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Abstract Lifestyle interventions have positive 
neuroprotective effects in aging. However, there are 
still open questions about how changes in resting-
state functional connectivity (rsFC) contribute to 
cognitive improvements. The Projecte Moviment 
is a 12-week randomized controlled trial of a multi-
modal data acquisition protocol that investigated the 
effects of aerobic exercise (AE), computerized cogni-
tive training (CCT), and their combination (COMB). 

An initial list of 109 participants was recruited 
from which a total of 82 participants (62% female; 
age = 58.38 ± 5.47) finished the intervention with a 
level of adherence > 80%. Only in the COMB group, 
we revealed an extended network of 33 connections 
that involved an increased and decreased rsFC within 
and between the aDMN/pDMN and a reduced rsFC 
between the bilateral supplementary motor areas and 
the right thalamus. No global and especially local 
rsFC changes due to any intervention mediated the 
cognitive benefits detected in the AE and COMB 
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groups. Projecte Moviment provides evidence of the 
clinical relevance of lifestyle interventions and the 
potential benefits when combining them.

Keywords Aerobic exercise · Computerized 
cognitive training · Combined training · fMRI · 
Resting-state functional connectivity · Default mode 
network · Multiplexity

Introduction

“Might strength, efficiency, and segregation update, 
if you challenge yourself.” Late adulthood is known 
for being the finest moment for crystallized cognition; 
older adults maintain or even increase vocabulary and 
expertise-based abilities. However, even healthy nor-
mal aging, characterized by the lack of pathology, is 
related to a progressive decline in fluid cognitive abil-
ities, which is associated with reductions in executive 
function, memory, attention, and processing speed 
[22, 40, 41, 67, 75, 76, 91, 113, 126–128, 172] and 
deficits in social and independent functioning [77]. 
Concurrently, one of the well-documented hallmarks 
of aging is the alteration of brain health. Extensive lit-
erature focused on the structural changes, such as loss 
of gray matter volume and less white matter integ-
rity, and their association with age-related cognitive 
changes [61, 120, 177] and observed decline in brain 
function.

Functional brain connectivity emerged as a new 
promising approach based on the fact that cognitive 
functions are the result of coordinated activity among 

distant brain areas that work in networks [124]. Func-
tional magnetic resonance imaging (fMRI) allows 
for examining temporal synchrony derived from a 
time-series covariance of blood-oxygen-level depend-
ent (BOLD) signals from multiple regions of interest 
(ROIs) [13, 162]. In particular, resting-state fMRI (rs-
fMRI) aims to identify coherences in the spontaneous 
fluctuations of low-frequency oscillations of the BOLD 
signal at rest [19] which might be informative of the 
brain architecture and individual differences [65]. 
Studies found that the brain is organized into a num-
ber of networks that show high within-network con-
nectivity and lesser long-range connections between 
networks in order to maximize its efficiency [12, 24, 
102]. Although several networks have been charac-
terized across subjects using rs-fMRI [43] for several 
aspects [77], the seven most relevant resting-state net-
works (RSNs) were defined by Yeo et  al. [178]: the 
default mode network (DMN), the frontoparietal con-
trol network (FPCN), the cingulo-opercular network 
(CON) or salience network (SN), the dorsal attention 
network (DAN), the limbic network (LN), the visual 
network (VN), and the sensorimotor network (SMN) 
[77, 103, 124, 162]. A general finding is reduced func-
tional connectivity in older adults compared to younger 
ones [124] which reflects the reorganization of the 
brain networks during aging [79]. Aging is related to a 
neural reorganization process characterized by bilateral 
hemispheric activation of the solicited regions (hemi-
spheric asymmetry reduction in older adults model) 
and decreased functional selectivity and more diffuse 
and less specialized functional connectivity (compen-
sation-related utilization of neural circuits hypothesis 
model) [54, 66, 69, 83, 85, 102, 118] which has been 
found to be steeper in clinical populations [49, 62]. All 
RSNs experience a certain degree of deterioration in 
normal aging, but especially the higher-order cogni-
tive networks [124]. Studies found decreased within-
network connectivity on the DMN, CON, sensorimo-
tor network (SMN), fronto-parietal network (FPN) and 
dorsal attention network (DAN), increased connectiv-
ity in between networks, less segregated network struc-
ture and local efficiency, and higher participation coef-
ficient using different types of connectivity analyses 
[2, 5, 17, 31, 42, 45, 66, 72, 80, 82, 87, 102, 112, 124, 
138, 155, 162, 168]. Ongoing research has commonly 
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associated the higher-order cognitive networks (DMN, 
FPN, and CON) with deficits in executive function, 
attention, processing speed, and memory [2, 31, 42, 
66, 87, 112, 124, 133, 168]. Changes are not that con-
sistent for the somatosensory, motor, and subcortical 
networks which might remain relatively stable in older 
adults [124]. Besides, studies involving middle-aged 
adults found that a decline in connectivity becomes 
progressively evident [136] with a decrease in segre-
gation [53]. This fact suggests that middle age might 
be a critical moment to prevent or delay the inversion 
of the functional connectivity trajectories and, in turn, 
promote cognitive health. Results suggest that the 
last developed areas are the first to be altered, coher-
ent with the hypothesis “last in, last out” [117]. Nev-
ertheless, a more integrative approach, the Scaffolding 
Theory of Aging and Cognition (STAC-r), proposed 
that multiple factors might influence the age-related 
decline and an active lifestyle contributes to the scaf-
folding of novel compensatory networks. This model 
included behavioral interventions, such as physical and 
cognitive training, as potential mechanisms to preserve 
cognitive and brain health and, fortunately, emerging 
evidence indicates that age-related decline may not be 
inevitable [143].

Different types of exercise have been related to 
cognitive and brain health. In particular, evidence 
highlights the role of moderate-intensity aerobic 
exercise (AE) in the promotion of executive func-
tion, processing speed, attention, and memory in 
older adults [9, 38, 58, 110]. The mechanistic hypoth-
eses of the observed cognitive benefits are multiple 
and were organized in a three-level model (molecu-
lar–brain–behavioral) by Stillman (2019) including 
clear influences of individual variables such as sex 
and age. At the brain level, while some papers have 
focused on structural brain changes reporting prom-
ising benefits on the volume-specific regions such 
as the prefrontal cortex and the hippocampus after 
mid-term interventions [30, 56], others have focused 
on AE-related changes in the functional brain con-
nectivity [173]. First evidence suggesting an associa-
tion between physical activity and cardiorespiratory 
fitness (CRF) with increased coherence in large-scale 
RSNs, such as DMN, was obtained in cross-sectional 
samples [163, 165, 167]. Researchers translated this 
experience to randomized controlled trials (RCT) 
in order to better understand inconsistencies across 

different protocols and explore how AE applied as a 
controlled intervention might produce similar results 
[143]. Although existing RCTs are highly variable 
and scarce, recent systematic reviews concluded 
that AE is a viable strategy for modifying functional 
brain connectivity and perfusion of the hippocampus 
[34, 57, 143, 150]. Up to now, the most consistent 
results are found in studies including mid and long-
term AE interventions. The longest study, lasting 
12  months, found increased efficiency in the DMN, 
FP, and frontal-executive (FE) networks [166]. Six 
months of AE intervention resulted in increased con-
nectivity between the dorsolateral prefrontal cortex 
and the superior parietal lobe [116] and a significant 
association between increased CRF and functional 
connectivity (FC) between the brain areas of the 
DMN, although no significant changes were found 
after the AE in a cross-sectional study [145]. Signif-
icant results have also been reported after 4  months 
of interventions showing increased efficiency in the 
parahippocampus [157], cerebral blood flow in the 
hippocampus [84], and the connectivity between the 
hippocampus and anterior cingulate cortex [149]. 
Shorter AE interventions have shown more incon-
sistent results. For example, the study of Maass et al. 
[101] found increased perfusion in the hippocampus 
while Chapman et  al. [32] reported non-significant 
changes in this area but significant in the bilateral 
anterior cingulate cortex. Three months of cycling 
have been related to increased rsFC between the 
DMN and motor regions [106], but 3 months of walk-
ing did not lead to significant changes in connectivity 
between the precuneus and frontal-parietal cortices 
[35]. These results suggest that shorter interventions 
might be enough to observe changes in brain func-
tion, although parameters of the physical activity 
might be better specified. Since all previous 3-month 
RCTs are scheduled mostly 3 days, we consider that 
studying changes in brain function in a short-term but 
following a high-frequency (5 days) AE intervention 
might shed light on these inconsistencies.

Cognitive training is another example of the 
most studied behavioral intervention. Computerized 
cognitive training (CCT), which refers to single 
cognitive training tasks performed on electronic 
devices, became a promising approach to promote 
cognition and structural and functional brain health 
[151, 154]. Evidence related CCT to benefits in global 
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cognition as well as specific trained functions such as 
verbal memory, [6, 8, 131], processing speed [92], 
and executive function [8]. These results highlighted 
the potential neuroplasticity even of the aging brain to 
strengthen or maintain synaptic connections and brain 
function. Functional brain imaging became a useful 
technique to describe the neuroplastic mechanisms 
underlying CCT cognitive effects [15]. Most of the 
papers used a task-fMRI approach, which generally 
identified decreased activity in the areas functionally 
involved in the trained task interpreted as more 
neural efficiency [47, 81, 86]. However, literature 
regarding changes in the spontaneous fluctuations 
after CCT interventions specifically in healthy older 
adults is scarce [26, 96, 99]. For a detailed review, 
see van Balkom et  al. [159]. Results from previous 
RCTs found patterns of increased or decreased rsFC 
involving areas of the DMN, CEN, and DAN after 
CCT [33, 93, 122, 146]. Only one research project 
including 3 months of multimodal cognitive training 
applied in the hospital by experts studied the effects 
of the intervention in multiple age-sensitive networks 
[26]. Results showed a maintained or increased 
anterior–posterior and interhemispheric rsFC within 
the DMN, CEN, and SN, a maintained DMN-SN 
coupling, an  anti-correlation pattern between DMN 
and CEN [26] and a  more integrated local FC in 
the training group than controls [48]. However, to 
our knowledge, the extent of these effects on home-
based computerized multimodal training has not been 
studied before. We consider that addressing this gap 
could support CCT as a promising intervention able 
to counteract age-related rs-FC decline.

AE and CT showed promising results and a certain 
degree of complementarity in matters of mechanisms 
involved in the observed cognitive benefits [153]. 
Exercise impacts most of the body systems promoting 
low inflammation and oxidative stress, cardiovascular 
adaptations, and neural repairing responses that 
might be enhanced by the stimulation and regulation 
of neuroplasticity through cognitive stimulation 
[59, 111]. Although evidence is still too few and 
sometimes inconsistent, systematic reviews argue in 
favor of an advantage when combining AE and CT [7, 
83, 90]. Results show that general cognitive function 
[132], executive function [55], processing speed, and 
memory [60] benefit from a combined intervention 

(COMB) and changes in brain structure [97] and 
function have been reported.

Six months of combined training have been shown 
to produce changes in the strength of functional con-
nectivity of the precuneus, right angular gyrus, and 
posterior cingulate cortex in the DMN and the left 
frontal eye field in the DAN [115]. Moreover, six 
months of COMB specifically impacts the connectiv-
ity between the medial prefrontal cortex and medial 
temporal lobe in the DMN [95]. Up to now, just one 
published paper explored changes in brain function 
after a shorter period of time but used a task-related 
fMRI approach. A dual-task training involving AE 
and working memory training for 12 weeks reported 
increased brain activity around the bilateral tempo-
roparietal junctions which are highly related to atten-
tional processes, while participants were performing a 
working memory task in the scanner [148]. Based on 
this positive evidence, and the lack of currently pub-
lished results showing changes in rs-fMRI after short-
term COMB interventions, we consider it imperative 
to analyze potential brain function changes at rest.

Projecte Moviment is an RCT protocol that 
involved the effect of a high-frequency (5  days per 
week) short-term (12  weeks) program of AE, com-
puterized cognitive training (CCT), and their combi-
nation in healthy physically inactive older adults [29]. 
The observed changes in cognition, psychological 
status, physical activity, molecular biomarkers, and 
brain volume outcomes have been published in Roig-
Coll et al. [121] and Castells-Sánchez et al. [28].

In this study, (1) we aim to assess changes in func-
tional connectivity on rs-fMRI related to intervention, 
(2) we intend to investigate the moderating role of sex 
and age on functional connectivity on rs-fMRI changes, 
and (3) the possibility that changes in functional con-
nectivity on rs-fMRI outcomes mediate the relationship 
between the intervention and cognitive benefits.

Methods

Study design

Projecte Moviment is a multi-center, single-blind, 
proof-of-concept RCT recruiting healthy low active 
late-middle-aged adults to be assigned in a four 
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parallel-group design including 12-week intervention 
programs. Participants were assessed at baseline and 
at trial completion and randomly assigned to an AE 
group, a CCT group, a COMB group, and a waitlist 
control group. The study was developed by the Uni-
versity of Barcelona in collaboration with Institut 
Universitari d’Investigació en Atenció Primària Jordi 
Gol, Hospital Germans Trias i Pujol and Institut Gutt-
mann and approved by the responsible ethics com-
mittees (Bioethics Commission of the University of 
Barcelona — IRB00003099 — and Clinical Research 
Ethics Committee of IDIAP Jordi Gol — P16/181) 
following the Declaration of Helsinki. The study took 
place between November 2015 and April 2018.

This research paper follows the previously reg-
istered (ClinicalTrials.gov; NCT031123900) and 
published protocol [29]. Results on the primary and 
partial secondary hypotheses [27, 121] would be 
included for discussion.

Participants

Healthy adults aged 50 to 70 years old from the Bar-
celona metropolitan area were recruited using multi-
ple strategies (lists of patients of general physicians, 
volunteers from previous studies, oral presentations 
in community centers, advertisements, and local 
media). Volunteers were informed and screened over 
the phone and in an on-site interview, and those meet-
ing inclusion and exclusion criteria (see Table  1) 

signed a written informed consent prior to the study 
involvement.

We randomly assigned participants to AE, CCT, 
COMB, and waitlist control groups after baseline 
assessments using a random combination of selected 
demographic variables (sex, age, and years of educa-
tion) in order to obtain balanced groups. The alloca-
tion sequence was designed by a statistician and the 
intervention team was responsible for the allocation. 
Professionals involved in the assessment remained 
blind to group assignment.

Interventions

Participants assigned to intervention groups went 
through home-based programs lasting 12  weeks, 
5 days per week. Participants randomized to the wait-
list control group were on the waitlist for 12  weeks 
and were asked not to alter their regular lifestyle.

The AE intervention program consisted of a pro-
gressive brisk walking program (Week 1: 30 min per 
day at 9–10 on the Borg Rating of Perceived Exer-
tion Scale (BRPES; [20] perceived as light intensity. 
Week 2: 45 min per day at 9–10 on BRPES. Week 3 
to 12 (10 weeks): 45 min per day at 12–14 on BRPES 
perceived as moderate-high effort). The CCT inter-
vention program consisted of multimodal cognitive 
training scheduled in sessions of 45 min. Participants 
used Guttmann Neuropersonal Trainer online plat-
form (GNPT®, Spain; Solana et al., 2014, 2015) and 
performed tasks involving executive function, visual 

Table 1  Inclusion and exclusion criteria for Projecte Moviment

Inclusion criteria Exclusion criteria

Aged 50–70 years Current participation in any cognitive training activity or during last 
6 months > 2 h/week

 ≤ 120 min/week of physical activity during last 6 months Diagnostic of dementia or mild cognitive impairment
Mini-Mental State Examination (MMSE) ≥ 24 Diagnostic of neurological disorder: stroke, epilepsy, multiple sclerosis, 

traumatic brain injury, brain tumor
Montreal Cognitive Assessment 5-min (MoCA 5-min) ≥ 6 Diagnostic of psychiatric illness current or during last 5 years
Competency in Catalan or Spanish Geriatric Depression Scale (GDS-15) > 9
Adequate visual, auditory, and fine motor skills Consumption of psychopharmacological drugs current or during last 

5 years; or more than 5 years throughout life
Acceptance of participation in the study and signature of 

the informed consent
History of drug abuse or alcoholism current or during last 5 years; or 

more than 5 years throughout life; > 28 men and > 18 woman unit of 
alcohol/week

History of chemotherapy
Contraindication to magnetic resonance imaging
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and verbal memory, and sustained, divided, and selec-
tive attention. Baseline cognitive performance and 
the ongoing scores of the activities were used by the 
GNPT platform to adjust the demand of the activities. 
The COMB intervention program consisted of a com-
bination of the brisk walking program and the CCT 
as described above, separately, in single continuous 
bouts of 45 min for each intervention 5 days per week 
without order or time-point restrictions.

The intervention team was available for partici-
pants, registered participants’ activity (phone calls 
every 2 weeks and a midpoint visit, and a final visit) 
and ensured participation in solving inconveniences 
and barriers, and obtained adherence based on par-
ticipants’ feedback and platform data. Participants 
monitored their activity in a diary, registering the date 
and duration of the activity and any adverse events 
occurring as well as the intensity of the walking in 
BRPES units.

The protocol for each intervention condition is 
explained in more detail elsewhere [29].

Assessment

Participants went through all assessments in clinical 
environments at baseline within 2 weeks prior to the 
start of the intervention and, again, within 2  weeks 
after the completion of the program [29].

Neuroimaging: resting‑state functional MRI data 
acquisition

The Projecte Moviment MRI data were collected 
using a 3  T Siemens Magnetom Verio Symo MR 
B17 (Siemens 243 Healthineers, Erlangen, Germany) 
located at the Hospital Germans Trias i Pujol. Partici-
pants were asked to rest with their eyes closed during 
the scan session, had head motion constrained, and 
were offered earplugs to reduce the adverse effects 
of scanner noise. Resting-state functional BOLD 
imaging scans were obtained with a gradient echo 
planar imaging sequence (acquisition time 8:08 min, 
voxel 3.1 × 3.1 × 3.0  mm, TR/TE 2000/25  ms, flip 
angle 78°, slices 39, thickness 3 mm, volumes 240). 
We also collected T1-weighted multi-planar refor-
mat sequences (acquisition time 5:26  min, voxel 
0.9 × 0.9 × 0.9 mm, TR/TE/TI 1900/2.73/900 ms, flip 
angle 9°, slices 192, thickness 0.9  mm) which were 
used during the rs-fMRI preprocessing to co-register 

functional and structural MRI data. Scans were visu-
ally checked by an expert neuroradiologist.

The NYU dataset For evaluating the stability of 
our findings based on the adopted preprocessing 
pipeline and functional network construction, we 
analyzed an open test–retest rs-fMRI dataset. This is 
an open dataset from the International Neuroimag-
ing Data-Sharing Initiative (INDI) (http:// www. nitrc. 
org/ proje cts/ nyu_ trt) that was originally described 
in [134]. The NYU dataset includes 25 participants 
(mean age 30.7 ± 8.8 years, 16 females) with no his-
tory of psychiatric or neurological illness. Three rest-
ing-state scans were acquired from each participant. 
Scans 2 and 3 were conducted in a single session with 
45 min apart, while the scan 1 took place on average 
11 months (range 5–16 months) after scans 2 and 3.

Each scan was acquired using a 3  T Siemens 
(Allegra) scanner and consisted of 197 contiguous 
EPI functional volumes (TR = 2000 ms; TE = 25 ms; 
flip angle = 90°; 39 axial slices; field of view 
(FOV) = 192 × 192  mm2; matrix = 64 × 64; acquisi-
tion voxel size = 3 × 3 × 3  mm3). Participants were 
instructed to remain still with their eyes open during 
the scan. For spatial normalization and localization, a 
high-resolution T1-weighted magnetization prepared 
gradient echo sequence was also obtained (MPRAGE, 
TR = 2500  ms; TE = 4.35  ms; TI = 900  ms; flip 
angle = 8°; 176 slices, FOV = 256 mm).

Resting‑state functional MRI preprocessing, 
and denoising

The preprocessing of the rs-fMRI data from both 
datasets, “Projecte Moviment” and NYU, was con-
ducted following the same standard workflow imple-
mented in the CONN toolbox (http:// www. nitrc. org/ 
proje cts/ conn), version 17f [174]. A standard pipe-
line of preprocessing, involving the steps described 
below, was applied for consistent functional network 
topologies [100]: removal of the first 5 volumes to 
allow for steady-state magnetization,functional rea-
lignment, motion correction, and spatial normaliza-
tion to the Montreal Neurological Institute (MNI-152 
standard space with 2 × 2 × 2 mm isotropic resolution. 
A denoising procedure was driven by applying the 
anatomical CompCor (aCompCor method of remov-
ing cardiac and motion artifacts, by regressing out of 

http://www.nitrc.org/projects/nyu_trt
http://www.nitrc.org/projects/nyu_trt
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
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each individual’s functional data the first 5 principal 
components corresponding to white matter signal, 
and the first 5 components corresponding to cere-
brospinal fluid signal, as well as six subject-specific 
realignment parameters (three translations and three 
rotations and their first-order temporal derivatives 
[14]. The subject-specific denoised BOLD signal time 
series were first linearly detrended, and band-pass fil-
tered between 0.008 and 0.09  Hz to eliminate both 
low-frequency drift effects and high-frequency noise. 
We did not apply spatial smoothing since all analyses 
were performed on parcellated data. The voxel-based 
time series within every ROI were averaged to extract 
a representative time series per ROI. In the present 
study, the AAL atlas [158] with 90 total brain areas 
(45 ROIs per hemisphere) was considered.

Static functional connectivity network construction: 
the multiplex way

In our study, the construction of a static functional 
connectivity network (sFCN) incorporates the wave-
let decomposition of voxel-based time series and a 
distance correlation metric to quantify the multiplex-
ity between two brain areas. We performed a wave-
let decomposition on every voxel-based time series 
within every ROI by adopting the maximal overlap 
discrete wavelet transform (MODWT) selecting the 
Daubechies family implemented with a wavelet length 
equal to 6 [52]. Wavelet coefficients were extracted 
for the first four wavelet scales for every voxel-based 
time series which were further averaged to produce 4 
frequency-dependent regional time series. The four 
wavelet scales, which correspond to the frequency 
ranges 0.125∼0.25  Hz (scale 1), 0.06∼0.125  Hz 
(scale 2), 0.03∼0.06 Hz (scale 3), and 0.015∼0.03 Hz 
(scale 4) [179]. Figure  1 illustrates this procedure 
for a pair of ROIs. Then, we adopted the distance 
correlation (DC) metric to quantify the multiplexity 
coupling strength between every pair of ROIs [147]. 
With the DC metric, one can estimate analytically the 
corresponding p-value of each coupling. This proce-
dure leads to an sFCN of size 90 × 90 per subject and 
scans in both datasets.

Cognitive performance

We assessed cognition using a theoretically driven [94, 
139] selection of tests that addressed the most relevant 

cognitive functions: Flexibility (Trail Making Test B-A 
time,[156], Fluency (letter and category fluencies,[114], 
Inhibition (interference—Stroop Test,Golden, 2001), 
Working Memory (backward—WAIS-III; [171], Visu-
ospatial Function (copy accuracy—Rey-Osterrieth 
Complex Figure,[119], Language (Boston Naming Test-
15,[71], Attention (forward span, digit symbol coding, 
and symbol search—WAIS-III,[171], Speed (Trail Mak-
ing Test-A,[156],copy time—Rey-Osterrieth Complex 
Figure; [119], Visual Memory (memory accuracy—Rey 
Osterrieth Complex Figure,[119], and Verbal Memory 
(total learning and recall-II—Rey Auditory Verbal 
Learning Test,[129]. Six general domains were designed: 
(1) executive function, (2) visuospatial function, (3) lan-
guage, (4) attention-speed, (5) memory, and (6) global 
cognitive function. The cognitive assessment was con-
ducted before the CRF test or any type of exercise to con-
trol for acute exercise’s effect on cognitive performance. 
Extended details are in Supplementary Material Table 1.

Physical activity

We obtained physical activity levels with the Min-
nesota Leisure Time Physical Activity Questionnaire 
(VREM; [123]) in which frequency and duration dur-
ing the last month of multiple activities — sportive 
walking, sport/dancing, gardening, climbing stairs, 

Fig. 1  Wavelet decomposition of voxel-based time series 
and a multiplex coupling strength index. (A, B) A pair set of 
voxel-based time series (blue) was decomposed with the maxi-
mal overlap discrete wavelet transform (MODWT) in four fre-
quency bands by adopting the Daubechies family implemented 
with a wavelet length equal to 6 [52]. The four wavelet scales, 
which correspond to the frequency ranges 0.125∼0.25  Hz 
(scale 1), 0.06∼0.125 Hz (scale 2), 0.03∼0.06 Hz (scale 3), and 
0.015∼0.03  Hz (scale 4) [179].We then averaged the voxel-
based time series producing four representative time series per 
frequency scale and per ROI (red). The distance correlation 
DC was estimated on the pair of four regional time series
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and shopping — are asked. Then, we calculated 
energy expenditure for each activity transforming 
hours per month into units of the metabolic equiva-
lent of tasks (METs). We derived a measure of Spor-
tive Physical Activity (S-PA) by adding METs spent 
in sportive walking and sport/dancing activities and 
a measure of Non-Sportive Physical Activity (NS-
PA) by summing METs spent in gardening, climbing 
stairs, shopping, walking, and cleaning house.

Cardiorespiratory fitness

CRF was assessed using the Rockport 1-Mile Test 
and estimated the maximal aerobic capacity  (VO2max) 
using the standard equation reported by Kline et  al. 
[88]. The equation uses the following variables to 
estimate  VO2max: weight, age, sex, time to complete a 
mile, and heart rate at the end of the test. During the 
test, participants were instructed to walk one mile on 
a treadmill adjusting their speed in order to be as fast 
as possible without running.

Statistical analysis

Statistical procedures were performed using IBM 
SPSS Statistics 27. The distribution of raw scores was 
assessed to ensure data quality (i.e., outliers, skew-
ness). We calculated change scores (post-test minus 
pre-test) and compared baseline scores between 
groups.

Detecting functional connectivity differences 
between pre‑ and post‑intervention time periods

1) We applied ANOVA between the four groups 
global mean strength of sFCN to assess potential 
baseline differences. We also applied ANOVA 
between baseline and follow-up global mean 
strength of sFCN for the four groups. We adopted 
a similar approach between every pair of scans 
for the test–retest NYU dataset. The Kolmogo-
rov–Smirnov test was used to check for normality 
of the data.

2) To reveal functional connectivity differences due 
to intervention, we applied a Wilcoxon Rank-
Sum Test between pre- and post-intervention-
related sFCN independently for every group and 
for every pair of ROIs. Finally, we corrected for 
multiple comparisons with a false discovery rate 

(FDR) with a significance level of p < 0.05 [16]. 
We followed a similar approach between every 
pair of scans for the test–retest NYU dataset.

3) To reveal functional connectivity differences in 
the baseline at ROI level between each interven-
tion group and the control group (AE vs control; 
CCT vs control; COMB vs control), we adopted 
a Wilcoxon rank-sum test. Results were corrected 
for multiple comparisons using FDR, with a sig-
nificant level of p < 0.05.

Assessing the repeatability of sFCN from the NYU 
dataset

4) We applied similar statistical analyses as described 
in (1) and (2) between the scan-based sFCN for 
the NYU dataset to assess the repeatability of the 
functional connectivity patterns as derived from the 
adopted pipeline.

Moderating and mediation analysis

5) We adopted the PROCESS Macro for SPSS [78] 
to analyze the moderating effect of age and sex 
on intervention-related changes for global mean 
DC strength estimated over the individual sFCN.

6) We also used the PROCESS macro to perform 
mediation analyses to assess whether a change 
in the global mean DC strength estimated over 
the individual sFCN mediated the cognitive 
benefits observed in the AE and COMB groups 
[121]. These benefits include for the AE group, 
the Executive Function (Working Memory) and 
Attention-Speed (Attention) and in the COMB 
group, the changes in Attention-Speed (Attention 
and Speed).

7) Complementarily, our mediation analysis was 
also driven by the outcome of the analysis over 
the sFCN difference maps (post-test minus pre-
test) where the comparison between pre-post 
periods for each active group (AE-pre vs AE-
post; CCT-pre vs CCT-post; COMB-pre vs 
COMB-post) revealed a subnetwork of functional 
connections that increased (positive network) or 
decreased (negative) due to the intervention. The 
mean DC strength of either the positive or nega-
tive subnetwork acted as mediators.
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8) We also explored if the outcome of the analysis 
over the sFCN difference maps (post-test minus 
pre-test) mediated the relationship between the 
changes in the CRF and changes in the cogni-
tive measures targeting on the Executive Func-
tion (Working Memory) and the Attention-Speed 
(Attention).

For these mediation analyses, we created a treat-
ment variable (condition vs control) as the independent 
variable, change in cognition for those functions that 
showed significant intervention-related changes as the 
dependent variable, and changes in the CRF, the global 
mean DC strengths and the mean DC strength of the 
positive/negative subnetwork have been the mediators 
controlling for baseline performance score, age, sex, 
and years of education. These analyses were computed 
with bias-corrected bootstrapped 95% confidence 
intervals (CIs) based on 5000 bootstrap samples. The 
significance was indicated if the CIs in path AB did not 
overlap with 0 [78].

Effect size and post hoc power estimation

An effect size is a value measuring the strength of the 
relationship between two variables in a population. 
Cohen’s d is defined as the difference between two 
means divided by a standard deviation for the data. 
Equation  1 illustrates mathematically the estimation 
of Cohen’s d effect size [37]:

Jacob Cohen defined s, the pooled standard devia-
tion, as (for two independent samples):

where the variance for every intervention group in the 
baseline is defined as

and similarly for every intervention group in the fol-
low-up condition.

As means, we inputted to the formula the mean incre-
ment and decrement of DC strength over the detected 
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functional pairs tabulated in Table 3 and shown in Fig. 2. 
It is important to mention here that a Cohen’s d higher 
than 0.8 is large, higher than 1.2 very large, and higher 
than 2 is huge. The higher the Cohen’s d, the lower the 
desirable sample size in order to get findings with high 
confidence and smaller alpha type I error. The alpha 
type I error refers to the probability to obtain a signifi-
cant finding by chance. The adoptation of a false dis-
covery rate (FDR) with a significance level of p < 0.05 
in our rsFC analysis minimizes this chance. Here, as in 
the majority of studies, we set alpha = 0.05 which means 
that there is a 5% probability that a significant difference 
will occur by chance (false-positive). Β is the probability 
of not finding a difference when it actually exists (false-
negative), and here it was set to β = 0.10. Power = 1 − β 
and expresses the ability to detect a difference when it 
exists. In our study, we set the Power = 0.90 [36].

Suppose the baseline and follow-up conditions 
are “A” and “B,” and we collect a sample from both 
scanning periods, i.e., we have two samples. We 
perform a two-sample test to determine whether the 
mean in group A, μA, is different from the mean in 
group B, μB. The hypotheses are

We computed the post hoc power according 
for a 2-sample 2-sided test adopting the equations 
reported in Chow et al. [36].

The post hoc power was estimated by the follow-
ing set of equations:

where

κ = nA/nB  is the matching ratio, and nA and nB are 
the actual sample sizes of the group

σ  is standard deviation
Φ  is the standard Normal distribution function
Φ−1  is the standard Normal quantile function
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α  is type I error
β  is type II error, meaning 1 − β is power

Both Cohen’s d and post hoc power were estimated 
for the averaged DC strength over the pairs of ROIs 
shown in Fig. 2 independently for the increment and 
decrement groups (Table 3).

Results

Participants

A total of 109 participants completed the baseline 
assessment and 92 completed the intervention 
(intention to treat sample, ITT) (see Figure  1 
in Roig-Coll et  al. [121]. The Per Protocol (PP) 
sample, analyzed in the present study, included 82 
subjects (62% female,age = 58.38 ± 5.47) with a 
level of adherence > 80%. The demographics of the 
PP sample are tabulated in Table  2. There were no 
participants’ differences at the baseline across the 
groups in physical and cognitive outcomes except 
for Non-Sportive Physical Activity (NS-PA) and 
current smoking status (see supp. material Tables 2.1, 
2.2 for extended details). Current smoking status 
at baseline was included as a covariate. We applied 
Kolmogorov–Smirnov tests for the normality of the 
demographic data showed in Table  2 and also in 
STables  2.1, 2.2. In variables where the normality 
was supported, we applied ANOVA; otherwise, we 
adopted the Kruskal–Wallis test.

Repeatable sFCN produced by the adopted pipeline

Our analytic pipeline revealed consistent mean func-
tional connectivity coupling strength between short-
term (mins) and long-term (months) scans as esti-
mated over the rs-fMRI test–retest NYU dataset (see 
supp. Table  2.3). Moreover, we did not detect any 

Fig. 2  Topological layouts of increased (red) and decreased 
(blue) rsFC between pairs of ROIs in the AAL space for every 
intervention group comparing the baseline and the follow-
up conditions. An interested reader can read this figure in 
conjunction with STable  4 in section  2 in the sup. material 
(red = increased coupling DC strength due to the intervention; 
blue = decreased coupling DC strength due to the intervention)

▸
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significant difference between every pair of scans on 
the ROI-ROI level. Both analyses, on the global and 
local levels, favor the adoptation of the pipeline for 
the analysis of the rs-fMRI recordings from our inter-
vention study.

Intervention-related changes in static functional 
connectivity

The global mean strength of sFCN did not differ sig-
nificantly between the four groups at the baseline (see 
supp. material Table 2.3). Moreover, the global mean 
strength of the sFCN for the three groups (AE, CCT, 
and control) did not differ significantly between the 
baseline and the follow-up but it differs only for the 
COMB group (see supp. material Table 3).

Regarding the pre-post group analysis on the ROI 
level, Fig. 2 illustrates the significant connections that 
survived the statistical thresholds for every interven-
tion group comparing the baseline and the follow-up 
conditions. The AE and CCT interventions led to a 
small number of connections, 11 and 6 connections, 
correspondingly while the COMB intervention pro-
tocol produced an extended network of 33 connec-
tions (Fig. 2). Our findings involved a combination of 
increased coupling DC strength (red) and decreased 

coupling DC strength (blue) due to the intervention 
protocol. The averaged increment and decrement of 
DC strength over the detected pairs of connections 
are tabulated in Table 3 showing no group difference.

Specifically, for the AE group, we revealed an 
increased rsFC between the right lingual gyrus 
(Visual Network — VN) and right superior tem-
poral gyrus (ventral attentional network — VAN), 
and the  right angular gyrus (fronto-parietal network 
— FPN),  between the right superior temporal gyrus 
(ventral attentional network — VAN), and  left middle 
temporal gyrus (posterior DMN — pDMN), between 
the  right angular gyrus (VN) and right precuneus 
(pDMN), and between the left and right inferior frontal 
gyri (orbital part) with left frontal middle gyrus (orbital 
part) (anterior DMN — aDMN). We also revealed 
a decreased rsFC between the left fusiform gyrus 
(pDMN) and right middle temporal gyrus (pDMN), 
between the left hippocampus and left and right precen-
tral gyrus (pDMN), and between the left and right sup-
plementary motor areas and the right thalamus.

For the CCT group, we untangled an increased 
rsFC between the left hippocampus (pDMN) with the 
right inferior frontal gyrus (opercular part) (aDMN) 
and the right middle frontal gyrus (aDMN), between 
the right hippocampus (pDMN) with the left middle 

Table 2  Participants characteristics at baseline

Mean (SD). See Supplementary Tables 4 for more cognitive, physical, cardiovascular risk factors, and global FA and MD outcomes 
at baseline
AE aerobic exercise; BMI body mass index; CCT  computerized cognitive training; COMB combined training; WAIS‑III Wechsler 
Adult Intelligence Scale, X2 chi-square; H Kruskal–Wallis H test; F ANOVA test

Total
Mean (SD)

AE
Mean (SD)

CCT 
Mean (SD)

COMB
Mean (SD)

Control
Mean (SD)

Group comparison

n total / n females 82 / 51 25 / 13 23 / 16 19 / 14 15 /8 Χ2(3) = 3.20,
p = .361

Age (years) 58.38 (5.47) 58.40 (5.12) 57.91 (5.31) 60.32 (5.54) 56.60 (5.97) H(3) = 3.53,
p = .317

Years of education 12.52 (5.57) 12.44 (5.75) 12.04 (4.94) 12.37 (5.43) 13.60 (6.72) H(3) = 0.28,
p = .963

Table 3  Averaged increment and decrement of DC strength over the detected pairs of connections demonstrated in Fig. 2

AE aerobic exercise, CCT  computerized cognitive training, COMB combined training, M mean, SD standard deviation

AE
M(SD) increased–M(SD) 
decreased

CCT 
M(SD) increased–M(SD) 
decreased

COMB
M(SD) increased–M(SD) 
decreased

Mean DC strength (Moviment) 0.035 (0.005)–0.021 (0.007) 0.031 (0.006) 0.041 (0.006)–0.032 (0.005)
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frontal gyrus (aDMN), and the  left inferior frontal 
gyrus (opercular part) (aDMN), and between the left 
superior frontal gyrus (aDMN), and the  left inferior 
parietal gyrus (pDMN).

The strongest changes were observed in the COMB 
group in brain areas that involved an increased rsFC of 
within FPN coupling strength between the left and right 
middle frontal gyri and the left and right temporal poles 
(middle temporal gyri), the increment between the  left 
and right superior parietal lobules and the left and right 
angular gyri (FPN), an increased rsFC between the  left 
and right middle frontal gyri (FPN) and the left and right 
temporal poles (middle temporal gyri), the increment 
between the posterior DMN and FPN that involved the 
left/right precuneus (pDMN) with the right angular gyrus 
(FPN) and with the posterior cingulate gyrus (pDMN), 
and an increased rsFC between the left portion of the 
aDMN that involves the left middle frontal gyrus (orbital 
part), the inferior frontal gyrus (opercular part), the supe-
rior frontal gyrus (medial part), and the middle frontal 
gyrus (orbital part) with the pDMN that involves the left/
right fusiform gyrus, the left/right parietal inferior gyri, 
the left/right angular gyrus, and the left/right precuneus. 
The COMB intervention group showed a decreased rsFC 
between areas within the pDMN (left and right fusi-
form gyri, left and right inferior parietal gyri, left angu-
lar gyrus-left precuneus, right angular-right precuneus), 
within the aDMN (left and right middle frontal gyri 
(orbital part), left and right inferior frontal gyri-opercu-
lar part, left inferior frontal gyrus (opercular part) with 
the  left superior frontal gyrus (medial part)), between 
the left superior frontal gyrus (medial part) with the left 
middle frontal gyrus (orbital part) and between the left 
and right supplementary motor with the right thalamus.

The mean and total DC coupling strength of the 
detected connections within aDMN (decrement), 
within pDMN (decrement), and between aDMN and 
pDMN (increment) brain areas will also feed the 
mediation analysis (see the “Mediation effects on 
intervention-related cognitive benefits” section).

Statistical analysis of sFCN in a pairwise ROI 
fashion between the intervention group and the con-
trol in the baseline (AE vs control; CCT vs control; 
COMB vs control) did not reveal any findings.

Estimated effect size and post hoc power estimation

Based on known sample size, the power in the three 
groups and in both groups of functional pairs of ROIs 

that showed either increment or decrement with the 
baseline was above 0.90 for all cases. The Cohen’s d 
effect size was between 0.78 and 1.13 which means 
that our findings showed between large and very large 
effect size (Table 4).

Sex and age moderation effects

Moderation analyses showed that age did not sig-
nificantly moderate the effects of the intervention on 
global mean rsFC strength estimated over the individ-
ual sFCN in any group. Sex did not significantly mod-
erate the effects of the intervention on global mean 
rsFC strength estimated over the individual sFCN in 
any group.

Mediation effects on intervention-related cognitive 
benefits

We applied mediation analyses to investigate whether 
changes in rsFC mediated the association between the 
intervention and the cognitive domains that demon-
strated a significant change as reported in Roig-Coll 
et al. [121]. As rs-FC, we employed the global mean 
rsFC strengths, the mean, and the total rsFC strength 
of the positive/negative subnetworks that involved 
the within aDMN, the within pDMN, and their inter-
actions (aDMN-pDMN). In our previous study, we 
showed that the AE group showed improvement in 
Executive Function (Working Memory) and Atten-
tion-Speed (Attention) and the COMB group showed 
changes in Attention-Speed (Attention and Speed). 
Mediation analyses showed that changes in global 
mean DC strengths and mean and total DC strength of 
the positive/negative subnetwork did not significantly 
mediate the observed cognitive benefits for any group. 

Table 4  Cohen’s d effect size and power estimations estimated 
independently over the averaged increment and decrement of 
DC strength of the detected pairs of connections demonstrated 
in Fig. 2

AE aerobic exercise, CCT  computerized cognitive training, 
COMB combined training, M mean, SD standard deviation

AE
Increased–
decreased

CCT 
Increased

COMB
Increased–
decreased

Cohen’s d/
power (Mov-
iment)

1.13/1–
0.78/0.96

0.84/1 0.81/1–1.05/1
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Finally, the integrated increment and decrement of 
rsFC changes detected (Fig.  2) did not mediate the 
relationship between CRF and executive Function 
(Working Memory) and Attention-Speed (Attention).

Discussion

In this paper, we report intervention-related changes in 
rs-fMRI static functional connectivity in our Projecte 
Moviment trial, which investigates the potential neuro-
protective effects of interventions (AE, CCT, COMB) 
in healthy physically inactive  late-middle-aged adults 
compared to a healthy control group [29]. In our pre-
vious study, we reported cognitive changes in Execu-
tive Function and Attention-Speed in the AE group, 
and Attention-Speed in the COMB group [121].

In our study, the participants who followed the 
AE program showed positive changes in rs-fMRI 
functional connectivity in agreement with previous 
studies [142, 143]. We reported an increased rsFC 
that involved mainly the aDMN, pDMN, and also 
FPN, VAN, and VN, and negative rsFC changes that 
involved the pDMN, the hippocampus, the left and 
right supplementary motor areas and the  right thala-
mus. Previous studies reported an association between 
AE and increased coupling within the DMN [35, 106], 
in the hippocampal network [175] and also a decreased 
rsFC within the DMN [35, 105], and the SMN [63]. 
Although the interpretation of the decreased rsFC is 
challenging, AE-related decreased rsFC co-occurred 
with decreased fat mass [105] and cognitive stability 
[35]. It is evident from our findings that longer inter-
ventions are needed to induce extended changes in 
both metabolic and rs-fMRI connectivity networks. 
Parameters of the AE are critical for the neuroprotec-
tive effects of the exercise which can be altered by sex, 
age, and health status [144, 175].

For the CCT group, we reported an increased rsFC 
between the left hippocampus (pDMN) with the right 
inferior frontal gyrus (opercular part) (aDMN) and 
the  right middle frontal gyrus (aDMN), between 
the right hippocampus (pDMN) with the  left middle 
frontal gyrus (aDMN), and the  left inferior frontal 
gyrus (opercular part) (aDMN), and between the left 
superior frontal gyrus (aDMN), with the left inferior 
parietal gyrus (pDMN). Previous studies in healthy 
older adults reported a combination of increased rsFC 
and decreased rsFC in the DMN as a consequence of 

a CCT program (for a review, see Ten Brinke et  al. 
[154]. The maintenance of global mean rsFC on the 
same level in conjunction with an increased rsFC pat-
tern that involved DMN and also the hippocampus 
could be characterized as a positive outcome of CCT 
intervention. These observations could be linked 
not only to the CCT protocol but also to the general 
motivation of the subjects that participated in a life-
style behavior project. In our previous study [121], 
participants in the CCT did not show any significant 
changes in physical activity status, sleep patterns, and 
psychological health.

Our study also evaluates the benefits of com-
bining multimodal CCT and brisk walking for 
12 weeks, 5 days per week in bouts of 54 min. Par-
ticipants of the COMB group showed an improve-
ment in both global and local rsFC compared to 
the control group. Our findings supported both the 
benefits of COMB intervention in terms of both 
local and global rsFC. The increment of global 
rsFC is a positive outcome of the COMB interven-
tion by comparing the global mean of our group 
of old adults compared to the global mean of 
younger adults from the NYU dataset (see supp. 
material Table 2.3 for NYU dataset vs supp. mate-
rial Table  3). Our pre-post analysis of rsFC in the 
COMB group revealed an extended network of 
functional connections where their strength either 
increased or decreased in the follow-up compared 
to the baseline. This network involved mainly the 
DMN and to a lesser extent the FPN and also the 
supplementary motor area with the thalamus as 
it was observed in the AE group. Specifically, we 
observed a decreased rsFC pattern for brain areas 
located within the aDMN and within the pDMN 
and an increased rsFC pattern between brain areas 
located over the aDMN and the pDMN. A reduced 
rsFC was also detected between the left and right 
supplementary motor areas and the right thalamus. 
Our rsFC findings supported the positive outcome 
of the COMB intervention protocol within the 
12  weeks period compared to the rsFC findings in 
CCT and AE groups. There is no rs-fMRI inter-
vention study that followed the same protocol with 
three active and a control group in order to directly 
compare our findings.

DMN are defined as sets of anatomically distance 
brain areas that showed temporal correlations of their 
spontaneous resting-state fluctuations which is called 
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functional connectivity [46]. The observed func-
tional connectivity between remote brain areas with 
the use of resting-state fMRI is consistent with their 
anatomical connectivity as revealed using diffusion 
tensor imaging [68, 137]. Previous findings suggested 
that the functional connectivity strength between the 
DMN areas can partially be explained on white mat-
ter tracts namely the structural connectivity strength 
[152, 160, 161].

Despite the growing amount of accumulated 
knowledge regarding the physiology and anatomy of 
DMN, the main cognitive function of this network is 
still poorly understood. Different parts of DMN are 
involved in different high-level cognitive functions. 
For example, the posterior cingulate cortex (PCC) is 
active during tasks that are associated with autobio-
graphical episodic memory and self-referential pro-
cesses [130], the medial prefrontal cortex’s activity 
is linked to social cognitive processes [1], the medial 
temporal lobe is mainly active in episodic memory 
[164], and the inferior parietal cortex’s activity, and 
especially the angular gyrus, is engaged in semantic 
processing and attention [18].

The DMN consists of cortical brain areas that are 
anatomically distant from input to output systems of 
the brain in visual and motor cortex. Previous find-
ings suggest that the DMN consists of brain areas 
that are on the top of a representational hierarchy that 
involves the cognitive landscape of abstract terms. 
These terms revealed by a meta-analysis of published 
research articles are the “social cognition,” “verbal 
semantics,” and “autobiographical memory”—tasks 
that rely on complex representations abstracted away 
from specific sensory and motor processes [104]. The 
topological location of the DMN brain areas that are 
geodesic distance from input–output systems of the 
brain may support the expression of stimulus inde-
pendent aspects of cognitive functions associated 
with mind-wandering [23]. The DMN is also impli-
cated in specific domains of cognition that are critical 
during mind-wandering, including social cognition, 
semantic and episodic memory, and future plan-
ning (for meta-analyses, see Spreng et  al. [140] and 
Andrews-Hanna et al. [3].

Mean rsFC in the whole-brain and within the DMN 
showed a nonlinear trajectory in healthy older adults 
with more rapid declines in older age and a possible 
increment in early stages of the aging process (Staf-
faroni et al., 2018). This study investigated how rsFC 

changes within the age spectrum (55–90 age) in nor-
mal aging in three DMN subnetworks: (1) within-
DMN, (2) between anterior and posterior DMN, and 
(3) between medial temporal lobe network and poste-
rior DMN. The partition of DMN in anterior and pos-
terior parts has been previously reported in the litera-
ture [44]. In this longitudinal study, they revealed that 
rsFC within-DMN and between anterior and posterior 
regions of the DMN predicted changes in memory 
performance (Staffaroni et al., 2018). However, rsFC 
showed significant age × time interaction effect only 
for the whole-brain and the within DMN areas but not 
with anterior–posterior and between medial temporal 
lobe and posterior DMN.

RsFC within the DMN is the most common rest-
ing-state network under investigation that has been 
also found to be impacted by aging [66, 107]. In 
normal aging, various DMN areas like the superior 
and middle frontal gyrus, superior parietal cortex, 
and posterior cingulate cortex showed a decreased 
rsFC [74]. Age-associated changes in rsFC were also 
observed between the anterior versus the posterior 
DMN [2]. In the aDMN, both increment and dec-
rement were revealed in the frontal lobe, whereas 
within the pDMN, only a decreased rsFC pattern was 
detected associated with aging [169]. It is hypoth-
esized that the increased rsFC in the aDMN could 
serve as a compensatory mechanism that attempts to 
balance the loss of cognitive functions [73, 169]. It 
is the first time in the literature that an intervention 
study reports changes in rsFC within aDMN, pDMN, 
and also between aDMN and pDMN brain areas.

Neuroimaging findings from various task-evoked 
activity studies have isolated brain areas of the dor-
sal frontal and posterior parietal cortex to be involved 
in the direction of attention to spatial locations [39, 
109]. These brain areas form the dorsal attention sys-
tem (DAN) [89] which maintain endogenous signals 
linked to goals relevant to top-down modulatory sig-
nals biasing further the stimulus processing [21]. A 
secondary attention system is the ventral attention 
system (VAN) which is located in the temporo-pari-
etal junction and the ventral frontal cortex (Corbetta 
et al., 2000), and it was assigned with the functional 
role of directing attention to salient sensory events 
[64]. These networks could be investigated even in 
the absence of tasks such as the spontaneous resting-
state activity (Fox et al., 206). For daily human activi-
ties, and especially for older adults, it is essential to 
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orient attention to behaviorally relevant stimuli which 
mainly involves the brain activity of the dorsal and 
ventral fronto-parietal networks (FPN) (Arif et  al., 
2020). Age modulates FPN during attentional reori-
enting demanding tasks. This study showed that older 
healthy adults were slower in reorienting attention 
and exhibited age-related alterations within parietal 
and frontal regions, which may reflect increased task 
demands depleting their compensatory resources. The 
VAN network is mostly linked to the temporo-parietal 
junction and ventral frontal cortices and is thought to 
be involved in bottom-up processes that are stimu-
lus driven [135]. An increment of DC connectivity 
strength was revealed within the VAN network in the 
AE group.

Brain networks involved in primary information 
processing such as the visual network (VN) showed 
within-network connectivity significant positive asso-
ciation with older age [180]. Here, we untangled 
an increment within the VN for the AE group. It is 
important to stress here that aging causes both incre-
ments and decrements between well-known resting-
state networks while the brain organization undergoes 
reorganization [180]. It is important to study how 
normal aging influences within and between networks 
connections, how these connectivity patterns altered 
in neurodegenerative diseases, and how non-pharma-
ceutical interventions like aerobic exercise can act as 
a protective mechanism against these diseases (Wang 
et  al., 2021; [98]. The protective role of combined 
intervention protocols (aerobic exercise and cognitive 
training), against neurodegenerative diseases like the 
one proposed here, should be further evaluated [125].

In moderation analyses, we did not find a signifi-
cant moderation effect of age on intervention-related 
changes in the global mean rsFC strength estimated 
over the individual sFCN in any group. These find-
ings could be supported by the tight age-range of our 
sample and the fact that our sample was young com-
pared to targeted clinical populations where the brain 
health of older subjects tends to decline faster com-
pared to the intervention group [56]. We did not find 
a significant moderation effect of sex in the global 
mean rsFC strength estimated over the individual 
sFCN in any group. However, more studies from our 
group and other research groups suggested that bio-
logical age acts as a moderator of the relationship 
between aerobic exercise and neuroprotective effects 
[10, 11, 27–29]. Sex differences in the response of 

cardiovascular, musculoskeletal, and respiratory 
systems in AE and the impact of sex hormones may 
explain the different intervention-related changes in 
cardiovascular risk factors [10, 11].

To reveal the possible mechanisms that could 
explain the cognitive benefits in the AE group in the 
Executive Function (Working Memory) and Atten-
tion-Speed (Attention) and in the COMB group in 
the Attention-Speed (Attention and Speed) [121], 
we explored the mediation effects of the global mean 
rsFC strength, and the local rsFC findings in the 
COMB group (the mean rsFC strength within aDMN, 
within pDMN, and between aDMN and pDMN). No 
global and especially local rsFC changes due to any 
intervention mediated the cognitive benefits detected 
in the AE and COMB groups. Additionally, the inte-
grated increment and decrement rsFC changes due to 
the intervention protocol (Fig. 2) did not mediate the 
relationship between CRF and the executive Function 
(Working Memory) and Attention-Speed (Attention) 
measurements.

The failure of the mediation analysis with rsFC as 
actual mediators could be explained due to the short 
duration of the intervention and/or the sample size 
which might not be enough to reveal such mediation 
effects in the cognitive functions of high variability 
[142].

While there is partial consistency in neuropsycho-
logical, and structural neuroimaging findings across 
the studies, results based on rsFC analysis are less 
consistent. The reason for this inconsistency is due 
to a large repertoire of available analytic paths that 
one researcher can follow. Below, we summarize the 
available rsFC options: the seed-based analysis target-
ing one or a few seed ROIs [35, 63, 106, 116, 175, 
176], the ROI-ROI based on the parcellated space 
by adopting an atlas [165], the BOLD fluctuation 
[157], the graph theory methods [25, 157], and the 
application of ICA to detect the seven resting-state 
networks where this approach is called network-of-
interest (NOI) [105]. The diversity of methodological 
analytic approaches across those reports is due to an 
explosion of the proposed alternative methods that 
one researcher can follow to investigate the rsFC. For 
that reason, differences between the analytic meth-
ods adopted by intervention studies should be taken 
into consideration in the final interpretation of the 
converging findings. Specifically, in our study which 
is the first rs-fMRI study that includes three active 
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groups and a control group, our findings should be 
replicated by another study following a similar ana-
lytic approach. However, to guarantee that our find-
ings are not spurious due to the adopted analytic plan 
that includes specific network construction steps 
[100], we ran the same analysis in a test–retest rs-
fMRI study with three scans. The consistency of rsFC 
between scans in the NYU test-retest dataset further 
supports our analytic pipeline and the findings in the 
Projecte Moviment trial.

Limitations

In our study, we revealed altered functional connectivity 
patterns in the three groups due to the intervention pro-
tocol. Our findings can be summarized in an increased 
and decreased rsFC pattern which was also supported by 
power analysis (Fig. 2). The findings were also supported 
also by the post hoc power analysis and the Cohen’s d 
effect size. However, it should be underlined that a larger 
number of participants would further advance our find-
ings. Future intervention research should invite a larger 
number of participants followed by age and sex-balanced 
groups that will support intra-group comparative analy-
ses. The adopted analytic pathway included a static func-
tional connectivity analysis. It would be very important 
to analyze the same dataset following a dynamic func-
tional connectivity analysis [50]. It would be interesting 
to also register diet patterns that influence cognitive func-
tions and rsFC [51] and can potentially positively affect 
cardiovascular risk factors and anthropometric and blood 
sample measures. Additionally, it would be interesting to 
register the participants longitudinally at more than two-
time points. Our Projecte Moviment will advance our 
understanding of the intervention protocols by taking the 
advantage of new omics technology that will further shed 
light on biological pathways supporting the cognitive 
benefits as a consequence of the intervention protocol.

Conclusions

In summary, the present study demonstrates the 
potential benefits of lifestyle interventions when 
a combined physical and cognitive intervention 

protocol is adopted. For the AE group, we reported 
an increased rsFC that involved mainly the aDMN, 
pDMN, and also FPN, VAN, and VN and a decreased 
rsFC that involved the pDMN, the hippocampus, 
and the  left and right supplementary motor areas, as 
well as the right thalamus. For the CCT group, we 
found a combination of increased and decreased rsFC 
between brain areas located mainly in the aDMN 
and pDMN. The greatest alterations of rsFC were 
revealed in the COMB group. These findings involved 
a decreased rsFC within the aDMN and within the 
pDMN, an increased rsFC between the aDMN and 
pDMN, and a reduced rsFC between the left and right 
supplementary motor areas and the right thalamus as 
it was found in the AE group.
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