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Endothelial deficiency of insulin‑like growth factor‑1 
receptor (IGF1R) impairs neurovascular coupling responses 
in mice, mimicking aspects of the brain aging phenotype
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circulating levels of insulin-like growth factor-1 (IGF-
1), neurovascular dysfunction and cognitive impair-
ment. Endothelium-mediated microvascular dilation 
plays a central role in NVC responses. To determine 
the functional consequences of impaired IGF-1 input 
to cerebromicrovascular endothelial cells, endothe-
lium-mediated NVC responses were studied in a 
novel mouse model of accelerated neurovascular 
aging: mice with endothelium-specific knockout of 

Abstract  Age-related impairment of neurovascular 
coupling (NVC; or “functional hyperemia”) com-
promises moment-to-moment adjustment of regional 
cerebral blood flow to increased neuronal activity 
and thereby contributes to the pathogenesis of vas-
cular cognitive impairment (VCI). Previous studies 
established a causal link among age-related decline in 
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IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in 
cerebral blood flow in the somatosensory whisker 
barrel cortex (assessed using laser speckle contrast 
imaging through a cranial window) in response to 
contralateral whisker stimulation were significantly 
attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as 
compared to control mice. In VE-Cadherin-CreERT2/
Igf1rf/f mice, the effects of the NO synthase inhibitor 
L-NAME were significantly decreased, suggesting 
that endothelium-specific disruption of IGF1R sign-
aling impairs the endothelial NO-dependent compo-
nent of NVC responses. Collectively, these findings 
provide additional evidence that IGF-1 is critical for 
cerebromicrovascular endothelial health and mainte-
nance of normal NVC responses.

Keywords  Insulin-like growth factor 1 · IGF-1 · 
Vascular cognitive impairment · VCI · Functional 
hyperemia · Neurovascular unit · Neurovascular 
uncoupling · Cerebrovascular · Neurovascular Aging · 
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Introduction

Age-related impairment of neurovascular coupling 
(NVC; or “functional hyperemia”) contributes to the 
pathogenesis of vascular cognitive impairment (VCI) 
[1]. Neurovascular dysfunction compromises adjust-
ment of cerebral blood flow to the increased needs of 
active brain regions, impairing energy and oxygen 
delivery to the firing neurons and hindering wash-
out of toxic metabolic by-products [1]. Neurovascular 
coupling depends on a tightly controlled interaction 
of activated neurons and astrocytes and the release of 
vasodilator metabolites from the astrocyte end-feet and 
microvascular endothelial cell, which elicit vasodilation 
in precapillary arterioles. The cellular mechanisms by 
which aging impairs neurovascular coupling responses 
primarily involve a significant reduction in endothelial 
production/release of nitric oxide (NO) [2–4].

Insulin-like growth factor-1 (IGF-1) is an ana-
bolic hormone produced by the liver, which exerts 

multifaceted vasoprotective and anti-geronic effects 
[1, 5–31]. Circulating IGF-1 significantly decreases 
with age in humans and in laboratory animals due to 
an age-related decline in GH production/release [12, 
30, 32–35]. Importantly, previous studies demonstrate 
that circulating IGF-1 deficiency in transgenic mouse 
models impairs neurovascular coupling responses, 
mimicking the aging phenotype [9, 36]. Each cell 
type of the neurovascular unit (including neurons, 
astrocytes, endothelial cells) abundantly express 
IGF1R, the receptor for IGF-1 and the specific roles 
of IGF1R signaling in endothelial cells in regulation 
of NVC responses remains to be determined.

The present study was designed to experimentally 
test the hypotheses that IGF1R signaling modulates 
endothelium-dependent NVC responses in the brain 
and that disruption of IGF1R signaling specifically in 
endothelial cells impairs functional hyperemia, mim-
icking aspects of the aging phenotype. To test our 
hypotheses, we used a novel mouse model with adult-
onset, endothelial cells-specific disruption of IGF1R 
signaling using Cre-lox technology (VE-Cadherin-
CreERT2/Igf1rf/f). To assess endothelial NO-mediated 
NVC responses, increases in cerebral blood flow in 
the somatosensory whisker barrel cortex in response 
to contralateral whisker stimulation were measured 
using laser speckle contrast imaging before and after 
administration of an NO synthase inhibitor.

Methods

Animals

Igf1rf/f (B6;129-Igf1rtm2Arge/J; loxP sites flank-
ing exon 3) and VE-Cadherin-Cre ERT2 (B6.FVB-
Tg(Cdh5-cre)7Mlia/J; Stock No: 006137) mice 
were obtained from Jackson laboratories. Mice were 
housed (3–4 per cage) in Allentown XJ cages with 
Anderson’s Enrich-o-cob bedding (Maumee, OH). 
Igf1rf/f mice were bred in house to generate experi-
mental cohorts. Animals were housed under specific 
pathogen-free (including helicobacter and parvovirus 
free) barrier conditions in the Rodent Barrier Facility 
at University of Oklahoma Health Sciences Center. 
Mice were bred on a 14-h light/10-h dark cycle and 
weaned mice were maintained in a 12-h light/12-h 
dark cycle at 21 °C and were given access to standard 
irradiated bacteria-free rodent chow (5053 Pico Lab, 
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Purina Mills, Richmond, IN) and reverse osmosis fil-
tered water ad  libitum. Male VE-Cadherin-CreERT2 
mice were bred with female Igf1rf/f mice to generate 
VE-Cadherin-CreERT2/Igf1r+/− males, which were 
bred with Igf1rf/f female mice to obtain the founder 
colony of VE-Cadherin-CreERT2/Igf1r homozygous 
floxed mice, following our previously described pro-
tocol [18]. These mice were bred with Igf1rf/f mice 
to generate experimental cohorts of VE-Cadherin-
CreERT2/Igf1rf/f and Cre-/Igf1rf/f control mice. Three-
month-old mice were injected intraperitoneally with 
tamoxifen (75 mg/kg body weight; dissolved in corn 
oil) or vehicle (corn oil) for 5  days. Experiments 
were conducted after a period of 2 months. All proce-
dures were approved by the Institutional Animal Use 
and Care Committee of the University of Oklahoma 
Health Sciences Center.

Measurement of neurovascular coupling responses

On the day of experimentation, mice in each group 
were anesthetized with isoflurane (4% induction 
and 1% maintenance), endotracheally intubated and 
ventilated (MousVent G500; Kent Scientific Co, 
Torrington, CT). A thermostatic heating pad (Kent 
Scientific Co, Torrington, CT) was used to maintain 
rectal temperature at 37 °C [37]. End-tidal CO2 was 
controlled between 3.2% and 3.7% to keep blood gas 
values within the physiological range, as described 
[9, 38, 39]. The right femoral artery was canulated 
for arterial blood pressure measurement (Living 
Systems Instrumentations, Burlington, VT) [37]. 
The blood pressure was within the physiological 
range throughout the experiments (90–110 mmHg). 
Mice were immobilized and placed on a stereotaxic 
frame (Leica Microsystems, Buffalo Grove, IL), 
the scalp and periosteum were pulled aside and the 
skull was gently thinned using a dental drill while 
cooled with dripping buffer. A laser speckle con-
trast imager (Perimed, Järfälla, Sweden) was placed 
10  cm above the thinned skull, and to achieve the 
highest CBF response the right whiskers were 
stimulated for 30  s at 5  Hz from side to side as 
described [40, 41]. Differential perfusion maps of 
the brain surface were captured. Changes in CBF 
were assessed above the left barrel cortex in six tri-
als in each group, separated by 5–10 min intervals. 
To assess the role of NO mediation, CBF responses 

to whisker stimulation were repeated 15  min after 
intravenous administration of the nitric oxide syn-
thase inhibitor Nω-Nitro-L-arginine methyl ester 
(L-NAME). Changes in CBF were averaged and 
expressed as percent (%) increase from the baseline 
value [42]. All drugs used in this study were pur-
chased from Sigma-Aldrich (St Louis, MO) unless 
otherwise indicated.

Statistical analysis

Statistical analysis was carried out by unpaired t test 
or one-way ANOVA followed by Bonferroni multi-
ple comparison test, as appropriate, using Prism 5.0 
for Windows (Graphpad Software, La Jolla, CA). A 
p value less than 0.05 was considered statistically 
significant. Data are expressed as mean ± S.E.M.

Results

Endothelium‑specific disruption of IGF‑1/IGF1R 
signaling impairs neurovascular coupling

Increases in CBF in the somatosensory whisker bar-
rel cortex in response to contralateral whisker stim-
ulation were significantly attenuated in 6-month-old 
VE-Cadherin-CreERT2/Igf1rf/f mice (Fig.  1A–C), 
indicating that endothelium-specific disruption of 
IGF1R signaling leads to neurovascular dysfunction 
(n = 6–10 ♂ mice in each group).

Upon activation by neuronal-derived glutamate 
astrocytes release ATP, which elicits endothelial 
NO-mediated microvascular dilation in the brain 
[43]. Endothelial NO mediation is also critical for 
the upstream conduction and spreading of microvas-
cular dilation [3]. Consistent with this concept we 
found that in control animals administration of the 
NO synthase inhibitor L-NAME (Fig. 1B–C) signif-
icantly decreased functional hyperemia in the barrel 
cortex elicited by contralateral whisker stimulation.

In VE-Cadherin-CreERT2/Igf1rf/f mice, the 
effects of L-NAME (Fig.  1B–C) were significantly 
decreased, suggesting that endothelium-specific dis-
ruption of IGF1R signaling impairs the endothelial 
NO-dependent component of NVC responses.
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Discussion

Endothelial NO mediation plays a critical role both 
in NVC responses and the upstream conduction and 
spreading of microvascular dilation [3, 43]. IGF-1 
receptors are abundantly expressed on endothelial 
cells [44]. The present study provides critical evi-
dence that cell-specific disruption of IGF1R signal-
ing in endothelial cells alters their function, impairing 
NO-mediated NVC responses. These new findings 
extend the results of our previous studies show-
ing that circulating IGF-1 deficiency also impairs 
the endothelium-dependent NVC responses [9]. The 
likely mechanisms by which disruption of endothe-
lial IGF-1/IGF1R signaling impairs NO-mediated 
NVC responses may include decreased NO bioavail-
ability due to increased production of reactive oxygen 
species (ROS) [9]. There is strong evidence linking 
impaired NVC responses to impaired performance 
on cognitive tasks [1, 38–41, 45]. Thus, further stud-
ies are warranted to determine how the neurovascular 
phenotype caused by disruption of endothelial IGF-1/
IGF1R signaling impacts cognitive function in mice.

Previous studies showed that in addition to regulat-
ing vasodilator function IGF-1/IGF1R signaling also 
modulates many other important aspects of endothe-
lial function, including angiogenesis and barrier func-
tion [22, 23, 30, 46–51]. There is evidence that dis-
ruption of IGF-1/IGF1R signaling may also impact 
these aspects of cerebromicrovascular endothelial 
cell function, which may contribute to microvascu-
lar rarefaction and blood–brain barrier disruption, 
exacerbating cognitive impairment associated with 
IGF-1 deficiency [8, 10, 52, 53]. Circulating insulin 
at physiological concentrations has low affinity IGF-
1R, while under experimental conditions, at supra-
physiological levels, it was found that insulin and 
IGF-1 cross-react with each other’s receptors, albeit 
at a significantly lower affinity than with their own 
receptors. Previous studies suggested that IGF1R can 
regulate insulin sensitivity and NO bioavailability 
in the endothelium of conduit arteries [54]. Yet, in 
mice overexpressing human IGF-1R in the endothe-
lium insulin sensitivity is unaffected [55] To better 
understand the effects of IGF-1/IGF1R signaling on 
endothelial phenotype, subsequent studies should 

Fig. 1   Endothelium-spe-
cific disruption of IGF-1/
IGF1R signaling impairs 
neurovascular coupling 
responses in mice. A) 
Representative pseudocol-
our laser speckle flowmetry 
maps of baseline CBF 
(upper row; shown for ori-
entation purposes) and CBF 
changes in the whisker bar-
rel field relative to baseline 
during contralateral whisker 
stimulation (bottom row, 
right oval, 30 s, 5 Hz) in 
control and VE-Cadherin-
CreERT2/Igf1rf/f mice before 
and after administration of 
the NO synthase inhibi-
tor L-NAME. B shows 
the time-course of CBF 
changes after the start of 
contralateral whisker stimu-
lation (horizontal bars). 
Summary data are shown in 
C. Data are mean ± S.E.M. 
(n = 6–10 ♂ mice in each 
group), *P < 0.05 vs. Con-
trol; #P < 0.05 vs. untreated. 
n.s.: not significant
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investigate transcriptional changes in the cerebromi-
crovascular endothelial cells derived from VE-cad-
herin-CreERT2/Igf1rf/f mice. While decreasing IGF-1 
input to the endothelial cells is clearly detrimental, 
mice overexpressing human IGF-1R in the endothe-
lium were shown to exhibit unaltered vasorelaxation 
to endothelium-dependent vasodilators [55].

The aforementioned observations are consistent 
with the concept that disruption of IGF-1/IGF1R 
signaling in endothelial cells promotes the acquisi-
tion of an accelerated neurovascular aging pheno-
types. Accordingly, aging in humans and in labora-
tory animals results in circulating IGF-1 deficiency 
[12, 30, 32–34], which associates with neurovascular 
uncoupling, endothelial dysfunction, microvascular 
rarefaction and disruption of the blood–brain bar-
rier [41, 56–58]. Heterochronic parabiosis is a sur-
gical approach for joining the circulatory systems 
of an aged and a young animal that is used to iden-
tify non-cell autonomous mechanisms of aging. We 
have recently demonstrated that exposure to a young 
humoral environment rescues endothelial aging phe-
notypes in mice, including attenuation of oxidative 
stress and restoration of endothelium-mediated vaso-
dilation [59]. Importantly, transcriptomic analysis 
identified IGF1R signaling as a likely upstream regu-
lator involved in young blood-mediated vascular reju-
venation [59]. In future studies older VE-Cadherin-
CreERT2/Igf1rf/f mice could be used as parabionts to 
experimentally interrogate the contribution of IGF-1/
IGF1R signaling to the vasoprotective effects of 
young blood transfer.

Taken together, our present findings provide addi-
tional support for the concept that deficient IGF-1 
input to the cerebromicrovascular endothelial cells 
compromises the function of the neurovascular unit, 
impairing NVC responses and likely multiple other 
aspects of brain health. The findings that disrup-
tion of IGF-1/IGF1R signaling results in neurovas-
cular uncoupling and endothelial dysfunction have 
important translational relevance for the genesis of 
age-related vascular cognitive impairment and cog-
nitive problems associated with genetic IGF-1 defi-
ciency (e.g. in patients with growth hormone releas-
ing hormone-receptor [GHRH-R] mutations, isolated 
GH deficiency or GH receptor gene defects [Laron 
syndrome]). Additionally, multiple IGF1R muta-
tions have been described in children born small for 
gestational age (SGA) [60, 61], who later exhibit 

endothelial dysfunction [62] and have decreased lev-
els of intelligence and various cognitive problems 
[63]. Future studies determining how IGF1R muta-
tions in humans affect endothelial function and NVC 
responses as well as CBF should be quite revealing. 
The results of the present study, taken together with 
the findings of earlier investigations [9, 12, 24–26, 
53, 64, 65], point to potential multifaceted benefits 
of various pharmacological, dietary [66, 66] and life-
style interventions rescuing IGF-1 input to the cere-
bral microcirculation and the aging brain.
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