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Abstract  Progress in ovarian cancer treatment lags 
behind other tumor types. With diagnosis usually at 
an advanced stage, there is a high demand for reli-
able prognostic biomarkers capable of the selection 
of effective chemo- and targeted therapies. Our goal 
was to establish a large-scale transcriptomic database 
and use it to uncover and rank survival-associated 
genes. Ovarian cancer cohorts with transcriptome-
level gene expression data and clinical follow-up were 
identified from public repositories. All samples were 
normalized and entered into an integrated database. 
Cox univariate survival analysis was performed for 
all genes and was followed by multivariate analysis 
for selected genes involving clinical and pathologi-
cal variables. False discovery rate was computed for 
multiple hypothesis testing and a 1% cutoff was used 
to determine statistical significance. The complete 
integrated database comprises 1816 samples from 17 
datasets. Altogether, 2468 genes were correlated to 
progression-free survival (PFS), and 704 genes were 
correlated with overall survival (OS). The most sig-
nificant genes were WBP1L, ASAP3, CNNM2, and 
NCAPH2 for progression-free survival and CSE1L, 

NUAK1, ALPK2, and SHKBP1 for overall survival. 
Genes significant for PFS were also preferentially sig-
nificant for predicting OS as well. All data including 
HR and p values as well as the used cutoff values for 
all genes for both PFS and OS are provided to enable 
the ranking of future biomarker candidates across 
all genes. Our results help to prioritize genes and to 
neglect those which are most likely to fail in studies 
aiming to establish new clinically useful biomarkers 
and therapeutic targets in serous ovarian cancer.
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Introduction

With a 64.4% mortality rate, epithelial ovarian 
cancer remains the most lethal malignancy of the 
female genital system [1]. Surgery represents the 
most effective treatment, but without an established 
screening test, the diagnosis is frequently in advanced 
stages where surgical removal is not possible 
anymore. Ovarian cancer has a significant genetic 
component, and population-based screenings show 
that 14.5% of all patients have at least one pathogenic 
variant with BRCA1, BRCA2, CHEK2, BRIP1, and 
MSH2 being the most prevalent ones [2]. The major 
histological subtypes of epithelial ovarian cancer 
include the serous, endometrioid, clear cell, and 
mucinous subtypes [3]. Of these, the serous subtype, 
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which can be broken down into high-grade serous 
tumors and low-grade serous tumors, accounts for 
over four quarters of all cases [4].

Chemotherapy is the only treatment option in a 
high proportion of patients with advanced disease. 
The most commonly used systemic therapy agents 
comprise carboplatin and paclitaxel [5]. Other 
commonly used chemotherapy drugs include 
cisplatin, docetaxel, and liposomal doxorubicin [6]. 
About 15% of ovarian cancer patients have a germline 
mutation in the BRCA1 or BRCA2 genes, and in 
these cases, chemotherapy can be supplemented with 
the administration of PARP inhibitors, which limit the 
regeneration of the cells as well as the further growth 
and proliferation of the tumor cells [7].

In oncology, gene expression–based, mutation-
based, and protein abundance–based biomarkers can 
be employed for screening and treatment selection. 
In ovarian cancer, CA125 levels were previously 
determined for screening. However, CA125 is 
not recommended anymore, as it was unable to 
reach sufficiently strong sensitivity and specificity 
necessary for a reliable clinical application in 
population-wide screenings [6]. Following the 
removal of the primary source of the tumor, the 
median progression-free survival in ovarian cancer 
is 18  months, and rising CA125 levels can be used 
as a biomarker for the early detection of relapse [3]. 
Despite improvements in combination chemotherapy, 
systemic resistance and consequent relapse are 
major factors limiting the expected survival [8]. 
To date, there is no established biomarker capable 
to predict response to systemic chemotherapy. In 
this field, numerous mRNA-, protein-, and DNA-
based biomarker candidates have been proposed to 
improve patient selection for specific treatments, but 
none of them was approved for clinical application. 
A few representative examples include CHI3L1 
[9] for paclitaxel resistance and CSF1R [10], TRO 
[11], and OXCT1 [12] for cisplatin resistance. A 
comprehensive review of predictive biomarker 
candidates linked to chemotherapy resistance was 
published previously [8].

Another group of biomarkers comprise prognostic 
biomarkers, which are able to identify the likelihood 
of a future clinical event like recurrence or death 
from the disease or after a specific medical treatment. 
Prognostic biomarkers can be employed to select 
more aggressive or combination therapies. Almost 

two hundred prognostic biomarker candidates for 
ovarian cancer have been reviewed recently [13]. 
Nevertheless, new candidates were also published 
last year including single genes [14, 15] and gene 
signatures [16].

In this study, our goal was to uncover and rank 
gene expression–based biomarkers correlated to 
prognosis in serous ovarian cancer. In particular, we 
had the following three objectives: first, we aimed 
to establish an integrated large-scale transcriptomic 
database of ovarian cancer cases with pathological 
and follow-up data which can be utilized for 
biomarker discovery. Secondly, we utilized this 
cohort to uncover genes with the highest correlation 
to survival in serous ovarian cancer. Third, we 
aimed to assess the capability of progression-free 
survival–associated biomarkers to predict overall 
survival. Overall, our results help to prioritize genes 
in studies aiming to uncover new clinically useful 
biomarkers and therapeutic targets.

Methods

Database setup

We have searched for ovarian cancer cohorts in NCBI 
Gene Expression Omnibus (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) and in the Genomic Data Commons 
Data Portal (https://​portal.​gdc.​cancer.​gov/). Only 
samples with available transcriptome-level data with 
a minimum of ten patients were considered. To avoid 
differences due to different sensitivity, specificity, and 
dynamic range in detecting gene expression levels for 
specific genes by different technologies, we narrowed 
the search only to tumor samples examined using 
the in  situ oligonucleotide array platforms GPL96 
(Affymetrix Human Genome U133A Array), GPL571 
(Affymetrix Human Genome U133A 2.0 Array), and 
GPL570 (Affymetrix Human Genome U133 Plus 2.0 
Array). The advantage of these arrays is that they use 
identical probe sequences to measure the expression 
of individual genes.

Data processing

The oligonucleotide gene array files were MAS5 
normalized. Then, a second scaling normalization 
was executed to set the mean expression in each 
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array to 1000. Only the probes present in the GPL96 
platform were used in the scaling normalization 
to prevent platform-specific differences due to the 
higher probe number in the GPL570 arrays. Quality 
control was executed by checking the background 
intensity, the noise, the percentage of present calls, 
the presence of bioBCD spikes, and the GAPDH/
ACTB 3 to 5 ratio. JetSet was used to select the most 
reliable probe set for each gene [17]. Finally, cellular 
content for immune infiltration was determined using 
xCell [18].

Clinical data were extracted from the supplemental 
material of the original publications or from the 
series matrix files in GEO. For each sample, overall 
survival (OS) time and event, progression-free 
survival (PFS) time and event, histological subtype, 
stage, grade, the success of debulking, TP53 
mutation status, and treatment data were recorded 
whenever available. Debulking surgery, sometimes 
called ovarian cytoreduction surgery, is performed 
after the elimination of the ovaries and includes 
the removal of cancerous tumors from the pelvis. 
Generally, debulking surgery cannot lead to complete 
elimination of all tumor tissue, and the remaining 
cells can form a residual disease. For this reason, 
progression-free survival is published usually in 
ovarian cancer, which refers to time from treatment 
(surgery) to further disease progression in the 
patients.

Statistical analysis

Cox proportional hazards regression was used to 
compute differential survival. First, a univariate 
analysis was performed for each gene separately. To 
avoid missing correlations due to the use of a specific 
cutoff, all available cutoff values between the lower 
and upper quartiles of expression were used for each 
gene, and false discovery rate (FDR) using the Ben-
jamini–Hochberg method was computed to correct 
for multiple hypothesis testing [19]. The cutoff value 
with the highest significance (lowest FDR) was deter-
mined — in case of multiple cutoff values with iden-
tical significance, the cutoff with the highest hazard 
(HR) rate was selected for the final analysis. When 
determining the top genes with the most reliable cor-
relation to survival, only genes with a cutoff value 
over 200 were considered — this is twice the back-
ground intensity of about 100. In addition, preference 

was given to genes linked to worse prognosis with 
higher expression, as these genes represent optimal 
future therapeutic targets. For this selected set of top 
genes, multivariate Cox regression was computed to 
evaluate the effect on survival of clinical and patho-
logical variables and gene expression. Kaplan–Meier 
plots were drawn to visualize survival differences 
using the cutoff values determined in the univariate 
analysis.

Analysis platform extension

Our previously established Kaplan–Meier plotter 
(https://​www.​kmplot.​com) was extended to include 
the complete integrated ovarian cancer database. 
The platform can be used to validate the findings 
of the present study in real time as well as for the 
future corroboration of new gene expression–based 
biomarker candidates and gene signatures in the 
present and additional sub-cohorts of patients not 
investigated in the current study.

Gene ontology analysis

To uncover higher-level functions related to altered 
progression-free survival, gene ontology analysis 
was performed using the enrichGO function in the 
TNM plotter (http://​www.​tnmpl​ot.​com) [20]. Two 
separate analyses were performed. The first analysis 
used all significant genes with an FDR below 0.01, 
where higher expression correlates to worse survival, 
and a second one for genes, where higher expression 
correlates to improved survival. Both analyses were 
performed to uncover significant biological processes.

Results

Integrated database

The complete database includes all together 1816 
samples from 17 independent datasets. The largest 
cohorts are from the TCGA and GSE9891 studies, 
which provide almost half of all the patients. Nota-
bly, none of the clinical parameters was available in 
each dataset. About 93% of all samples belong to the 
serous subtype, and most of the subsequent analyses 
were restricted to this cohort. Most of the patients 
were diagnosed with stage 3 and grade 3 diseases. 

https://www.kmplot.com
http://www.tnmplot.com
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Across all patients with available data, debulking was 
successful in 59.9% of the patients. The average fol-
low-up was 24.9 months for progression-free survival 
and 39.1  months for overall survival. The detailed 
clinical and pathological characteristics for each data-
set are summarized in Table 1 and available treatment 
agents in Supplemental Table 1, and the most impor-
tant features are depicted in Fig. 1.

Univariate analysis across all genes

First, univariate analysis was performed for all genes 
in all serous samples. When looking across all avail-
able genes related to progression-free survival in all 
patients using GPL96 probes (this computation is 
based on data from 1104 serous patients including 
both GPL96 and GPL570 samples with available 
PFS data), altogether, 1231 genes were significant. 
C10orf26 (also known as WBP1L, p = 1.4e − 12, 
HR = 1.7) and ASAP3 (p = 2.5e − 11, HR = 1.68) 
reached the highest significance (see Fig.  2 A and 
B for WBP1L and ASAP3, respectively). There 
were 483 patients with PFS data measured with the 
GPL570 platform only, and 1237 genes reached sta-
tistical significance. In this cohort, the two most 
significant genes were CNNM2 (p = 2.8e − 09, 
HR = 1.94, Fig.  2C) and NCAPH2 (p = 2.2e − 09, 
HR = 1.94, Fig. 2D).

When looking for markers linked with overall sur-
vival, the combined GPL96 + GPL570 cohort com-
prises 1207 serous patients with survival data. In this 
analysis, out of 340 significant genes, the most sig-
nificant ones were CSE1L (p = 2.5e − 07, HR = 1.49, 
Fig.  3A) and NUAK1 (p = 3.8e − 09, HR = 1.58, 
Fig.  3B). The GPL570 cohort embraces 523 tumor 
samples with OS data. In this group, 364 genes 
reached an FDR below 1%, and the two most signifi-
cant genes were ALPK2 (p = 2.3e − 08, HR = 1.89, 
Fig.  3C) and SHKBP1 (p = 1.3e − 06, HR = 1.77, 
Fig. 3D).

For PFS, the HR and p values as well as the used 
cutoff values for all genes in both platforms are listed 
in Supplemental Table 2. For OS, the analysis results 
for all genes measured in all platforms are provided 
in Supplemental Table  3. These tables enable the 
ranking of future biomarker candidates across all 
genes in serous ovarian cancer.

Multivariate analysis

The top four genes with the highest prognostic power 
for progression-free survival were further analyzed in 
a multivariate analysis to assess their independence 
from established pathological parameters. When 
compared with stage, grade, and debulking success, 
all four genes including WBP1L (p = 2.2e − 06), 
ASAP3 (4.9e − 06), CNNM2 (6.8e − 04), and 
NCAPH2 (p = 8.3e − 04) retained high significance. 
At the same time, stage, grade, and debulking success 
were also significant suggesting that the different 
genes and clinicopathological features capture 
independent, prognostically relevant features of the 
tumor.

Tumor‑infiltrating lymphocytes

Cellular infiltration was determined using the gene 
expression signature across all genes in xCell for 
B-cells, CD4 + T-cells, CD4 + memory T-cells, 
CD8 + T-cells, CD8 + naive T-cells, dendritic cells, 
eosinophils, macrophages, monocytes, NK cells, 
neutrophils, and regulatory T-cells. Of these, higher 
presence of B-cells (p = 1.6e − 05) and monocytes 
(p = 1.2e − 06) was linked to shorter PFS, while higher 
presence of dendritic cells was linked to longer PFS 
(p = 1.7e − 06). However, when running multivariate 
analysis with WBP1L, ASAP3, CNNM2, and 
NCAPH2, only dendritic cells retained significance 
while each of the four genes was significant.

Progression‑free survival vs overall survival

To compare genes related to progression-free survival 
to those linked to overall survival, we performed a 
simplified analysis: the correlation was restricted 
to include all samples and all genes measured with 
the GPL96 platform and reaching a significant 
correlation with survival with a p-value below 0.01. 
In this setting, 6633 genes were not significant, 1824 
genes were significant for PFS only, and 814 genes 
were significant for OS only. The overlap between 
the genes significant with both OS and PFS includes 
819 genes. The number of genes significant is 
approximately twice the number of genes expected 
based on the observed proportions and reaches a 
p < 1e − 05 in a chi-square statistic.
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Gene ontology analysis results

The list of genes related to PFS with an FDR below 
1% with a cutoff value over 200 and higher expression 

was selected for gene ontology analysis. The complete 
gene list including the combined GPL96 and GPL570 
gene sets consists of 792 genes. The most signifi-
cant biological processes were extracellular matrix 

Fig. 1   Clinical and pathological characteristics of all samples 
included in the entire database including a list of all datasets 
(A), distribution of the three histological subtypes (B), grade 

(C), stage (D), and a Kaplan–Meier plot showing both over-
all survival (OS) and progression-free survival (PFS) for all 
patients (E)
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organization (p = 3.2e − 08) and cellular response 
to TGF beta stimulus (p = 6.7e − 04). The complete 
list of all affected biological processes is provided 
in Supplemental Table  4. The downregulated gene 
list in this cohort includes 180 genes, and the most 
significant biological processes related to these fea-
tures include translational initiation (p = 1.8e − 06) 
and nuclear-transcribed mRNA catabolic process 
(p = 1.9e − 05). The entire list of significant biological 
processes correlated to the downregulated list is avail-
able in Supplemental Table 5.

Discussion

As current therapies for ovarian cancer are far 
from optimal, there is an imperative need to iden-
tify new therapeutic targets. Here, we have set up 
a framework for the transcriptome-based discov-
ery of genes significantly related to ovarian cancer 

prognosis. The established ranking can help to com-
pare targets of systemic therapies available in ovar-
ian cancer, including chemotherapy and established 
targeted therapy options [21], as well as the targets 
of new agents currently in clinical development 
[22]. Notably, our approach can also be applied to 
genes uncovered in preclinical models. For exam-
ple, non-mutated genes highly expressed in ovarian 
cancer were tested in cell lines via RNAi to identify 
such new targets [23].

A recent development is the broadening use of 
immunotherapy in the systemic therapy of various 
solid tumors. However, ovarian cancer lags behind 
as minimal benefit with only few complete responses 
could be observed in trials investigating ovarian can-
cer patients with avelumab [24] and pembrolizumab 
[25] therapies. Previously, fourteen immune genes 
were suggested as potential prognostic biomarkers 
in ovarian cancer [26]. Our analysis also includes the 
fourteen genes, of which MAL, SCRN1, MIF, and 

Fig. 2   Most robust genes 
associated with PFS includ-
ing C10orf26 (A) and 
ASAP3 (B) were measured 
by both GP96 and GPL570 
arrays, and CNNM2 (C) 
and NCAPH2 (D) measured 
by GPL570 arrays only



1896	 GeroScience (2023) 45:1889–1898

1 3
Vol:. (1234567890)

KIFAP3 were significant in our combined cohort. 
Thus, here, we provide independent validation for the 
prognostic biomarker potential of these genes.

Instead of OS, PFS is frequently used as a sur-
rogate endpoint in basic studies and in clinical tri-
als for ovarian cancer [27]. However, this approach 
is frequently debated [28], and in our case, a fun-
damental question arises as of what proportion 
of genes related to PFS is also linked to OS? To 
respond to this question, we determined the propor-
tion of genes linked to PFS and OS simultaneously. 
In this analysis, the measured number of genes 
linked to both survival settings was almost twice 
the expected proportion and delivered high signifi-
cance. In other words, these results prove that genes 
significant for PFS are preferentially significant for 
OS as well.

Our results have uncovered the genes most sig-
nificantly correlated to progression-free survival. 
Interestingly, none of the four top genes WBP1L, 

ASAP3, CNNM2, and NCAPH2 was correlated with 
ovarian cancer pathogenesis previously. WBP1L 
(WW domain binding protein 1 Like) is a regulator 
of CXCR4 signaling and hematopoiesis [29]. ASAP3 
(ArfGAP With SH3 domain, ankyrin repeat and PH 
domain 3) promotes cell differentiation and migration 
and has been previously linked to cancer cell inva-
sion [30]. CNNM2 (cyclin and CBS domain divalent 
metal cation transport mediator 2) mediates the epi-
thelial transport and renal reabsorption of Mg2 + [31]. 
NCAPH2 (non-SMC condensin II complex subunit 
H2) has a role in mitotic chromosome assembly [32]. 
We have to note that genes associated with prognosis 
are not necessarily target genes or druggable by cur-
rently available therapies. Further investigation using 
in  vitro model systems, pharmacologic inhibition, 
and validation of these genes in independent cohorts 
of clinical patients will be needed to establish their 
biological properties and potential utility in ovarian 
cancer.

Fig. 3   Most robust 
genes associated with OS 
including CSE1L (A) and 
NUAK1 (B) measured by 
both GPL96 and GPL570 
arrays and ALPK2 (C) 
and SHKBP1 (D) were 
determined by GPL570 
arrays only
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We have to note some limitations of our study. 
First, we had to restrict the analysis to serous tumors. 
Higher sample numbers would enable a reliable anal-
ysis for other subtypes of ovarian cancer like endo-
metrioid or clear cell tumors. Second, the analysis 
only includes gene expression values. A protein-level 
analysis would not only enable the direct validation 
of gene function but would also enable an immuno-
histochemistry-based test. Nevertheless, we might 
overcome this limitation in the future as we could 
previously perform protein-level analysis using breast 
cancer samples [33]. Third, the clinical and patholog-
ical data were not available for all samples, and this 
prevented performing a multivariate analysis using all 
patients.

In summary, we established an integrated large-
scale transcriptomic database of epithelial ovarian 
cancer cases with pathological and follow-up data 
which can be utilized for biomarker discovery. We 
then utilized this cohort to uncover the top genes with 
the highest correlation to progression-free and overall 
survival in serous ovarian cancer patients. Our results 
help to prioritize genes in studies aiming to identify 
new clinically useful biomarkers and therapeutic tar-
gets in serous ovarian cancer.
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