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Abstract  Ovarian reserve is a term used to estimate 
the total number of immature follicles present in the 
ovaries. Between birth and menopause, there is a pro-
gressive decrease in the number of ovarian follicles. 
Ovarian aging is a continuous physiological phenom-
enon, with menopause being the clinical mark of the 
end of ovarian function. Genetics, measured as fam-
ily history for age at the onset of menopause, is the 
main determinant. However, physical activity, diet, 
and lifestyle are important factors that can influence 
the age of menopause. The low estrogen levels after 
natural or premature menopause increased the risk for 
several diseases, resulting in increased mortality risk. 
Besides that, the decreasing ovarian reserve is asso-
ciated to reduced fertility. In women with infertility 

undergoing in  vitro fertilization, reduced markers 
of ovarian reserve, including antral follicular count 
and anti-Mullerian hormone, are the main indicators 
of reduced chances of becoming pregnant. There-
fore, it becomes clear that the ovarian reserve has a 
central role in women’s life, affecting fertility early 
in life and overall health later in life. Based on this, 
the ideal strategy for delaying ovarian aging should 
have the following characteristics: (1) be initiated in 
the presence of good ovarian reserve; (2) maintained 
for a long period; (3) have an action on the dynamics 
of primordial follicles, controlling the rate of activa-
tion and atresia; and (4) safe use in pre-conception, 
pregnancy, and lactation. In this review, we therefore 
discuss some of these strategies and its feasibility for 
preventing a decline in the ovarian reserve.

Keywords  Menopause · Fertility · Aging · 
Females · Ovarian reserve

Introduction

The ovaries are glands of the female reproductive 
system responsible for the development of the gam-
ete (oocyte) and production of female sex hormones, 
which regulate reproductive and non-reproductive 
functions [1]. Anatomically, the ovary can be divided 
into two compartments, medulla (inner layer, com-
posed of loose vascularized connective tissue) and 
cortex (outer layer containing the ovarian follicles) 

M. B. Cavalcante (*) · O. G. M. Sampaio · 
F. E. A. Câmara 
Postgraduate Program in Medical Sciences, University 
of Fortaleza (UNIFOR), Fortaleza, CE 60.811‑905, Brazil
e-mail: marcelocavalcante.med@gmail.com

A. Schneider · B. M. de Ávila · J. Prosczek 
Nutrition College, Federal University of Pelotas (UFPel), 
Pelotas, RS 96010‑610, Brazil

M. M. Masternak 
Burnett School of Biomedical Sciences, College 
of Medicine, University of Central Florida, Orlando FL, 
USA

M. M. Masternak · A. R. Campos 
Department of Head and Neck Surgery, Poznan University 
of Medical Sciences, Poznan, Poland

/ Published online: 13 March 2023

GeroScience (2023) 45:2121–2133

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-023-00768-8&domain=pdf
http://orcid.org/0000-0001-9943-9731


GeroScience (2023) 45:2121–2133

1 3
Vol:. (1234567890)

[1]. The functional unit of the ovary is the follicle, 
which is constituted by an oocyte surrounded, ini-
tially, only by granulosa cells and, later, also by theca 
cells. The ovarian follicle can be classified into dif-
ferent types (primordial, primary, secondary, antral, 
and pre-ovulatory) according to the degree of oocyte 
maturity and its histological structure [1, 2].

Ovarian reserve is a term used to estimate the total 
number of immature follicles present in the ovaries. 
In humans, the maximum number of ovarian follicles 
is reached during a woman’s intrauterine life, contain-
ing about 7 million follicles around the 20th week of 
gestation. Between birth, menarche, and menopause, 
there is a progressive decrease in the number of ovar-
ian follicles, estimated for approximately 1 to 2 mil-
lion, 300–400,000, and 1000 follicles, respectively 
[3]. The primordial follicles remain in a state of qui-
escence and may enter directly into atresia or start the 
maturation process (folliculogenesis), culminating in 
ovulation or follicular atresia during any stage. Dur-
ing a woman’s reproductive life, approximately 400 
ovulations occur [1, 2, 4].

Folliculogenesis is a continuous process, divided 
into two stages, beginning with the activation of pri-
mordial follicles and ending with follicular rupture. 
Inhibitory and stimulatory intraovarian factors trigger 
the first stage (initial recruitment) of folliculogenesis, 
starting about 150  days before ovulation, independ-
ent of follicle-stimulating hormone (FSH) [2]. Acti-
vation of primordial follicles induces modifications 
of granulosa cells around the oocyte, which assume 
a cuboidal shape in a single layer (primary follicle) 
and later in multiple layers (secondary follicle). Then, 
granulosa cells continue proliferating and theca cells 
appear, forming the preantral and antral follicles, at 
which point the second stage begins (cyclic recruit-
ment) of folliculogenesis, dependent on FSH [2].

Theca and granulosa cells are responsible for the 
synthesis and secretion of estrogen, the main ovarian 
hormone. The presence of estrogen receptors in other 
non-reproductive organs (brain, bone, liver, intestine, 
skin, and salivary glands) demonstrates the relevance 
of the ovary in the regulation of different body func-
tions [1, 2, 5]. The duration of menacme, the period 
in which the ovary plays its physiological role in full, 
depends not only on the ovarian reserve, but also on 
the rate of activation of primordial follicles and follic-
ular atresia. Numerous local or systemic mechanisms 
are responsible for ovarian aging, with reproductive 

and non-reproductive repercussions [6, 7]. Basically, 
ovarian aging is characterized by a decline in follicu-
lar quantity and quality, and changes in the synthesis 
of ovarian hormones, resulting in a drop in estrogen 
levels [2].

Progressive ovarian aging promotes the depletion 
of female gonadal function, initiating a period of tran-
sition from the reproductive to the non-reproductive 
phase in a woman’s life, known as the climacteric [2, 
8, 9]. Therefore, a good understanding of folliculo-
genesis and understanding of the ovarian aging pro-
cess are fundamental for anti-aging interventions to 
be proposed.

Lessons from menopause studies

Ovarian aging is a continuous physiological phenom-
enon, with menopause being the clinical mark of the 
end of ovarian function. Usually, menopause occurs 
between the ages of 45 and 55 years [10–12]. Numer-
ous epidemiological studies evaluate conditions that 
can influence the age of menopause. Genetics, meas-
ured as family history for age at the onset of meno-
pause, is the main determinant. Ethnicity, physical 
activity, diet, and habits are other significant factors 
that influence the age of menopause [11].

Current smoking, low socioeconomic status, low 
education, unemployment, early menarche, nul-
liparity, unilateral oophorectomy, vigorous physical 
activity, severe weight loss, vegetarian or high-car-
bohydrate diet, and high consumption of polyunsatu-
rated fats are conditions that accelerate the onset of 
menopause [11, 13]. On the other hand, multiparity, 
first pregnancy at an advanced age, use of oral con-
traceptive pills, Japanese ethnicity, higher body mass 
index, moderate physical activity, and moderate alco-
hol consumption are associated with late menopause 
[11, 13].

Menopause-induced hypoestrogenism has short- 
and long-term consequences for women’s health. Hot 
flashes, night sweats, palpitations, headache, vaginal 
dryness, burning and genital irritation, dyspareunia, 
urinary urgency, dysuria, and recurrent urinary tract 
infection are short-term repercussions, while osteopo-
rosis and cardiovascular and neurological diseases are 
long-term consequences [14]. The North American 
Menopause Society recommends hormone therapy 
as a supportive intervention to improve vasomotor 
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symptoms and relieve genitourinary menopausal syn-
drome, as well as prevent bone loss and fractures, 
especially in women under 60 years of age and less 
than 10 years after menopause onset [8].

Several studies have evaluated ovarian aging mark-
ers with the potential to predict the onset of meno-
pause, such as antral follicle count (AFC) and blood 
levels of inhibins A and B, follicle-stimulating hor-
mone (FSH), estradiol, and anti-Mullerian hormone 
(AMH) [15–20]. AMH is produced by the granu-
losa cells of growing follicles, from primary follicle 
to small antral follicles. AMH is currently the most 
promising marker for predicting age at natural meno-
pause [15, 18].

Pathological ovarian aging can anticipate the 
occurrence of menopause. The term “early meno-
pause” is used to refer to the onset of menopause 
before age 45, while premature ovarian insufficiency 
(POI) is when the last menstrual period occurs before 
age 40 [21]. POI is a gynecological condition that 
affects approximately 1% of women. In about 90% of 
cases, the cause of POI is unknown (idiopathic POI), 
and specific diagnoses are genetic abnormalities 
(such as Turner syndrome, Fragile X syndrome, and 
Autosomal gene mutations), exposure to gonadotoxic 
agents (chemotherapy and radiotherapy), autoimmune 
disorders (such as lymphocytic oophoritis, thyroid 
disease, Addison’s disease, and celiac disease), viral 
infections, oophorectomy, and endometriosis [21–23].

The low estrogen levels detected in the POI have 
consequences for women’s health, potentially more 
serious than those observed in physiological meno-
pause [24]. Malek et  al. observed a 15% increase in 
the risk of all-cause mortality among women with 
early age at menopause [25]. Mortality was also 
higher among women with POI (34.7% vs. 19.3%, 
p < 0.001) in a long-term cohort of Chilean women 
followed for three decades, especially deaths from 
cardiovascular disease (12.0% vs. 5.1%; OR 2.55, 
95% CI 1.21–5.39) [26]. Other studies have con-
firmed that women with POI have an increased risk 
of death from all causes, as well as a higher preva-
lence of cardiovascular disease, autoimmune condi-
tions, osteoporosis, cognitive dysfunction, mood, and 
sexual disorders [24, 27–31].

Currently, there is no reliable intervention to 
reverse ovarian aging in women diagnosed with POI. 
Estrogen hormone therapy, with or without progester-
one, is recommended to improve quality of life and 

reduce comorbidities. However, regular practice of 
moderate physical activity, healthy diet, maintenance 
of healthy habits, and early diagnosis and control of 
acute or chronic diseases are good ovarian antiaging 
strategies.

Lessons from reproductive medicine

Infertility in women is defined as the inability to 
establish pregnancy spontaneously after a period of 
12 months with regular sexual intercourse; the period 
is reduced to 6  months when the woman is over 
35 years old [21]. Disorders such as polycystic ovary 
syndrome, low ovarian reserve, and POI are responsi-
ble for up to 25% of female infertility cases [19, 21]. 
Interestingly, epidemiological studies suggest that 
there is an association between female reproductive 
aspects and life expectancy and risk of chronic dis-
eases [32, 33].

The live birth rates of women undergoing infer-
tility treatment by in  vitro fertilization (IVF) are 
directly related to the ovarian response to controlled 
stimulation. The Bologna and POSEIDON (Patient-
Oriented Strategies Encompassing IndividualizeD 
Oocyte Number) criteria are the two most used ways 
to define poor ovarian response (POR). Both are 
based on the woman’s age, ovarian reserve biomark-
ers, and number of oocytes recovered from previous 
ovarian stimulations [34–36]. According to the Bolo-
gna criteria, a woman with a POR must have at least 
two of the following conditions: advanced maternal 
age (> 40  years), a previous poor response to con-
trolled stimulation (defined as ≤ 3 oocytes retrieved), 
or an abnormal ovarian reserve test (antral follicle 
count [AFC] < 5–7 follicles and/or AMH < 1.1  ng/
mL) [34–36]. POSEIDON criteria divide patients into 
four groups based on a combination of factors: group 
1—patients < 35  years old, presenting with adequate 
values of AFC (≥ 5 follicles) and/or AMH ≥ 1.2  ng/
mL (subgroup 1a: < 4 oocytes retrieved and subgroup 
1b: 4–9 oocytes retrieved, after standard ovarian 
stimulation); group 2—patients ≥ 35  years old, pre-
senting with adequate values of AFC (≥ 5 follicles) 
and/or AMH ≥ 1.2  ng/mL (subgroup 2a: < 4 oocytes 
retrieved and subgroup 2b: 4–9 oocytes retrieved, 
after standard ovarian stimulation); group 3—
patients < 35  years old, presenting with poor values 
of AFC (< 5 follicles) and/or AMH (< 1.2  ng/mL); 

2123



GeroScience (2023) 45:2121–2133

1 3
Vol:. (1234567890)

and group 4—POR patients ≥ 35 years old, presenting 
with poor values of AFC (< 5 follicles) and/or AMH 
(< 1.2 ng/mL) [34–36].

POR accounts for up to 20% of women undergoing 
to IVF [37, 38]. Some factors responsible for POR are 
already well recognized and associated with ovarian 
aging, such as endometriosis, prior ovarian surgery, 
chemotherapy, radiation therapy, smoking, infections, 
and autoimmune disorders [39, 40]. However, little is 
known about the mechanisms responsible for POR in 
women with normal or abnormal ovarian reserve bio-
markers [39].

In order to increase the number and quality of aspi-
rated oocytes and, consequently, increase live birth 
rate, several studies have evaluated different ovarian 
stimulation protocols associated or not with adjuvant 
therapies in cases of POR. Pretreatment using coen-
zyme Q10 (CoQ10), testosterone, dehydroepiandros-
terone (DHEA), and myoinositol, as well as, the use 
of gonadotropins associated with luteinizing hormone 
(LH), growth hormone (GH), clomiphene citrate, and 
letrozole, are some of the strategies suggested for the 
management of patients with POR [41–43]. However, 
to date, there are no adjuvant therapy that shown con-
vincing results for management of POR patients [41]. 
A recent meta-analysis has shown that dehydroepian-
drosterone (DHEA) and CoQ10 are promising adju-
vant therapies for raising the clinical pregnancy rate 
(OR 2.46, 95% CI 1.16 to 5.23 and OR 2.22, 95% CI 
1.08–4.58, respectively), while GH raised the num-
ber of oocytes retrieved (weighted mean difference 
1.72, 95% CI 0.98 to 2.46) [41]. However, the authors 
concluded that high-level randomized controlled trial 
(RCT) studies using uniform standards for POR still 
need to be performed [41].

It is not uncommon for patients to undergo several 
IVF cycles with multiple rounds of ovarian hyper-
stimulation. Thus, since the establishment of IVF as a 
treatment technique for infertile couples, the medium- 
and long-term impact of repeated ovarian hyper-
stimulation on ovarian aging and estrogen-dependent 
diseases has been investigated [44, 45]. The use of 
gonadotropins at supraphysiological doses promotes 
maximum recruitment and maturation of small folli-
cles, but the effects on primordial follicles (unrespon-
sive to physiological levels of FSH) are poorly under-
stood [45, 46].

Most studies have not observed an associa-
tion between the use of gonadotropins for fertility 

treatment with accelerated ovarian aging or anticipa-
tion of menopausal symptoms [47]. However, women 
who had low number of aspirated oocytes in IVF 
cycles are at risk of anticipation of menopause symp-
toms and early menopause [44, 48–50]. Women who 
have multiple IVF attempts also have repeated trans-
vaginal ultrasound-guided needle ovarian aspirations, 
with potential complications (bleeding, infection, and 
fibrosis) in the short and long term, which can con-
tribute to accelerated ovarian aging.

Currently, female fertility preservation is possible 
through the vitrification of oocytes, embryos, or ovar-
ian tissue [51, 52]. Among these three methods, vitri-
fication of ovarian tissue, initially proposed for onco-
logic patients prior to chemotherapy or radiotherapy, 
and subsequent transplantation can restore not only 
the female reproductive potential, but also the ovarian 
hormone function [51]. Ovarian tissue cryopreserva-
tion and transplantation (OTCT) was performed for 
the first time in 1999 in a 29-year-old patient, with 
surgical menopause at age 28, who did not obtain 
improvement of menopause symptoms induced using 
conventional hormone therapy [53].

Recently, the American Society for Reproductive 
Medicine (ASRM) recognized that OTCT may be 
indicated for fertility preservation in situations where 
ovarian hyperstimulation for oocyte retrieval is con-
traindicated [54]. A systematic review of 309 cases of 
OTCT revealed that the intention of the vast majority 
of patients was the restoration of reproductive func-
tion, but on nine patients, the procedure was used 
with non-reproductive purpose, to restore ovarian 
endocrine function [55]. This same systematic review 
highlighted that OTCT was able to restore endocrine 
function in up to 85% of cases [55].

Despite the great progress in ovarian tissue cryo-
preservation studies, OTCT still has limitations. It is 
necessary to reduce the percentage of loss of primor-
dial follicles during the freezing–thawing process, 
especially during revascularization after auto trans-
plantation, increasing graft survival [56]. In addition 
to the success variables related to technical condi-
tions, the woman’s age at the time of freezing and 
the amount of cryopreserved ovarian tissue are other 
determining factors for maintaining the endocrine and 
reproductive function of the thawed and transplanted 
ovarian tissue [57]. Oktay et al. found that with about 
a third of an ovary cryopreserved at a mean age of 
29.3 (9–44) years, the mean longevity of transplanted 
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ovarian tissue was 26.9 (4–144) months [55]. Surgi-
cal removal of ovarian tissue can also interfere with 
the age of onset of menopause. Studies are not clear 
about the real impact of a unilateral oophorectomy 
on the age of menopause, which may accelerate the 
onset of menopause from 1 to 7 years before control 
groups, not submitted to oophorectomy [56]. Thus, 
in light of early studies in reproductive medicine, 
OTCT is a promising intervention to delay the onset 
of menopause. Studies are also needed to identify the 
best protocols for freezing, thawing, and transplanting 
ovarian tissue, the ideal age for removing the ovar-
ian cortex, and the number and interval of transplants 
[57–59].

Lessons from animal studies

Ovarian aging, evaluated from a comparative per-
spective between rodents and humans, also results 
from follicle loss starting in the prenatal period and 
an exponential depletion of primordial follicles asso-
ciated with loss of fertility in middle age [60]. Fur-
thermore, both species share progressively increas-
ing irregularities in ovulatory cycles and increased 
pregnancy loss as oocyte depletion becomes immi-
nent [60]. In C57BL/6 mice, the ovarian reserve is 
reduced in half around 10  months of age compared 
to 2-month-old mice [60], and at 18  months is 
reduced approximately 10 times [61]. Our group also 
observed a 75% reduction in primordial follicle den-
sity in C57BL/6 mice from 3 to 12 months of age [62] 
and severely compromised fertility around 14 months 
of age. Around this age, mice start to present irregu-
larities in the estrous cycle and may enter a persistent 
anovulatory state, known as estropause [63]. This 
reinforces the idea that the ovarian reserve in mice, 
as in humans, is depleted with age and this process is 
completed in first half of the lifespan [60, 61].

The loss of ovarian function and the resulting 
decline in circulating estrogen levels are associated to 
various metabolic changes during induced menopause 
in rodents, similar to observed in women during natu-
ral menopause, such as increased adiposity, changes 
in lipid metabolism, hypertension, and insulin resist-
ance [64, 65]. Although mice do not naturally enter 
in menopause, it can be induced chemically or by 
ovariectomy. Chemical menopause induction can 
be achieved by treatment with 4-vinylcyclohexene 

diepoxide (VCD). Treatment with VCD causes atresia 
of primordial and primary follicles leading to exhaus-
tion of the ovarian reserve but retention of ovar-
ian tissue [66]. One study showed that as young as 
6-month-old rats induced to menopause by ovariec-
tomy have a slight increase in systolic blood pressure 
(SBP), body weight, insulin resistance, and plasma 
cholesterol compared to intact females of the same 
age. This reinforces the notion that metabolic changes 
are driven by ovarian function independent of age 
[64]. These metabolic changes observed in ovariec-
tomized rodents are a consequence of the hypoestro-
genic state, similar to observed in women [65].

As estradiol reduction is one of the main effects 
of menopause, several studies have evaluated the 
benefits of exogenous estradiol replacement. Studies 
in murine models point to some beneficial effects of 
estradiol replacement therapy. These effects include 
improvement of glucose homeostasis and insulin 
sensitivity [67], improvement of the innate immune 
response [68], and reduced arterial pressure [69]. 
Interestingly, the transplantation of young ovaries 
into older females can increase lifespan [70], sug-
gesting a protective effect of the ovarian tissue itself. 
Transplantation of young ovarian tissue to post-
reproductive mice was able to significantly restore 
the cardioprotective benefits, similarly to what is seen 
at reproductive age [71]. These protective effects of 
ovarian tissue transplantation were also observed 
even when the young ovaries were follicle depleted 
with VCD prior to transplantation [72], suggesting 
that other factors beyond estrogen levels may play a 
role. Therefore, novel therapies to replace estrogen 
could be developed, improving quality of life without 
side effects of hormone replacement therapies.

Faced with the hormonal and physiological 
changes induced by menopause, some alternatives 
also aim at delaying the onset of menopause in pre-
clinical models, such as ovarian transplantation of 
young mice into old mice [70, 72], dietary strategies 
[61, 73], and use of drugs, such as rapamycin [74, 
75] and metformin [76, 77] have been developed. 
Dietary strategies have been proved widely effec-
tive in preserving the decline of follicle reserve in 
mice with aging. Caloric restriction (CR), ranging 
from 10 to 30% reduction of calorie intake [78], is 
an intervention that has been proven efficient in pro-
moting overall longevity [79] as well as extended 
fertility in females, due to its impact on the control 
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of oxidative stress, insulin resistance, and reduction 
of the inflammatory state [80, 81]. CR can extend 
fertility by preserving the ovarian reserve [78, 82], 
reducing mTOR and FOXO3 activation [77, 83, 84], 
the main regulators of primordial follicle activa-
tion [83]. Mice under 30% CR can still reproduce 
successfully around 15–16  months of age, when 
ad libitum-fed mice could not [61]. In addition, CR 
also regulated DNA repair mechanisms, preventing 
the accumulation of DNA damage [85, 86], which 
could impact oocyte quality. However, some stud-
ies have associated the positive effects of CR to the 
restriction of protein [87]. Protein restriction also 
results in lower activity of the mTOR pathway in 
the ovary, decreasing the activation of primordial 
follicles and preserving the ovarian reserve [88]. 
The reduction in protein supply also results in lower 
adiposity and greater insulin sensitivity in humans 
and rodents, similar to that observed with 30% 
CR [87, 89]. On the other hand, hypercaloric diets 
(high-fat and/or high-carbohydrate diets) cause 
harmful metabolic adaptions, decreasing the ovar-
ian reserve. Mice exposed to a high-fat diet have 
decreased ovarian reserve and increased insulin 
resistance and inflammation in the ovarian tissues 
[90, 91]. Interestingly, this unhealthy diet decreased 
ovarian reserve even in the absence of body weight 
gain [90].

Interestingly, the nematode C. elegans and the fly 
D. melanogaster can also serve as model for repro-
ductive aging. C. elegans also have decreased repro-
ductive potential as they age in both self-fertile and 
mated reproduction [92]. As reviewed elsewhere, 
CR, metformin, and rapamycin treatment can also 
extend reproductive lifespan in C. elegans [92], 
resembling the effects observed in mice. Similarly 
to the observed in humans and mice, an hyperactive 
germline in C. elegans is linked to reduced lifespan 
[93], suggesting a central role for reproductive fit-
ness to regulate overall lifespan. The female fly 
D. melanogaster also has decreased reproductive 
potential with age [94]. In the fly, lifetime egg pro-
duction was maximized in a diet containing a low 
protein to carbohydrate content [95]. The overall 
dietary restriction and rapamycin treatment both 
reduce daily egg laying, however increasing overall 
lifespan [96], further confirm a link between repro-
duction and lifespan in this species.

Repurposing of FDA‑approved drugs to target 
aging

Based on ovarian physiology, animal studies, lessons 
from menopause and reproductive medicine stud-
ies, and the ideal strategy for delaying ovarian aging 
should have the following characteristics: (1) be ini-
tiated in the presence of good ovarian reserve; (2) 
maintained for a long period; (3) have an action on 
the dynamics of primordial follicles, controlling the 
rate of activation and atresia; and (4) safe use in pre-
conception, pregnancy, and lactation.

Recently, Kulkarni et  al. suggested the off-label 
use of FDA-approved drugs to target aging [97]. 
Based on animal and human studies that evaluated the 
effect of drugs on hallmarks of aging, healthspan, and 
lifespan, the authors scored (from 0 to 12) nine drugs 
according to potential anti-aging effects. Sodium-glu-
cose linked transporter 2 (SGLT-2) inhibitors was the 
drug with the highest antiaging potential (score 12), 
followed by metformin (score 11), acarbose (score 9), 
rapamycin (score 9), methylene blue (score 9), angio-
tensin-converting enzyme inhibitors and angiotensin 
receptor blockers (ACEi/ARB) (score 8), dasatinib 
(+ quercetin) (score 6), aspirin (score 6), and N-acetyl 
cyeteine (NAC) (score 5) [97].

These nine potential anti-aging drugs belong to 
different classes. Three of these nine drugs are oral 
hypoglycemic agents, the SGLT-2 inhibitors, met-
formin, and acarbose [97]. The impact of these gero-
therapeutic agents on ovarian physiology is poorly 
understood. The benefit of using these hypoglyce-
mic agents for female fertility is essentially due to 
adequate glycemic control and weight loss, with 
improvement in the ovulatory function [98]. How-
ever, the medium- and long-term effects on ovarian 
aging are not well known.

The effects of metformin on female reproduc-
tive outcomes are extensively studied, especially in 
patients with polycystic ovary syndrome. In addition 
to improving spontaneous pregnancy rates, increase 
implantation rates in IVF cycles, and decrease mis-
carriage rates among PCOS patients, metformin reg-
ulates ovarian mechanisms that may contribute to a 
delay in ovarian aging [98]. Studies in animal models 
have revealed that metformin reduces follicular atre-
sia, oxidative stress, and autophagy in granulosa cells 
via the PI3K/AKT/mTOR pathway [99, 100]. Qin 
et al. suggested that metformin may delay the ovarian 
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aging process, probably by inducing SIRT1 expres-
sion and reducing oxidative damage [76]. Recently, 
Landry et  al. observed that metformin was able to 
prevent age-associated ovarian fibrosis by modulat-
ing the proportion of fibroblasts, myofibroblasts, and 
immune cells [101]. At a dosage of 100 mg/kg, met-
formin was able to prevent the decline in the ovar-
ian reserve with age in older mice [76]. In addition, 
metformin has chemoprotective effects in the ovaries 
of young mice exposed to cyclophosphamide [102]. 
Therefore, metformin due improvement of insulin 
sensitivity has similar effects to a 30% CR diet, and 
can be an alternative to dietary interventions.

Rapamycin is a substance originally produced by 
the bacterium Streptomyces hygroscopicus. In the 
past, rapamycin was used as an antifungal drug, later 
as an immunosuppressive agent [103]. Rapamycin 
acts in tissues by inhibiting to mammalian target of 
rapamycin (mTOR), a member of the phosphati-
dylinositol 3-kinase family of protein kinases. In this 
sense, mTOR is a serine/threonine protein kinase that 
functions as a master regulator of cell growth and 
metabolism in response to nutritional and hormo-
nal stimuli [104], and is suggested as a CR mimetic. 
The mTOR signaling is involved in follicular dynam-
ics, and its activation in granulosa cells promotes 
follicular development [105], and its inhibition can 
prolong ovarian lifespan [103]. Animal studies have 
shown that treatment of female mice with rapamy-
cin prevented activation of primordial follicles when 
compared to untreated controls [82, 106, 107]. Our 
previous study suggested that treatment with rapa-
mycin (4 mg/kg) prevents the decline in the ovarian 
reserve of mice similarly to 30% CR [82]. Addition-
ally, rapamycin administered to young animals (5 mg/
kg) exposed to chemotherapy also decreased the acti-
vation of the mTOR pathway, preserving the ovarian 
reserve [108].

Among many adaptations with aging, there is 
an accumulation of senescent cells with age in sev-
eral species [6, 109]. Senescent cells have decreased 
capacity for proliferation [110–112], however remain 
metabolically active, secreting pro-inflammatory fac-
tors known as senescence-associated secretory phe-
notype (SASP) [113]. Our group demonstrated an 
accumulation of senescent cells with aging also in the 
ovary of mice [62]. Furthermore, we demonstrated 
that obese mice accumulate more senescent cells in 
the ovary than normal littermates [114], suggesting 

that obesity accelerates the ovarian aging phenotype. 
Interestingly, senolytic drugs, such as dasatinib and 
quercetin (D + Q), were able to reduce cellular senes-
cence in the ovary of obese mice, without affecting 
the ovarian reserve. [114]. In young ovaries exposed 
to chemotherapy, an increase in cellular senescence 
was also observed, which was prevented by treatment 
with D + Q [115]. Furthermore, metformin along with 
D + Q was able to reduce ovarian senescence even 
more, maintain regular estrous cycle, and prevent 
excessive primordial follicle activation [116].

NAC is a stable form of the essential amino acid 
L-cysteine. NAC is converted to L-cysteine after 
ingestion and subsequently converted to glutathione 
[117]. NAC has important antioxidant and anti-
inflammatory properties [117]. Animal studies have 
observed that NAC is able to reduce ovarian damage 
by upregulating local antioxidant capacity and reduc-
ing ovarian secretion of pro-inflammatory cytokines 
[118, 119]. In humans, the antioxidant action of NAC 
contributed to reduce cell damage in ovarian tissue 
cryopreservation protocols [120, 121]. NAC also 
has an antifibrotic action, already described in tis-
sues such as muscle, aorta, and kidney [122–124]. 
Therefore, although there are no studies evaluating 
the long-term effect of NAC on ovarian physiology, 
these properties may contribute to delaying ovarian 
aging. There are no animal or human studies evaluat-
ing a possible impact of SGLT-2 inhibitors, acarbose, 
methylene blue, ACEi/ARB, and aspirin on ovarian 
aging.

We found no clear evidence in the literature that 
these intervention strategies can have a negative 
impact on overall fertility in animal models and 
humans. However, it should be noted that interven-
tions that prevent ovarian aging result in retention 
of follicles in the primordial stage, which will have 
a negative effect on fertility during the period of 
the intervention. For example, in mice under 30% 
CR, follicles progress slower to secondary and ter-
tiary stages, and, therefore, we observe a preserved 
pool of primordial follicles [82], which is desirable 
in the long term. However, as these follicles are not 
progressing to the secondary and tertiary stages, 
we observe a reduction in ovulation rate, reflecting 
in decreased fertility during the course of CR [78]. 
However, once mice are put back in ad libitum, feed-
ing pregnancy rate increases [78] and is maintained 
above control group in aged mice due to preserved 
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ovarian reserve [61]. Therefore, in a proposed dietary/
pharmacological intervention protocol to preserve the 
ovarian reserve, one should consider removing the 
treatment once pregnancy is desired. However, more 
studies are necessary to understand how long these 
interventions should be applied and how long before 
pregnancy is desired they should be interrupted, in 
order to maximize preservation of the ovarian reserve 
without compromising fertility.

New possibilities for ovarian anti‑aging 
interventions

Recently, numerous studies, including those by John-
son et  al. and White et  al., have described the pres-
ence of ovarian germline stem cells (GSCs) in ovaries 
of non-mammals, mammals, and humans [125–128]. 
These findings began to question the dogma, estab-
lished by Zuckerman in 1951, of the inability of new 
ovarian germ cells to arise [129].

Currently, studies seek to define protocols for ovar-
ian rejuvenation or ovarian regeneration, through 
interventions that stimulate the emergence of new 
follicular units from GSCs. Injection of platelet-rich 

plasma (PRP) and stem cells into the ovaries are the 
two most studied treatments at present, especially in 
patients suffering from ovarian insufficiency and low 
ovarian reserve or undergoing IVF treatments with a 
poor prognosis [130–132].

In 2018, Sills et al. were the first to describe that 
intraovarian injection of autologous PRP significantly 
improved the response of four patients with dimin-
ished ovarian reserve as determined by at least one 
prior IVF cycle canceled for poor follicular recruit-
ment response. Decreased FSH and increased AMH 
levels were also observed after the intervention. All 
four patients had at least 1 day five blastocyst avail-
able for cryopreservation [130]. Currently, numer-
ous studies are being conducted to validate the use of 
PRP as an alternative treatment for female infertility 
associated with low ovarian reserve [133, 134].

Intraovarian injection of mesenchymal stem cells 
(MSCs) is another promising alternative to stimulate 
ovarian rejuvenation. MSCs can originate from sev-
eral sources, such as amniotic fluid, endometrium, 
germ cells, skin, umbilical cord, bone marrow, and 
adipose tissue [131]. Stimulation of angiogenesis 
and cell proliferation, a decrease of apoptosis, mod-
ulation of immune cells function, and regulation of 

Fig. 1   Ovarian aging results from activation of primordial 
follicles. This decline in the ovarian reserve leads to reduce 
fertility and menopause later in the female life. Despite some 

lifestyle factors are a risk for decreased ovarian reserve, some 
strategies can prevent this decline
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gene expression in the ovary are possible mecha-
nisms involved in the process of ovarian rejuvenation 
that are observed after MSC transplantation [131]. 
However, clinical studies are needed to evaluate the 
impact of treating women with low ovarian reserve 
undergoing IVF cycles.

Conclusion

Based on the evidence presented in this review, it 
becomes clear that the ovarian reserve has a central 
role in the female life. The progressive decline in the 
ovarian reserve with age is natural; however, it can be 
accelerated by several factors, like diet and lifestyle. 
Once the ovarian reserve starts to become severely 
compromised, females experience a decline in natural 
fertility, as well as in the response to assisted repro-
ductive technologies. Later in life, once this ovarian 
reserve is depleted, females experience changes in 
the body physiology, resulting in increased chronic 
disease and mortality risk. Therefore, the use of strat-
egies to prevent the decline in the ovarian reserve 
should be investigated to improve fertility, health-
span, and lifespan. There are several drugs that can be 
repurposed for this aim; however, we need to better 
understand the best moment that these therapies must 
be initiated to promote the desired effects (Fig. 1).
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