Figure 1 shows a 
flowchart of participants included and excluded from 
the analysis. Of those participating in the follow-up data 
collection round, 16.2% (n = 536) fulfilled a dementia 
criterion when assessed at baseline. The proportion of 
participants included in the data analysis (n = 1,491) 
that fulfilled the criterion at follow-up was 8.2% 
(n = 123). Since the previous dataset analysis excluded 
participants with missing data for any of the variables 
in a model, a substantial number of participants were 
not included in the final dataset. For a more detailed 
description of the analytical sample, please refer to [28].

The Institutional Review Board of the U.S. National 
Institute on Aging, the National Institutes of Health, 
and the Icelandic National Bioethics Committee (VSN 
00–063) have approved the study. All participants pro-
vided written consent for participation in the study.

Exposure variables

The choice of variables for the analysis was based on 
previous work that analyzed the same data [28, 30], 
which was supported by the cognitive aging literature 
[3, 9, 15, 25, 31–37]. The dataset used for the analyses 
performed here included eighteen exposure variables 
known as predictors of cognitive aging. Information 
about each variable is displayed in Table 1. Age and 
sex were included as control variables since both are 
recognized as predictors of cognitive aging [38, 39].

Dementia criterion

Participants were evaluated for mild cognitive impair-
ment and dementia at baseline and follow-up. The 
screening process was the same in both instances, 
and the same panel of professionals was involved 
[29]. The three-step process started with a cognitive 
screening using the Mini-Mental State Examination 
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[42] and the Digit Symbol Substitution Test [43]. 
Next, a neuropsychological diagnostic battery was 
administered to participants with positive screening 
results. Based on two screening tests from the diag-
nostic neuropsychological test battery, participants 
were identified for further examination by a neurolo-
gist. In the third and final step, based on relevant 
cognitive, MRI, and health history data, a consensus 
diagnosis was made by a panel of relevant special-
ists (neuropsychologist, neurologist, geriatrician, and 
neuroradiologist) in line with international guidelines. 
For the purpose of this study, individuals considered 
by the panel to have either mild cognitive impairment 
or dementia were grouped together; therefore, all of 
them fulfilled the current study’s dementia criterion.

Machine learning

Method of analysis

Three classification methods were compared to assess 
which could provide the most accurate prediction of 
future dementia cases based on known risk factors 
for cognitive aging. The scikit-learn library within 

the Python programming language was used for data 
analysis in all three cases [44]. The methods com-
pared were logistic regression, random forest, and 
neural network.

Logistic regression Within traditional statistics, 
logistic regression is a method commonly applied to 
predict binary outcomes by analyzing the relationship 
between multiple independent variables [45]. The use 
of logistic regression has also been adopted by those 
who work on machine learning, and within that dis-
cipline, logistic regression is often used to classify 
incoming information based on existing data.1

Random forest Random forest is a machine-learn-
ing method that builds upon the idea of decision trees 
by combining in one model a forest of decision trees 
that work together [46]. Figure 2 shows an example of 

Fig. 1  Flowchart showing 
the participant selection for 
the study (the figure is a 
reproduction of work from a 
previous publication [28])

1 The work performed for this study falls under the machine 
learning approach to logistic regression, but there is, however, 
also a reference to a previous publication [28] that applies 
logistic regression using traditional statistics.



741GeroScience (2024) 46:737–750 

1 3
Vol.: (0123456789)

how a random forest algorithm operates. Each deci-
sion tree within the model gives a prediction, and the 
results of the majority of the trees become the result 
the random forest algorithm gives. The purpose of 
the algorithm is to create many uncorrelated deci-
sion trees that can give more accurate results than 
any one decision tree could. The number of trees in 
the random forest and the complexity of the trees 
can be changed to test which combination gives the 
best results. The application of decision trees was 
also explored. However, since the algorithm’s per-
formance was underwhelming compared to the other 
three algorithms, the decision tree analysis will not be 
discussed further.

Using scikit-learn, data on feature importance can 
be extracted when a random forest algorithm is used, 
indicating which variables in the model were most 
important to the model’s predictive power. A higher 
value indicates a higher importance. 

Neural network Neural network is a machine learn-
ing algorithm modeled after how neurons in the brain 
communicate, allowing the algorithm to recognize pat-
terns and relationships within datasets [47]. Figure  3 
shows an example of how a neural network algorithm 
functions. The algorithm is based on multiple layers, an 
input layer and an output layer, and in between, there 
are hidden layers. The number of hidden layers can 
vary, and the number of nodes within each layer can 
also be changed. A node is a unit that operates similarly 
to a neuron; while training the network, a node is either 
activated or remains inactive. Different combinations of 
the number of hidden layers and nodes can be tested to 
identify which provides the most accurate predictions.

Data pre‑processing

Validation strategy The dataset was split into 
training and test datasets to estimate the performance 

Table 1  Description of exposure variables

The table is an adapted version of Table 1 from Valsdóttir et al. (2022)
a  [40]. b [41]. c The sum of grey matter volume, white matter volume, white matter lesion volume, and cerebral spinal fluid volume

Sex Male, female
Age Subject age in years at first measurement
Mobility Timed up and go test (TUG) measured in seconds a. A lower score represents better mobility
Leisure activities Average of days per month engaged, reported for mental and social leisure activities (movies, lec-

tures, church, crossword puzzles, board/card games, and computer games)
Foreign languages Number of foreign languages spoken
Education Education level completed: Primary school, secondary, college, university (Primary and secondary 

school were combined into one group)
Self-reported health Self-estimation of general health: Excellent, very good, good, fair, poor (Two categories: 1 – poor and 

fair, 2 – good to excellent)
Physical strength Maximum strength value in leg in Newtons
Smoking Smoking status: Never smoked, previous smoker, current smoker
Coronary artery disease Coronary artery disease diagnosis based on rose angina, MI ECG, and use of nitrates: Yes, possible 

case, no
Alcohol consumption Grams of alcohol per week consumed
Depression Geriatric Depression Scale  scoreb

Diabetes Diagnosed as diabetes by self-report, fasting glucose, or medication use: Yes, no
Hypertension Hypertension, derived from physiological measurements (systolic blood pressure, diastolic blood 

pressure): Yes, pre-hypertension, no
Body Fat Percentage Bioelectric Impedance (BIA): Percent body fat
ApoE�4carrier Apolipoprotein E (ApoE) genotype positive carrier: Yes, no
Relative grey matter volume Grey matter volume (ml) divided with intracranial volume  (ICVc)
Relative white matter volume White matter volume (ml) divided with intracranial volume  (ICVc)
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of the different machine learning algorithms. The 
training dataset’s size was 67% of the whole data-
set; 493 participants were allocated to the test data-
set and 998 to the training dataset. A statistical 
comparison was performed on the two datasets, and 

only one variable, diabetes, was significantly differ-
ent (p < 0.001). Within the training dataset, 7.3% of 
the participants had diabetes, while 12.8% of partici-
pants within the test dataset had diabetes. Despite this 

Fig. 2  An example that explains a random forest algorithm

Fig. 3  An example that 
explains a neural network 
algorithm
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anomaly, the comparison suggests that the two data-
sets are very similar.

Data scaling Some pre-processing was performed 
to prepare the data for the machine learning algo-
rithms. Since the two groups within the outcome vari-
able are unbalanced, features were standardized by 
removing the mean and then scaling to unit variance.

Performance criteria

Confusion matrix A confusion matrix gives valu-
able information about the model’s performance 
[48]. The matrix displays which data points are clas-
sified correctly and which are classified incorrectly 
by showing true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN). Sim-
ple metrics calculated based on information from the 
confusion matrix can give a high-level idea of model 
performance on specific tasks. These include accu-
racy, precision and recall.

Accuracy The accuracy of a model is generally 
calculated by dividing the number of individuals 
correctly classified by the number of participants 
included in the dataset.

Precision Precision is calculated by dividing the 
number of true positives by the number of true posi-
tives plus the number of false positives. This value 
indicates the portion of correct positive predictions, 
showing the proportion of people classified into the 
dementia group that actually have dementia.

Recall Recall is calculated by dividing the num-
ber of true positives by the number of true positives 
plus the number of false negatives. This value indi-
cates the portion of correct positive predictions out of 
all positive cases, giving insight into the proportion 
of individuals with dementia that the models do not 
detect.

Balanced accuracy When outcome variables are 
imbalanced, balanced accuracy is considered a bet-
ter metric [49]. This metric considers that one of 
the classes has a much lower number of individuals 
that belong to it, giving that class more weight in the 
accuracy calculations.

F1 score The F1 score focuses on incorrect classi-
fied results (false positives and false negatives), bal-
ancing precision and recall [50]. The higher the value, 
the better the performance of the model is.

ROC curve A receiver operating characteristic 
(ROC) curve is a graph that plots the true positive 
rate of a model against the false positive rate at dif-
ferent classification thresholds [51]. The area under 
the ROC curve (AUC-ROC), which gives a number 
between zero and one, indicates how well the clas-
sifier performs across all possible thresholds. The 
higher the number, the better performance is.

Matthews correlation coefficient The Matthews 
correlation coefficient (MCC) calculates the correla-
tion between true and predicted values in a dataset 
[52]. The MCC takes a value between minus one 
and one, with one indicating perfect performance 
and minus one indicating that each item has been 
misclassified.

Overfitting

Each model’s misclassification rate for the training 
and test datasets was compared to identify whether 
a model was overfitting, thereby creating a generali-
zation error. If the misclassification rate for the test 
dataset was much higher than the training dataset, 
the model was overfitting, thereby not performing as 
desired. When tuning the models, the misclassifica-
tion rate was continually assessed to ensure the model 
was not overfitting. Table 2 shows the misclassifica-
tion rate of the final models for each method. Based 
on an analysis of trends in the misclassification rate 
for the training and test datasets, a difference of more 
than 2% was considered to suggest that a model was 

Table 2  Misclassification rate for both training and test data-
sets for all three machine learning methods

Misclassification rate

Training dataset Test dataset Difference

Logistic regression 8.1% 9.1% 1.0%
Random forest 6.9% 8.3% 1.4%
Neural network 7.7% 8.5% 0.8%
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overfitting. If that was the case, a change was made to 
how the hyperparameters were tuned.

Hyperparameter tuning

All machine learning models have hyperparameters 
that must be specified when running the algorithm. 
For each machine learning algorithm, a randomized 
search was used to identify the combination of hyper-
parameters that performed the best on the dataset of 
interest (e.g., different combinations of hidden layers 
and numbers of nodes for neural networks, and the 

number of trees, maximum number of features, and 
complexity of each tree in random forest).

Results

Descriptive statistics

Table  3 shows the descriptive statistics for the dif-
ferent exposure variables in the model for the whole 
dataset and split into groups based on the dementia 
criterion. Of those with healthy cognition at baseline 

Table 3  Descriptive statistics for exposure variables (measured at baseline) showing means, standard deviations, counts and per-
centages

The table is an adapted version of Table 2 from [15]

All participants (n = 1,491) Healthy cognition at follow-
up (n = 1,368)

Fulfil dementia criterion 
at follow-up (n = 123)

M SD M SD M SD

Age, mean 74.11 4.41 73.85 4.30 77.10 4.45
Mobility 11.23 2.51 11.11 2.36 12.46 3.60
Leisure activity 5.79 3.70 5.92 3.72 4.43 3.10
Foreign languages 2.17 1.50 2.23 1.50 1.50 1.22
Physical strength 347.08 115.03 349.13 115.98 324.28 101.54
Alcohol consumption 17.82 34.07 17.92 33.68 16.71 38.23
Depression 1.88 1.89 1.83 1.88 2.43 1.91
Body fat percentage 29.16 8.14 29.36 8.11 26.95 8.22
Relative grey matter volume 46.02 3.13 46.14 3.12 44.71 2.93
Relative white matter volume 26.19 1.75 26.26 1.71 25.34 1.96

n (%) n (%) n (%)
Male 626 (42.0) 566 (41.4) 60 (48.8)
Education (Primary and secondary school as 

reference)
1043 (70.0) 933 (68.2) 110 (89.4)

  College 263 (17.6) 254 (18.6) 9 (7.3)
  University 185 (12.4) 181 (13.2) 4 (3.3)

Self-reported health—good to excellent 1168 (78.3) 1091 (79.8) 77 (62.6)
Smoking (Never as reference) 659 (44.2) 610 (44.6) 49 (39.8)
  Previously 686 (46.0) 627 (45.8) 59 (48.0)
  Current 146 (9.8) 131 (9.6) 15 (12.2)

Coronary artery disease (No as reference) 1152 (77.3) 1066 (77.9) 86 (69.9)
  Possible case 100 (6.7) 91 (6.7) 9 (7.3)
  Yes 239 (16.0) 211 (15.4) 28 (22.8)

Diabetes—diagnosed with 136 (9.1) 122 (8.9) 14 (11.4)
Hypertension (No as reference) 179 (12.0) 170 (12.4) 9 (7.3)
  Pre-Hypertension 604 (40.5) 555 (40.6) 49 (39.8)
  Yes 708 (47.5) 643 (47.0) 65 (52.8)

ApoE e4 carrier 394 (26.4) 345 (25.2) 49 (39.8)
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(n = 1,491), 123 (8.2%) fulfilled the dementia crite-
rion five years later.

Model performance

Table  4 compares the performance of all three 
machine learning algorithms after hyperparameter 
tuning. According to the confusion matrix, the neural 
network model had the highest number of true nega-
tives and the lowest number of false positives. The 
random forest model had the lowest number of false 
negatives and the highest number of true positives. 
The random forest algorithm performed best on bal-
anced accuracy, precision, recall, F1 score, and MCC 
score metrics. The neural network algorithm per-
formed best according to the AUC-ROC metric.

Random forest

Since the random forest algorithm performed well 
on most of the performance metrics, the results from 
the random forest model were analyzed further. Fig-
ure 4 shows the feature importance for each variable 
included in the model. According to the random for-
est algorithm, the five most important features are 
white matter brain volume, leisure activities, mobil-
ity, age, and grey matter brain volume, in that order.

Discussion

This study assessed the performance of three dif-
ferent machine-learning algorithms at estimating 
future dementia cases based on known risk factors 
for dementia and cognitive decline. Logistic regres-
sion, random forest, and neural network algorithms 
were compared. The results showed that random for-
est scored higher than logistic regression and neural 
networks on most performance metrics. The confu-
sion matrix showed that random forest had the high-
est number of true positives and the lowest number 
of false negatives from the assessed algorithms. How-
ever, neural networks had the highest number of true 
negatives and the lowest number of false positives. 
Random forest scored higher than logistic regression 
and neural networks on balanced accuracy, precision, 
recall, F1 score, and Matthews correlation coefficient. 
However, logistic regression had more area under the 
ROC curve than random forest and neural networks. Ta
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The findings align with the results reported by 
Spooner et al. [24], which suggest that random forest 
algorithms are well-equipped to analyze data regard-
ing predictors of dementia onset. In their findings, 
Casanova et  al. [25] focused on genetic and modifi-
able risk factors for developing dementia, while Qiu 
et al. [26] emphasized the predictability of MRI data. 
Both studies showed promising results, indicating 
that information on modifiable risk factors and brain 
imaging data performed well at predicting the diag-
nosis of dementia. The results of this study agree with 
those findings.

Similar to this study, Seligman et  al. [22] also 
compared the performance of different machine-
learning algorithms in analyzing health-related data. 
Both studies showed that the machine learning mod-
els only performed moderately well, and Seligman 
et al. [22] even go so far as to state that some machine 
learning algorithms cannot produce better predictions 
than traditional simpler models. However, what dif-
fers between the two studies is that while the results 
of this study indicate that random forest performs bet-
ter than logistic regression and neural networks, the 
results from Seligman et al. [22] showed that neural 
networks significantly outperformed linear regression 
methods and random forests.

Multiple performance metrics exist in the machine-
learning literature, and several were calculated for 
this analysis. The random forest algorithm performed 
best according to balanced accuracy, the F1 score, 
and the Matthews correlation coefficient. All of them 
are widely used, but studies that have compared the 

quality of different performance metrics suggest that 
the MCC is the best classification performance met-
ric for imbalanced datasets where both correct and 
incorrect classifications must be considered [53, 54]. 
The area under the ROC curve was the only metric 
where other performance metrics outperformed ran-
dom forest. Both logistic regression and neural net-
works performed better, according to the AUC-ROC. 
However, the metric has been criticized for overes-
timating performance when the analyzed dataset is 
imbalanced, which is the case here [53, 55]. These 
findings emphasize that the random forest algorithm 
is the best choice for this dataset. What further sup-
ports that choice is the fact that out of the more pop-
ular machine learning methods, the random forest 
algorithm is one of the more easily understood and 
interpretable methods, in addition to providing infor-
mation about the relative importance of the predictors 
included in a model [56].

Precision and recall do not perform well on 
all datasets but were included in the analysis to 
see how they compared to the other metrics used. 
Knowing the recall value is interesting since it indi-
cates how well the model identifies the real posi-
tive cases, which is often the focus when analyzing 
medical data [57]. Recall is considered important 
when false negatives (classifying an individual to 
the healthy cognition group when he belongs to the 
dementia group) are undesirable. However, preci-
sion is considered important when false positives 
(classifying an individual to the dementia group 
when he belongs to the healthy cognition group) 

Fig. 4  Feature importance 
for random forest algorithm
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are undesirable. Stating which type of error would 
be more detrimental is complicated, and such a 
decision would depend on the models’ eventual 
use. If the purpose were to identify which types 
of individuals would most likely benefit from life-
style interventions to reduce the risk of develop-
ing dementia but not to inform an individual that 
he has a high risk of developing dementia in a few 
years, recall would be the metric of interest. Preci-
sion would be a more interesting metric if the pur-
pose were to use the model as a risk calculator on 
an individual level. The random forest algorithm 
had higher precision and recall than neural net-
works and logistic regression. However, when neu-
ral networks and logistic regression are compared, 
the results show that the neural network algorithm 
performs better on the precision metric, and the 
logistic regression algorithm performs better on the 
recall metric.

According to Valsdóttir et al. [28], where logis-
tic regression was performed on the same data-
set using the statistical program SPSS, the results 
showed that leisure activities, self-reported health, 
education, age, being an ApoE �4 carrier, and 
white and grey matter volume had a significant 
relationship with whether an individual would be 
assessed as having dementia five years later. When 
those results are compared to the feature impor-
tance analysis performed on the RF algorithm in 
this study, it is evident that the findings are not 
the same. For example, the number of foreign lan-
guages an individual speaks has much higher fea-
ture importance compared to education and self-
reported health, even though the foreign language 
variable is not significant in the logistic regres-
sion model performed in SPSS. Additionally, these 
results do not align with the RF algorithm-based 
findings presented by Casanova et  al. [25], which 
suggests that education is the top-ranked predictor 
for dementia progression. The reasons for this are 
unclear but might be explained by the character-
istics of the cohort that participated in the AGES-
Reykjavik Study [29]. The study’s participants did 
not have the same educational opportunities that 
young people have today and may not have had the 
same access to education as their peers in other 
countries. That might be why other variables repre-
senting potential educational attainment are ranked 
higher in importance in this dataset.

Strengths and limitations

Even though the study’s results might, at first 
glance, seem very decisive, it is vital to consider 
them in conjunction with the study’s limitations and 
the data included in it. In the context of machine 
learning, the dataset being analyzed here is not very 
large and possibly not well suited for some of the 
machine learning methods available. Therefore, 
based on these findings, it is impossible to conclude 
that random forest algorithms would always per-
form better on similar but larger datasets.

The study was also limited by the information 
available in the dataset. The balanced accuracy met-
ric gives insight into how accurate the models’ pre-
dictions are. The balanced accuracy values in this 
study suggest that the classification could be signifi-
cantly improved. The best way would be to include 
more suitable predictors in the models. Limita-
tions relating to the dataset involve the number of 
variables available for analysis and that a portion 
of the variables is based on self-reported informa-
tion, which needs to be interpreted cautiously. Of 
course, it is also important to consider that not all 
available and relevant data was fed into the models 
(such as MRI data for individual brain regions) for 
this study. Further studies could include more perti-
nent data in the models and produce more accurate 
predictions.

Finally, it must be considered that the results 
from traditional statistical analysis are generally 
more accessible to interpret than the outcomes 
from machine learning algorithms. Although some 
machine learning algorithms could produce much 
more accurate predictions for a particular dataset, it 
could also be the case that it could prove challeng-
ing to interpret what the results mean, which could 
be why researchers might be hesitant to try this more 
novel method. Therefore, it is essential to contem-
plate the purpose of analysis before deciding which 
approach would be most relevant.

The study also had strengths that are worth men-
tioning. In this study, the same dataset was ana-
lyzed as had been used in a previous analysis with 
the same goal that relied on traditional statistical 
methods. Since the results suggest that more accu-
racy could be reached by applying machine learn-
ing methods, such as RF algorithms, this could 
inspire researchers that have until now exclusively 
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relied on traditional statistical approaches to 
branch out and incorporate in their work other less 
conventional ways of analyzing data.

Finally, the quality of the AGES-Reykjavik data-
set significantly strengthens the results. Experts 
from many fields contributed to the study design, 
resulting in a high-quality dataset based on individ-
uals with heterogeneous capabilities [29].

Future research

Since the decision was made to use the same data-
set as had been used in a previous publication 
[28], the dataset used for this analysis was much 
smaller than the original AGES-Reykjavik data-
set. That is because data points with missing data 
were excluded from the analysis when logistic 
regression was performed in SPSS. Future research 
could entail performing a principal component 
analysis or using other feature selection techniques 
on the original dataset from the AGES-Reykjavik 
Study to reduce the dimensionality of the dataset. 
This could draw out summary variables that could 
increase interpretability or other important vari-
ables not identified in previous dataset analyses.

Another avenue that could be taken with further 
research would be to focus on using such models 
within a clinical setting. Some people think that 
getting dementia is an inevitable part of aging. In 
contrast, others are convinced they are not a part 
of the group that will receive a dementia diagno-
sis when they get older. However, all these indi-
viduals could benefit from the prevention strategies 
proven to decrease the risk of developing dementia. 
The purpose of applying these models in a clini-
cal setting would be to identify individuals with an 
increased risk of developing dementia to empha-
size the importance of preventative measures 
among those individuals. In the future, a model 
such as this one could be applied on an individual 
level to indicate whether they need to take action 
to reduce the risk of developing dementia later in 
life. For older individuals, information about per-
formance on neuropsychological tests could also 
be included to get even more accurate predictions 
about the likelihood of progression to dementia.

Conclusion

These preliminary results suggest that a random for-
est algorithm might better identify individuals in the 
AGES-Reykjavik Study dataset likely to develop 
dementia within five years compared to logistic 
regression and neural networks. However, it must be 
taken into consideration that these results only indi-
cate better performance since statistical comparisons 
were not performed. The next step would be to per-
form such analyses on a more expansive portion of 
the AGES-Reykjavik Study dataset. These findings 
emphasize the possibility of gaining further insight 
into large and complex health-related datasets by 
exploring further the application of machine learn-
ing methods to such datasets. Further studies could 
support the development of a personalized dementia 
risk assessment tool that could be used to help people 
reduce their risk of developing dementia.
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