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postmenopausal women from the Mexican popula-
tion. Serum samples from postmenopausal women 
(40 with normal BMD, 40 with osteopenia (OS), and 
20 with osteoporosis (OP)) were analyzed by label-
free LC–MS/MS quantitative proteomics. Proteome 
profiling revealed significant differences between 
the OS and OP groups compared to individuals with 
normal BMD. A quantitative comparison of proteins 
between groups indicated 454 differentially expressed 
proteins (DEPs). Compared to normal BMD, 14 and 
214 DEPs were found in OS and OP groups, respec-
tively, while 226 DEPs were identified between OS 
and OP groups. The protein–protein interaction and 

Abstract  Postmenopausal osteoporosis is a public 
health problem leading to an increased risk of frac-
tures, negatively impacting women’s health. The 
absence of sensitive and specific biomarkers for early 
detection of osteoporosis represents a substantial 
challenge for improving patient management. Herein, 
we aimed to identify potential candidate proteins 
associated with low bone mineral density (BMD) in 
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enrichment analysis of DEPs were closely linked to 
the bone mineral content, skeletal morphology, and 
immune response activation. Based on their role 
in bone metabolism, a panel of 12 candidate bio-
markers was selected, of which 1 DEP (RYR1) was 
found upregulated in the OS and OP groups, 8 DEPs 
(APOA1, SHBG, FETB, MASP1, PTK2B, KNG1, 
GSN, and B2M) were upregulated in OP and 3 DEPs 
(APOA2, RYR3, and HBD) were downregulated 
in OS or OP. The proteomic analysis described here 
may help discover new and potentially non-invasive 
biomarkers for the early diagnosis of osteoporosis in 
postmenopausal women.

Keywords  Serum · Proteomics · Bone mineral 
density · Postmenopausal women · Biomarkers · 
Mexican population

Introduction

Osteoporosis (OP) is a systemic skeletal disease 
characterized by low bone mineral density (BMD), 
with a consequent increased risk of suffering fragil-
ity fractures [1]. Postmenopausal osteoporosis is a 
major public health problem affecting women’s health 
negatively. OP is associated with estrogen deficiency, 
resulting in an imbalance of bone turnover and induc-
ing the rapid loss of bone [2]. According to the World 
Health Organization (WHO), OP-related fractures 
occur in 20% of men and in 33% of women during 
their lifetime after the age of 50 years [3, 4], which 
implies a direct economic burden for health systems 
worldwide. In México, by the year 2010, the direct 
cost caused by more than 75,000 fragility fractures 
was estimated at 256.2 million dollars, and it is pro-
jected to increase to 350,000 cases in 2030 [5, 6]. 
These facts emphasize the importance of developing 
novel and effective strategies for early diagnosis of 
OP and fracture risk assessment.

Clinically, dual-energy X-ray absorptiometry 
(DXA) is the gold standard for BMD evaluation 
and OP diagnosis [7]. However, the use of BMD 
as the exclusive resource for BMD assessment is 
problematic for many reasons [8], such as the low 
sensitivity for fracture prediction, the need for ded-
icated facilities, elevated costs, large dimensions 
of equipment, and trained personnel. All these fac-
tors could be inaccessible for vulnerable groups, 

particularly in less-developed countries. An alter-
native for the early diagnosis of OP might be the 
measurement of plasma or serum proteins, which 
is a minimally invasive procedure, and current evi-
dence supports the potential clinical value of this 
method [9]. Besides, although many studies have 
reported serum biochemical parameters as predic-
tors of osteoporosis (e.g., calcium, creatinine, alka-
line phosphatase), they do not provide a definable 
pathway linking bone metabolism because they 
could be influenced by several exogenous factors, 
such as circadian rhythm, diet, physical activity, 
and seasonal variation [10, 11].

Recent advances in proteomics technologies 
have prompted the search for early biomarkers of 
the condition of bone and follow-up of the treat-
ment efficacy [12]. Therefore, quantitative pro-
teomics approaches using common fluids could 
be helpful for both the early detection of OP and 
the evaluation of bone status [13]. Numerous stud-
ies have proposed serum biomarkers associated 
with high bone turnover and BMD in postmeno-
pausal women [11]. Although identifying the pro-
teins and metabolic pathways involved in regulat-
ing bone metabolism in different populations has 
increased, the precise knowledge of the biologi-
cal mechanisms underlying BMD is incomplete 
[14–17]. Conventional protein-based markers have 
some limitations regarding pre-analytical, analyti-
cal, and post-analytical factors, including a lack of 
specificity and sensitivity, which limits their clini-
cal applicability [18]. Previously, our group con-
ducted a proteomic analysis using two-dimensional 
differential gel electrophoresis (2D-DIGE) in 446 
postmenopausal women. We found three relevant 
proteins associated with BMD: ceruloplasmin, gel-
solin, and vitamin D-binding protein (VDBP). Our 
results directly correlated VDBP levels with BMD 
values [19].

This study aimed to identify novel candidate 
proteins as biomarkers related to low BMD in 
postmenopausal Mexican women, using quantita-
tive liquid chromatography coupled to mass spec-
trometric (LC–MS), and computational resources. 
These novel protein biomarkers could be clinically 
helpful for early diagnosis of OP and open a win-
dow of opportunity, providing scientific knowledge 
for further research on bone health.
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Materials and methods

Study population

Serum samples from 446 unrelated postmenopau-
sal women were collected. Subjects recruited in this 
study were derived from a prospective cohort study, 
“The Health Workers Cohort Study (HWCS),” from 
the Mexican Social Security Institute (IMSS) [20]. 
The HWCS is a long-term study of workers from the 
IMSS in Cuernavaca, Morelos, focusing on lifestyle 
and the development of chronic diseases. All women 
included in this study had Mexican-Mestizo origin. 
Samples were collected in the third assessment from 
2016 to 2019. The detailed characteristics of post-
menopausal women were previously reported [19].

A subgroup of 100 postmenopausal women (40 
with normal BMD, 40 with osteopenia (OS), and 
20 with osteoporosis (OP)) was selected for the 

proteomic analysis (Table 1). Women were selected 
based on the following inclusion criteria: ≥ 45 years 
old, menopause confirmed (12 consecutive months 
without menstruation), and available BMD meas-
ures. Women with diabetes mellitus, chronic liver 
diseases, rheumatoid arthritis, collagen diseases, 
endocrine disorders affecting bone metabolism 
(e.g., parathyroid, gonadal, adrenal, and thyroid 
diseases), and those taking corticosteroids, anticon-
vulsants, bisphosphonates, or hormone replacement 
were excluded.

The protocol was approved by the ethics com-
mittees from the Mexican Social Security Institute 
(No. 12CEI 09 006 14), and the National Institute of 
Genomic Medicine (266–17/2016/I). All procedures 
were conducted in accordance with the Declaration 
of Helsinki (13/LO/0078). All participants provided 
written informed consent. Demographic and clinical 
data of the study population are reported in Table 1.

Table 1   Demographic and clinical characteristics of the study population

Data are expressed as the median (inter-quartile range) or percentage. N normal, OS osteopenia, OP osteoporosis, BMI body index 
mass, BMD bone mineral density

N (n = 40) OS (n = 40) OP (n = 20) OS vs. N
p-value

OP vs. N
p-value

OP vs. OS
p-value

Age (years) 56 (49.5–61.5) 66 (59–71) 70.5 (63.5–76) 0.0002  < 0.001 0.033
BMI (kg/m2) 25.9 (24.1–27.3) 25.0 (23.1–26.8) 23.3 (20.8–26) 0.0871 0.0041 0.0625
Total hip BMD (g/

cm2)
0.969 (0.943–0.991) 0.799 (0.783–0.822) 0.66 (0.641–0.676)  < 0.001  < 0.001 0.0001

Lumbar spine BMD 
(g/cm2)

1.061 (1.001–1.134) 0.939 (0.855–1.006) 0.793 (0.696–0.870) 0.0001  < 0.001 0.0005

Femoral neck BMD, 
(g/cm2)

0.925 (0.890–0.962) 0.762 (0.745–0.784) 0.620 (0.586–0.643)  < 0.001  < 0.001 0.0001

T-score, total hip  − 0.311 
(− 0.510, − 0.131)

 − 1.660 
(− 1.786, − 1.471)

 − 2.73 
(− 2.913, − 2.634)

 < 0.001  < 0.001 0.0001

T-score, lumbar spine  − 1.264 
(− 1.688, − 0.561)

 − 2.175 
(− 2.716, − 1.569)

 − 3.304 
(− 3.857, − 2.641)

 < 0.001  < 0.001 0.0006

T-score, femoral neck  − 0.814 
(− 1.064, − 0.545)

 − 1.964 
(− 2.109, − 1.821)

 − 3.004 
(− 3.234, − 2.792)

 < 0.001  < 0.001 0.0002

Body fat proportion 43.6 (39.4–46.2) 43.2 (39.5–46.6) 39.4 (34.0–42.8) 0.332 0.007 0.0022
Waist circumference 

(cm)
87 (83–92) 85 (81–91) 85 (76–91) 0.136 0.0322 0.169

Vitamin D intake (UI/
day)

108.0 (46.5–201.5) 103.5 (61.2–177.4) 67.7 (27.0–154.2) 0.466 0.109 0.122

Calcium intake (UI/
day)

594.7 (466.3–904.2) 548.3 (391.7–813.9) 577.4 (335.8–1093.7) 0.205 0.281 0.463

Vitamin D supplemen-
tation (%)

12.5 12.5 15 1 0.788 0.788

Calcium supplementa-
tion (%)

17.5 27.5 40 0.284 0.057 0.326
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Bone mineral density (BMD) and osteoporosis 
diagnosis

Hip BMD (g/cm2) was determined using a Lunar 
DPX NT dual-energy X-ray absorptiometry (DXA) 
instrument (Lunar Radiation Corp., Madison, WI, 
USA). Subjects were categorized into three groups 
according to their hip T-score, using the criteria 
defined by the WHO to determine low BMD [21, 
22]. The normal group (N) included women with 
T-scores above − 1.0, the osteopenic group (OS) 
included women with T-scores from − 1.0 to − 2.5, 
and the osteoporotic group (OP) women with 
T-scores below − 2.5.

Serum sample preparation for LC–MS analysis

Blood samples were collected from all patients 
by the same operator with at least 2  h of fasting 
and left to clot for 30 min. After centrifugation at 
2643 × g for 15 min, serum was extracted, frozen, 
and stored at − 80  °C until use. Ten serum sam-
ples from each group were pooled to make four 
pools for N and OS, while five samples shaped 
the OP pools to make four pools because of the 
limited number of samples with similar clinical 
characteristics.

Albumin, IgG, antitrypsin, IgA, transferrin, 
haptoglobin, fibrinogen, alpha2-macroglobulin, 
alpha1-acid glycoprotein, IgM, apolipoprotein 
AI, apolipoprotein AII, complement C3, and tran-
sthyretin were depleted from the protein pools 
using the Multiple Affinity Removal Column 
Human 14 (Agilent, Santa Clara, CA, USA) on an 
AKTA Pure chromatography system (Cytiva, Mar-
lborough, MA, USA).

Depleted pools were quantified using a 2D 
Quant Kit (GE Healthcare, Chicago, IL, USA), fol-
lowing the manufacturer’s instructions. Afterwards, 
50 μg of protein was enzymatically digested using 
PreOmics iST Sample Preparation Kit® (PreOmics 
GmbH, Munich, Germany) according to the proto-
col established by the manufacturer. The resulting 
peptides were cleaned, eluted, and evaporated to 
dryness in a SpeedVac Savant (Thermo Fisher Sci-
entific, Waltham, MS, USA). Finally, peptides were 
resuspended and stored at − 80  °C until LC–MS 
analysis [23].

Label‑free quantitative proteomics

The quantitative LC–MS analytical method was 
applied as described in Ríos-Castro et  al. [24] with 
some modifications. Briefly, tryptic peptides were 
injected into the mass spectrometer Synapt G2-Si 
(Waters, Milford, MA) in Multiplexed MS/MS (MSE) 
mode to calculate the area under curve (AUC) of the 
total ion chromatogram (TIC), with the aim of nor-
malizing the amount of tryptic peptides in each injec-
tion during the label free analysis. Afterwards, pep-
tides were loaded and separated on an HSS T3 C18 
column (Waters, Milford, MA). The spectra data were 
acquired by the mass spectrometer using nano elec-
trospray ionization (nanoESI) and ion mobility sepa-
ration (IM-MS) using a data-independent acquisition 
(DIA) approach through High-Definition Multiplexed 
MS/MS (HDMSE) mode. For the ionization source, 
parameters were set with the following values: 
2.75 kV in the capillary emitter, 30 V in the sampling 
cone, 30 V in the source offset, 70 °C for the source 
temperature, 0.5 bar for the nanoflow gas and 150 L·h 
−1 for the purge gas flow. Two chromatograms were 
acquired (low- and high-energy chromatograms) 
in the positive mode range of m/z 50 − 2000 with a 
scan time of 500 ms. No collision energy was applied 
to obtain the low-energy chromatograms, while for 
the high-energy chromatograms, the precursor ions 
were fragmented in the transfer cell using a collision 
energy ramp from 19 to 55 eV.

Data search

The MS and MS/MS measurements were ana-
lyzed and relatively quantified by Progenesis QI for 
Proteomics software v3.0 [25] (Waters, Milford, 
MA) using a target decoy strategy against a Homo 
sapiens *.fasta database (obtained from UniProt, 
UP000005640, 79052 protein sequences), which 
was concatenated with the same *.fasta file in the 
reverse sense [26]. Parameters used for the protein 
identification were trypsin as cutting enzyme and 
one missed cleavage allowed; carbamidomethyl (C) 
as a fixed modification and oxidation (M), amidation 
(C– terminal), deamidation (Q, N), and phospho-
rylation (S, T, Y) as variable modifications; default 
peptide and fragment tolerance (maximum normal 
distribution of 10 and 20 ppm respectively) and false 
discovery rate ≤ 4%; all false positive identifications 
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(reversed proteins) were discarded for subsequent 
analysis. Synapt G2-Si was calibrated with [Glu1]-
fibrinopeptide fragments through the precursor ion 
[M + 2H]2+  = 785.84261 fragmentation of 32 eV with 
a result of less than 1 ppm across all MS/MS meas-
urements. The quality control analysis exhibited an 
adequate adjustment in calibration, ionization source 
operability, enzymatic effectiveness, and database 
searching (Supplementary Fig. 1).

Bioinformatic and statistical analysis

Proteomic data were filtered following the criteria 
of ≥ 2 peptides and at least one unique peptide. To 
identify any clustering or separation of the compared 
datasets, the partial least squares discriminant analy-
sis (PLS-DA) model and the unsupervised principal 
component analysis (PCA) of the protein abundance 
scale were performed. PLS-DA and PCA scores 
were extracted using package rolps. For the three-
dimensional representation of proteome data between 
groups, the scatterplot3d package was used. Student’s 
t-test was performed for each pairwise comparison 
(OP vs. N, OS vs. N, and OP vs. OS) to identify the 
differentially expressed proteins (DEPs). DEPs were 
selected based on two criteria: fold change > 1.5 
or < 1.5 and a false discovery rate (FDR) adjusted 
p-value < 0.05. Associations of hip BMD with pro-
teins were assessed by linear regression using the 
lm function adjusting for age. A second model was 
examined with further adjustments for BMI, calcium 
intake, and vitamin D intake. Furthermore, receiver 
operating characteristic (ROC) curves were con-
structed using the protein abundance adjusted for age. 
The area under the ROC curve (AUC), the 95% confi-
dence interval (CI), sensitivity, and specificity analy-
ses were performed using pROC package. Spearman 
correlation was performed using the protein abun-
dance adjusted for age and clinical information. Sta-
tistical significance was defined as FDR-corrected 
p-value < 0.05.

The online tool Searching The Retrieval of Inter-
acting Genes/Proteins (STRING, https://​string-​db.​
org) was used for construction of protein–protein 
interaction (PPI) network. The PPI network was con-
structed by setting medium confidence at 0.400. All 
DEPs by mass spectrometry were used for building 
the PPI network.

The Gene Ontology (GO) enrichment of differen-
tially expressed proteins were performed by package 
clusterprofiler in R [27]. GO results were categorized 
into three modules, including biological process (BP), 
molecular functions (MF), and cellular compartment 
localization (CC). The results with an FDR-corrected 
p-value < 0.05 were considered significant.

PCA and PLS-DA analysis of proteome data, vol-
cano plots of DEPs, functional enrichment, and statis-
tical analyses were conducted using R 4.1.0. All the 
workflow and the specific criteria of the analysis are 
available on GitHub (https://​github.​com/​Iagui​laror/​
low_​BMD_​in_​PMWMX).

Results

Study population

A total of 100 postmenopausal women from the 
HWCS were included in this study. Participants 
were divided according to their BMD value into 
three groups: normal BMD (n = 40), osteopenia 
(n = 40), and osteoporosis (n = 20). The median age 
was significantly higher in the OS (66 years) and OP 
(70.5  years) groups versus the N group (56  years) 
(p < 0.001). In addition, a significant difference in 
median age was also observed when comparing the 
OS group versus the OP group (p < 0.05). BMD in 
total hip, lumbar spine, and femoral neck were sig-
nificantly lower in OS and OP groups compared to 
the normal group (p < 0.001). The OP group pre-
sented lower BMI and body fat proportion than the 
normal group (p < 0.005) (Table  1). Triglycerides 
were higher in OS and OP (p < 0.05) compared to the 
normal group, while HDL was lower only in the OS 
group compared to the normal group (p < 0.05). No 
statistically significant differences between groups 
regarding cholesterol, glucose, and physical activity 
were observed (Supplementary Table 1).

Proteomic profiling and protein differential 
expression analysis

Eight hundred seventy-four proteins were identified 
in the serum samples of the N, OS, and OP groups 
through label-free mass spectrometry-based protein 
quantification (Supplementary Table  2). As shown 
in Fig.  1A, the Venn diagram shows 723 (83%) 

https://string-db.org
https://string-db.org
https://github.com/Iaguilaror/low_BMD_in_PMWMX
https://github.com/Iaguilaror/low_BMD_in_PMWMX
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Fig. 1   Profile of proteins identified in the serum of the study 
groups and their differential expression between groups. A 
Total number of proteins identified and those shared among the 
Normal (N), osteopenic (OS), and osteoporotic (OP) postmen-
opausal women. B Three-dimensional of partial least squares-
discriminant analysis (PLS-DA) of global proteome data. Blue 
dots represent an individual injection of normal group samples, 
orange dots the OS group, and the purple dots the OP group; 
each sample pool per group (n = 4) was injected by tripli-
cate. C  Number of shared and unique DEPs upregulated and 

D downregulated between groups. E–G Volcano plots display-
ing proteins with significantly different abundance between OS 
vs. N, OP vs. N, and OP vs. OS, respectively. The x-axis and 
y-axis on the volcano plot represented the log2-fold change 
between the two comparison groups and the log10 p-value, 
respectively. Red dots represent the upregulated proteins, and 
green dots represent the downregulated proteins. Each volcano 
plot shows the protein ID with the highest or lowest changes in 
abundance per condition
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overlapping proteins among the three study groups. 
Furthermore, 47 proteins overlapped between the 
OS and Normal groups, 16 between the OP and Nor-
mal groups, and 20 between the OS and OP groups. 
Additionally, 9 proteins were exclusively expressed 
in the Normal group, 6 in the OS group and 48 in 
the OP group. The proteomics pattern associated 
with the three study groups was examined using the 
partial least squares discriminant analysis (PLS-
DA) and unsupervised principal component analysis 
(PCA). As shown in Fig.  1B, group separation and 
sample clustering between the Normal, OS, and OP 
groups (R2 X = 0.604, R2 Y = 0.991, Q2 = 0.94) were 
observed, indicating proteomics differences between 
these three groups. In particular, the data evidenced 
a clear separation between OS and OP (low BMD), 
especially when discriminating between OP and 
Normal groups (Supplementary Fig. 2), whereas the 
clustering of the OS and normal groups revealed 
less-than-ideal effects on the separation between pro-
teomic profiles (Fig.  1B). PLS-DA and PCA plots 
between groups are shown in Supplementary Fig. 2.

The Venn diagrams (Fig. 1C-D) illustrate the num-
ber of upregulated and downregulated DEPs between 
comparisons. Five and sixteen proteins were upreg-
ulated as unique in OS or OP vs. N, respectively. 
Twenty-seven were uniquely upregulated proteins 
between OP vs. OS. Six downregulated proteins were 
unique in OS vs. N and ten in OP vs. N. Twelve DEPs 
were downregulated between OP vs. OS. Most upreg-
ulated and downregulated DEPs overlapped in OP or 
OS vs. N. The total number of DEPs between com-
parisons is Supplementary Fig. 3. Volcano plots show 
the statistical distributions of differentially expressed 
proteins by condition, each diagram showing the 
protein symbol of the five most over- and down-
expressed proteins (Fig.  1E–G). All specific data 
about over- and down-expressed proteins between the 
groups analyzed are in Supplementary Table 3.

Protein–protein interaction analysis between DEPs

To understand the relationship between the DEPs 
identified in OS and OP groups, the STRING data-
base was employed to construct a PPI network. Fig-
ure  2A shows the down-expressed proteins network 
in OS and OP; the biological network was com-
posed by 92 nodes and 160 edges with a PPI enrich-
ment of p value < 1.0 × 10−16. We found 22 proteins 

associated to skeletal system (BTO:0001486) such as 
VTN, APOB, TTR, C3, APCS, VWF, CP, PREX2, 
FYCO1, A2M, SERPINA5, CDH5, FILIP1L, 
APOA2, RYR3, PROS1, CFI, CUL4B, XIRP2, C4A, 
C4B,  and C1R (red nodes). According to KEGG 
pathway enrichment analysis, some proteins are 
associated with complement and coagulation cas-
cades (F9, C8G, VTN, C3, VWF, C9, C7, A2M, 
SERPINA5, C8B, F10, PROS1, CFI, C4A, C4B, 
and C1R). On the other hand, the Fig.  2B shows 
the over-expressed proteins network in OS and OP, 
composed by 129 nodes and 273 edges with a high 
interaction between them (p value < 1.0 × 10−16). 
This analysis revealed 42 proteins participating in 
abnormal skeletal morphology (HP:0011842) (pink 
nodes) and 40 proteins in abnormality of the skel-
etal system (HP:0000924) (blue nodes). In this bio-
logical network, we can find proteins involved in 
osteoporosis (HP000939), reduced bone mineral 
density (HP0004349), bone fracture related to meas-
urement (EFO:0004516) and bone measurement 
(EFO:0004512), such as POLG, WRN, HSPG2, F2 
FGFR2, SYNE1, DLG4, DNAH11, TNXB, BNC2, 
ARIDA1, DST, RYR1, FBXO11, CLIP1, SYNE1, 
and CNOT1. All specific data about the PPI network 
including GO process, GO function and GO compo-
nent are in Supplementary Table 4.

Functional enrichment analysis

Gene Ontology analysis was performed to identify 
the functional categories of DEPs. As shown in 
Fig. 3A, most DEPs in the OS and OP related to the 
N group were enriched in blood microparticle,

collagen-containing extracellular matrix, 
humoral immune response, endoplasmic reticulum 
lumen, wound healing, and others. Particularly, 
biological processes were significantly enriched in 
humoral immune response, wound healing, com-
plement activation, regulation of body fluid levels, 
and micro-tubule-based movement (Fig. 3B). While 
most identified proteins were enriched in enzyme 
inhibitor activity, phospholipid binding, peptidase 
regulator activity, endopeptidase inhibitor activity, 
and peptidase inhibitor activity (Fig.  3C), proteins 
were enriched in blood microparticle, followed by 
collagen-containing extracellular matrix and endo-
plasmic reticulum lumen (Fig. 3D).
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Proteins selected as candidate biomarkers in the 
serum of patients with low BMD

The proteins were selected as potential markers 
according to two criteria: (1) a significant differential 
expression in OS or OP, or both, with respect to the 
normal group; (2) proteins involved in bone metabo-
lism and processing, osteopenia, osteoporosis, and 
calcium pathway according to the PPI analysis and 
literature review. Based on these criteria, 12 DEPs 
were selected as potential non-invasive serum protein 
biomarkers for low BMD (Table 2). After FDR-cor-
rected p-value, one (RYR1) was found upregulated 
in the OS and OP groups, eight (APOA1, SHBG, 
FETB, MASP1, PTK2B, KNG1, GSN, and B2M) 
were upregulated only in the OP group. At the same 
time, three proteins (APOA2, RYR3, and HBD) were 
downregulated in OS or OP groups. Figure 4 depicts 

the comparison of the serum levels of these 12 pro-
teins between the three study groups.

Verifying the association of candidate biomark-
ers with changes in bone mineral density was exam-
ined using linear regression. There were nine pro-
teins (APOA1, FETB, B2M, PTK2B, RYR1, KNG1, 
SHBG,  MASP1 and GSN) were negatively associ-
ated and three proteins (APOA2, HBD, and RYR3) 
were positively associated with hip BMD in the basic 
model (FDR p-value < 0.05) and adjustments for age, 
BMI, calcium intake, and vitamin D intake (FDR 
p-value < 0.05) (Supplementary Table 5).

ROC curves were generated for further exami-
nation of the potential clinical utility of the candi-
date biomarkers for osteoporosis and osteopenia 
diagnosis. Six proteins allowed the recognition 
of OP individuals when compared to the N group 
(FDR p-value < 0.05), harboring RYR1, KNG1, and 

Fig. 2   PPI networks of DEPs associated with OS and OP vs 
normal group visualized by STRING. The PPI network was 
constructed by setting the medium confidence at 0.400. Net-
work nodes represent proteins, and edges represent protein–
protein associations. A Downregulated proteins in OS and OP 
respect to the N group, the red nodes indicate those proteins 

associated to Skeletal system. B Upregulated proteins in OS 
and OP respect to the N group, the blue nodes show those pro-
teins linked to the abnormality of the skeletal system, and the 
pink nodes show those proteins related in abnormal skeletal 
morphology. Arrows indicate the 12 proteins proposed as pos-
sible biomarkers in low BMD
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GSN the highest diagnostic capacity (AUC = 100%, 
100%, and 99.3%, respectively) (Supplemen-
tary Fig.  4 A–C). In addition, four proteins (GSN, 
KNG1, FETB, and APOA2) allowed the spe-
cific diagnosis of osteopenia, providing AUC val-
ues above 75% when compared with the normal 
group (FDR p-value < 0.05) (Supplementary Fig. 4 
D-F). Furthermore, seven candidate biomarkers 
(RYR1, KNG1, GSN, FETB, B2M, SHBG, and 
PTK2B) displayed AUC values above to 95.1% in 

differentiating OP from OS (FDR p-value < 0.05) 
(Supplementary Fig. 4 G-I).

Additionally, three combined models were 
generated using six proteins with individual 
AUC > 90% for OP vs. N, seven with AUC > 70% 
for OS vs. N, and seven with AUC > 90% for OP 
vs. OS. As shown in Fig.  5, the individual ROC 
of candidate biomarkers increased the AUC when 
they were combined (red), particularly between 
OS vs. N.

Fig. 3   GO functional annotation of the DEPs. A General GO 
enrichment analysis of DEPs between OS and OP vs. N. The 
GO annotations are classified into three different categories, 
including B biological process, C molecular functions, and D 

cellular components. The size of the dots indicates the num-
ber of proteins related to each function, and the gradient color 
scale indicates the p-value
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Correlation analysis

The correlation analysis was performed to identify 
the relationship between the proteins selected as 
candidate biomarkers and clinical variables (Sup-
plementary Table 6). The hip T-score, femoral neck, 
and hip BMD values were negatively correlated with 
SHBG, KNG1, RYR1, APOA1, B2M, GSN, and 
FETB serum levels (FDR p-value < 0.05). Mean-
while, APOA2, HBD, and RYR3 serum levels were 
positively correlated with hip T-score, femoral neck, 
and hip BMD (FDR p-value < 0.05) (Fig. 6).

Discussion

Osteoporosis is a chronic progressive bone dis-
ease characterized by low bone mineral density and 
impaired bone microarchitecture. Herein, we con-
ducted a serum proteomic analysis to investigate 

differentially expressed proteins between postmeno-
pausal women with normal and low BMD. Our 
study revealed a distinctive profile between normal 
(N), osteopenic (OS), and osteoporotic (OP) women. 
When the OP group was compared to the N group, 
we observed 214 DEPs; from them, 128 were upregu-
lated and 86 downregulated. From the comparison 
between the OS and N groups, 14 DEPs were identi-
fied, seven upregulated and seven downregulated. To 
establish a possible role for DEPs, functional analysis 
was performed by gene ontology (GO) enrichment. 
Interestingly, most DEPs were associated with micro-
tubules, cilium or flagellum-dependent cell motility, 
immune response, and complement activation.

Previous studies have analyzed the quantitative 
proteome profile from osteopenic and osteoporotic 
subjects in different populations [16, 19, 28–31]. 
Recently, Al-Ansari et  al. analyzed the proteomic 
profiles of Saudi postmenopausal women and men, 
finding only 68 DEPs significantly associated with 

Fig. 4   Comparison of the serum levels of these 12 proteins 
between the three study groups. Box plot showing the plasma 
levels in N, OS, and OP groups of each differentially expressed 

protein selected as a potential candidate. *FDR-corrected 
p-value < 0.05; **FDR-corrected p-value < 0.01; ***FDR-cor-
rected p-value < 0.001. ns, not significant
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low BMD [28]. Although the OS and OP groups 
were recruited from the same Hospital, several fac-
tors might have affected the differential expression 

findings, for example, technical replicates were not 
included, and the number of confounding factors 
in the experimental design. Furthermore, Huang 

Fig. 5   Receiver operat-
ing characteristic (ROC) 
curves for each candidate 
biomarker and combined 
models. The first plot was 
performed with candi-
date biomarkers selected, 
and the second plot was 
generated by combining 
candidate biomarkers (in 
red). Candidate biomarkers 
selected between OP vs. N 
had individual AUC > 90%, 
OS vs. N AUC > 70%, and 
OP vs. OS AUC > 90%. All 
ROC curves were generated 
using the protein abundance 
adjusted for age. AUC and 
95% CI of individual candi-
date biomarker are shown in 
Supplementary Fig. 3
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et  al. reported the plasma proteomic profile from 
postmenopausal women with and without OP. The 
differential abundance analysis showed that the pro-
teome of individuals with OP was significantly dif-
ferent from the N group. In contrast, the proteome 
of the OS group was more similar to the N group 
[16]. The present study observed similar findings, 
where the proteomic profiles obtained from the OS 
and N groups had considerable overlap. Neverthe-
less, our results are supported by the experimental 
design, where four pooled samples with three repli-
cates were analyzed to avoid random variation. Prior 
research focused on identifying circulating protein 
markers has studied serum microvesicles. Hou et al. 
reported more than one hundred DEPs in OS and 
OP individuals, from which 19 were upregulated 
in both low BMD groups compared to the N group 
[29]. Although some potential protein markers were 
identified, the number of processed samples per 
group was small. Another study analyzing plasma 
exosomes from Chinese men and postmenopausal 

women revealed 45 DEPs, four were indicative of 
OP [31]. Another serum proteomics study in non-
Hispanic white men ≥ 65  years old showed 339 
DEPs associated with accelerated BMD loss [30]. 
Although the study controlled the technical vari-
ation of the proteomic measures, the differentially 
abundant proteins resulted from comparing groups 
categorized based on the longitudinal change of 
BMD in a cohort of community-dwelling older men 
[30, 32]. Previously, our group reported a differen-
tial serum proteome profile from postmenopausal 
women with low BMD compared to postmenopau-
sal women with normal BMD. However, due to the 
technical limitation of two-dimensional differential 
gel electrophoresis (2D-DIGE), only 27 spots were 
identified when comparing low BMD versus normal 
[19]. These findings indicate that the experimental 
design, specifically the confounding factors (age, 
sex, and medication), might have affected the dif-
ferential abundance of proteins, which may provide 
prognostic information or serve as biomarkers.

Fig. 6   Correlation matrix 
of clinical data versus can-
didate biomarker proteins. 
Blue indicates a positive 
correlation and red indi-
cates a negative correlation 
with an FDR p-value < 0.05. 
The circles shown have a 
r-value > 0.45 or <  − 0.45. 
Color intensity and the size 
of the circle are propor-
tional to the Spearman 
correlation coefficients



2190	 GeroScience (2024) 46:2177–2195

1 3
Vol:. (1234567890)

Based on the role on bone metabolism, we selected 
12 DEPs as candidate biomarkers, one (RYR1) was 
found upregulated in the OS and OP groups, eight 
(APOA1, SHBG, FETB, MASP1, PTK2B, KNG1, 
GSN, and B2M) were upregulated only in the OP 
group. At the same time, three proteins (APOA2, 
RYR3, and HBD) were downregulated in OS or OP 
groups. Among these proteins, RYR1, RYR3, and 
GSN are related to bone metabolism, particularly in 
osteoclast differentiation and calcium. According to 
the literature, ryanodine receptors (RYRs) are a fam-
ily of intracellular ion channels that comprise iso-
forms with three subtypes: RYR1, RYR2, and RYR3. 
RYR1 is expressed in skeletal muscle, lymphocytes, 
and osteoblastic cells [33]. RYR2 is the predominant 
isoform expressed in cardiac muscle, neurons, vis-
ceral, and arterial smooth muscle. RYR3 is the least 
studied of the RYR isoforms, RYR3 is expressed in 
epithelial cells, the brain, and smooth muscle. A pre-
vious study demonstrated the role of RYR3 on bone 
fractures in birds [34], suggesting that RYR3 may 
transmit Ca2+ signaling through the Ca2+ release 
pathway. To the best of our knowledge, proteomic 
data regarding serum levels of the RYRs have not 
been reported in studies focused on osteoporosis. 
However, it is well known that bone turnover is regu-
lated by the RYRs, together with inositol-1,4,5-tris-
phosphate receptors (IP3Rs) and the calcium release-
activated calcium channels (CRACs) in osteoclast 
[35]. Moreover, in Chinese patients with sporadic 
Paget’s disease of bone (PDB), mutations in RYR1 
and RYR3 have been identified [36]. A case report 
article described a 57-year-old woman with con-
genital neuromuscular myopathy and early osteopo-
rosis carrying an RYR1 heterozygous mutation [37]. 
These results suggest that RYR1 and RYR3 genes play 
essential roles in BMD control and could be involved 
in the physiopathology of osteoporosis. Additional 
studies are needed to validate whether serum RYR1 
and RYR3 levels may be potential biomarkers of low 
BMD (osteopenia and osteoporosis).

Gelsolin (GSN) is one of the most abundant and 
potent actin filaments severing, capping, and nucle-
ating proteins, which calcium and pH regulate pro-
cessing and assembly. This process is critical for 
podosome assembly, where a rapid polymerization/
depolymerization of actin occurs [38]. A model of 
gelsolin-deficient mice showed that osteoclasts pre-
sented abnormal actin cytoskeletal architecture and 

reduced rates of osteoclast motility, contributing to 
reduced bone resorption in  vivo and blocking the 
podosome-associated signal transduction [39]. In our 
study, GSN was upregulated only in the OP group and 
negatively correlated with BMD. These data are con-
sistent with a previous proteomic analysis in plasma, 
where GSN levels were negatively correlated with 
total hip BMD in Chinese postmenopausal women 
[40]. GSN is a protein involved in actin cytoskeletal 
organization [41]. Previous studies have shown that it 
plays an essential role in osteoclasts. GSN deficiency 
reduces bone resorption and increases bone mass and 
strength in mice [39]. Furthermore, GSN serves as a 
regulator of androgen-mediated effects on osteoclas-
togenesis and bone resorption [42]. Taken together, 
these studies reinforce the importance of GSN for 
bone metabolism, and its potential as a biomarker 
involved in the molecular pathogenesis of OP. How-
ever, further studies are needed to determine the effect 
of plasma GSN on bone resorption and formation.

The specific effects of Fetuins on OS and OP 
are still unclear. Previous studies have reported that 
Fetuin-A (FETA) is associated with bone formation 
and remodeling [43, 44]. FETA inhibits mineraliza-
tion by blocking basic calcium phosphate precipi-
tation and regulating apatite formation during this 
process [45]. In mice with Heterotopic Ossification 
(HO), the recombinant FETA inhibited the hyperin-
flammation and prevented HO and associated bone 
mass loss, suggesting that FETA is a potential thera-
peutic option for treating HO [46]. In our proteomic 
analysis, Fetuin-B (FETB) was overexpressed in the 
OP group, and its abundance negatively correlated 
with BMD. Likewise, a previous report showed 
higher serum levels of FETB in osteoporotic women 
than in controls. Also, FETB correlated positively 
with femoral and lumbar BMD [47]. Although the 
evidence regarding the role of FETB on bone metabo-
lism is scarce, some studies suggest a similar physi-
ologic effect as the one described for FETA [48]. 
Therefore, FETB might be involved in the pathophys-
iology of osteoporosis [49]. Taking together previous 
reports and the results of our study, FETB might be 
a potential biomarker for the early detection of bone 
mass loss in postmenopausal women.

Several studies have reported that dyslipidemia 
could affect bone homeostasis, leading to loss of bone 
mass. Particularly apolipoproteins, apolipoprotein 
A1 (APOA1) is the most common form in plasma 
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and extravascular compartments, followed by apoli-
poprotein A2 (APOA2). In our study, APOA1 was 
upregulated, and APOA2 was downregulated in the 
OP group. Pliatsika et  al. found that APOA1 serum 
levels were negatively associated with lumbar T-score 
in postmenopausal Greek women (< 53  years old) 
[50]. A cross-sectional study from the Third National 
Health and Nutrition Examination Survey (NHANES 
III), where most enrolled participants were Non-
Hispanic White, demonstrated that participants with 
osteoporosis had higher levels of APOA1 than those 
without osteoporosis [51]. In contrast, the succi-
nyl-proteome profiling of postmenopausal Chinese 
women revealed that APOA1 was downregulated and 
APO2 was upregulated in the OP group [52]. These 
findings suggest that APO1 and APO2 play a vital 
role in maintaining bone density. However, it should 
be noted that the Mexican population has a strong 
genetic factor that could influence plasma lipid lev-
els [53–55]. Additional studies attempting to associ-
ate APO1 and APO2 with BMD would help establish 
the true significance of these apolipoproteins in bone 
homeostasis.

Emerging evidence has suggested that the immune 
and skeletal systems are closely related. Our study 
found three proteins related to the immune system, 
upregulated in the OP group, the mannan-binding 
lectin serine protease 1 (MASP1), isoform LMW 
of Kininogen-1 (KNG1), and beta 2-microglobulin 
(B2M). MASP1 initiates the lectin pathway of the 
complement cascade. It activates MASP2, C2, or 
C3, triggering the formation of a pore complex on 
the membrane of target cells, causing cell lysis [56]. 
In addition, studies in murine models have demon-
strated that the C3 or C5 signaling pathway regu-
lates osteoclast differentiation, whereas blocking C3 
in bone marrow cells in culture attenuates osteoclast 
maturation [57–59]. These data demonstrate that the 
complement pathway could be a possible mechanism 
involved in bone remodeling. Nevertheless, addi-
tional studies are necessary to determine the contri-
bution of MASP-1 and the complement pathway in 
osteoporosis.

KNG1, a precursor protein of vasoactive Kinin, 
participates in inflammation and innate immunity. 
Consistently with our previous study [19], KNG1 
was upregulated in the OS group. KNG1 has also 
been associated with Paget’s disease and modulates 
bone marrow-derived stromal/preosteoblast cell 

proliferation and suppresses etoposide-induced apop-
tosis through ERK and HSP27 activation, respec-
tively [60]. Based on these findings, we speculate that 
KNG1 is highly associated with bone metabolism in 
osteoporosis.

Beta 2-microglobulin (B2M) is a component 
of class I of the major histocompatibility complex 
(MHC), and it is known as a marker of aging and cel-
lular senescence [61]. The present study observed a 
higher abundance of B2M in the osteoporotic group. 
Similar results have been reported by Huo et al. and 
Nielson et  al. [29, 30]. Ripoll et  al. reported that 
B2M increased after calcitonin treatment, reveal-
ing a potential role as a biological marker related to 
bone remodeling [62]. In addition, B2M has a role in 
NF-kB signaling because it activates the production 
of pro-inflammatory and inflammatory cytokines and 
proteins that degrade bone [63]. B2M induces a time 
and dose-dependent calcium release and a significant 
release and expression of IL-6 from osteoblasts, acti-
vating bone resorption [64]. Our results and previous 
reports on the action of B2M on bone resorption sug-
gest that therapies focused on increasing BM2 expres-
sion could help prevent BMD loss.

Several remaining proteins reported here have a 
known relationship with bone development or metab-
olism. For example, the sex hormone-binding globu-
lin (SHBG) is a plasma glycoprotein that binds with 
high affinity to sex steroids, regulating their bioavail-
ability and access into target cells. SHBG has been 
implicated in several diseases, including osteopo-
rosis. A systematic review of serum SHBG, includ-
ing 16 studies, reported that higher levels of SHBG 
predicted an increased risk of fracture in older adults 
[65]. Besides, a large cross-sectional study in adults 
from the USA demonstrated that serum SHBG could 
be considered an independent predictor of BMD [66]. 
Our data showed increased serum levels of SHBG in 
the OS and OP groups. Also, SHBG levels correlated 
negatively with BMD and positively with HDL-c. 
Further studies should aim to elucidate if SHBG may 
play a role in bone homeostasis and could be further 
evaluated as a serum biomarker for osteoporosis.

Furthermore, the potential diagnosis of these pro-
tein biomarker candidates was evaluated by ROC 
analysis. RYR1, KNG1, and GSN, which showed 
individually the highest diagnostic capacity for osteo-
porosis (AUC > 99%), were negatively correlated with 
postmenopausal bone loss. For osteopenia, FETB, 
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GSN, and KNG1 negatively correlated with BMD, 
with AUC > 70%. Remarkably, the combination of 
biomarkers with the highest AUC value between 
groups increased (AUC = 100%) compared to each 
individual candidate. Therefore, the distinctive signa-
ture of these biomarkers could significantly improve 
diagnostic performance. It revealed the potential as 
a diagnostic tool for populations by detecting serum 
proteins.

Our study has several limitations that need to be 
considered. First, interindividual variation, the pro-
teomic analysis was performed with pooled sam-
ples and three replicates per pool. Extreme sampling 
adopted in our study is an economic strategy and has 
been validated in other proteomic studies. It is a more 
representative and powerful approach for detecting 
potential biomarkers in small sample sizes [14, 16, 40, 
67, 68]. At the same time, potential biomarkers were 
selected only if they were present in all groups to avoid 
bias due to detection. Furthermore, our study included 
a review of proteomic data from available clinical stud-
ies. The most important limitation of the present work 
is the need for validation of the selected proteins and 
follow-up of the patients. However, a larger cohort is 
needed to validate the diagnosis sensibility and speci-
ficity of the selected potential biomarkers. We plan 
to conduct future studies incrementing the number of 
patients with osteoporosis and a group with fragility 
fractures. Second, different combinations of biomark-
ers should be tested to evaluate the predictive potential 
for the disease. Together, biochemical markers of bone 
turnover and resorption and known clinical risk factors 
could improve sensitivity and specificity. Despite these 
limitations, this novel study formulates several hypoth-
eses about the proteins involved in the pathogenesis of 
low BMD in Mexican population. Finally, these find-
ings suggest that common pathways may exist in the 
pathogenesis of metabolic-related diseases, such as 
lipid metabolism, osteoporosis, and cardiovascular 
diseases. This proteomics analysis provides essential 
insights for future research for identification of the 
affected individuals at the early stages of the disease.

Conclusions

This study used a label-free proteomics approach to 
analyze the serum proteomic profile of postmenopausal 
women with low BMD (OS and OP) at the hip compared 

to women with normal BMD. Our results revealed 
significant changes in the serum proteome in osteo-
penic and osteoporotic individuals compared to normal 
women. Literature-based screening identified a distinc-
tive panel of 12 DEPs as potential biomarkers for detect-
ing low BMD. In addition, our study identified three 
novel proteins potentially involved in bone metabolism: 
RYR1, FETB, and MASP1, opening the possibility of 
being associated with OP. The results of this study pro-
vide information on some of the pathways and proteins 
involved in bone metabolism. This knowledge could be 
the platform for new research focused on bone disease 
and its medical management. However, additional vali-
dation is needed to determine the role of each protein and 
its association with low BMD.
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