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Abstract The field of aging research has grown rapidly
over the last half-century, with advancement of scientific
technologies to interrogate mechanisms underlying the
benefit of life-extending interventions like calorie

restriction (CR). Coincident with this increase in knowl-
edge has been the rise of obesity and type 2 diabetes
(T2D), both associated with increased morbidity and
mortality. Given the difficulty in practicing long-term
CR, a search for compounds (CR mimetics) which could
recapitulate the health and longevity benefits without
requiring food intake reductions was proposed. Alpha-
glucosidase inhibitors (AGIs) are compounds that func-
tion predominantly within the gastrointestinal tract to
inhibitα-glucosidase andα-amylase enzymatic digestion
of complex carbohydrates, delaying and decreasing
monosaccharide uptake from the gut in the treatment of
T2D. Acarbose, an AGI, has been shown in pre-clinical
models to increase lifespan (greater longevity benefits in
males), with decreased body weight gain independent of
calorie intake reduction. The CR mimetic benefits of
acarbose are further supported by clinical findings be-
yond T2D including the risk for other age-related diseases
(e.g., cancer, cardiovascular). Open questions remain
regarding the exclusivity of acarbose relative to other
AGIs, potential off-target effects, and combination with
other therapies for healthy aging and longevity extension.
Given the promising results in pre-clinical models (even
in the absence of T2D), a unique mechanism of action
and multiple age-related reduced disease risks that have
been reported with acarbose, support for clinical trials
with acarbose focusing on aging-related outcomes and
incorporating biological sex, age at treatment initiation,
and T2D-dependence within the design is warranted.
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Calorie restriction and aging

The field of aging research has grown rapidly over the
last half-century, coincident with the development and
advancement of scientific technologies including multi-
ple areas of molecular biology. These advances have
built upon the foundation of nutrition and physiologic
research from the early 1900s to characterize more fully
the nutrition-based interventions that have been shown
to improve health, reduce disease, and ultimately in-
crease lifespan in laboratory organisms. The most
well-studied longevity and disease-altering intervention
from research studies is the practice of calorie restriction
(CR), a major player within the larger intervention
toolkit of general “dietary restriction.” Despite the
knowledge of expected benefit(s) from CR, the imple-
mentation of and adherence to CR at a sufficient level of
restriction and duration necessary to achieve significant
longevity and health benefits is improbable in the mod-
ern environment of dietary availability. This is evi-
denced by the contemporary rise and prevalence of
obesity and Type 2 Diabetes (T2D), which are both
associated with increased morbidity and mortality. Fur-
thermore, refinement in our understanding of dietary
composition and caloric content introduces possibilities
for manipulating specific dietary components, and car-
bohydrates, in particular, to achieve benefits normally
observed with traditional CR, which is known to coun-
teract obesity and diabetes. Compounds which could
recapitulate the health and longevity benefits of CR,
referred to as calorie restriction mimetics (CRM), could
target specific macronutrient classes and/or related sig-
naling pathways to mimic CR without requiring food
intake reductions. Herein, an update regarding the im-
portance of carbohydrate metabolism in relation to lon-
gevity and age-related disease is provided. A specific
focus on the antidiabetic agent and alpha-glucosidase
inhibitor acarbose is provided, given its robust transla-
tional potential and clinical relevance.

Achieving the health benefits of CR through the use
of CRMs

Of the many types of dietary restriction interventions that
have been studied, CR remains the most highly utilized
nutritional method to improve health, reduce disease, and
increase lifespan in laboratory research models [1–6]. In
practice as an intervention, CR is defined as a significant

and sustained reduction in calorie provisions (most sim-
ply a proportional reduction of all macronutrient calories)
to organisms below what their voluntary (ad libitum)
intake would be. While the degree of calorie reduction
is related to the health and longevity benefits, there is a
level of restriction beyond which health and longevity
benefits are lost. As diet provision approaches these
greater levels of restriction, a necessary alteration in the
proportions of macronutrient (protein preserving) and
micronutrient supplementation becomes necessary [1,
7]. The beneficial impact of CR on health applies to
many of the highest-ranked disease contributors to mor-
bidity and mortality in the USA including cardiovascular
diseases, cancers, and diabetes (specifically T2D) [8–11].
In contrast to CR, overfeeding and diet-induced obesity
are shown to increase disease and mortality risk [12–14].
These divergent associations emphasize the need to un-
derstand the mechanisms which underlie the health ben-
efits of CR (and conversely, the detrimental effects of
diet-induced obesity and T2D) as a means to identify
interventions which can mimic the health and longevity
benefits of CR.

CRMs were initially proposed as a hypothetical class
of compounds that could accomplish these goals and
provide significant benefits through translational applica-
tion [15–17]. Importantly, the benefits of CRMs would
not rely on the need for individuals to maintain signifi-
cant reductions in caloric intake, which remains a chal-
lenge in modern society as seen by the high prevalence of
obesity and T2D in the modern nutrition environment
[18, 19]. Furthermore, a CRM would be broad acting in
the ability to slowing aging and improve general health
rather than treat or prevent a single, exclusive disease
focus. In light of these relationships between calorie
intake and obesity/T2D, candidate CRMs were identified
by focusing on compounds that showed benefit for
treating obesity or T2D via their ability to recapitulate
critical aspects of the physiologic responses induced by
CR [16, 20–24]. The focus here will be on the class of
T2D medications which target alpha-glucosidase inhibi-
tion, particularly acarbose [25, 26].

Research from the first half of the 1900s demonstrat-
ed the ability of CR to inhibit the outgrowth of
transplanted or spontaneous cancers, highlighting the
impact nutritional intervention (i.e., limitation) could
have on rapidly dividing cells [27–29]. Subsequent
longer-term studies revealed that CR reduced the rate
of growth and maturation of rodents, coincident with
increases in longevity [1, 7, 8]. Over the decades, this
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line of CR research has expanded to include “dose-
response” assessments of levels of restriction, with car-
bohydrates identified as a select dietary component that
could be reduced (relative to protein levels) to achieve
CR longevity benefits even at more extreme levels of
CR, achieving further delays and reductions in the mag-
nitude and age of onset for common diseases [1, 7].
Across these studies of disease reduction and longevity
extension, a physiologic and molecular signature of
metabolic control (i.e., glucose reduction), hormonal
regulation (insulin function), stress response, and meta-
bolic rate reductions opened a window of knowledge
allowing a view toward interventions that shared simi-
larities with CR-induced molecular and physiologic re-
sponses, which would be predictive of health and lon-
gevity benefits [30, 31].

Parallel with these years of CR research, epidemio-
logic observations reported sustained and significant
increases in obesity and T2D, which contributed to
heightenedmorbidity andmortality within afflicted pop-
ulations [18, 32–34]. Recent estimates indicate that ap-
proximately 40% of all adults in the USA have obesity
[35, 36]. This trend is further exacerbated by the age-
related increased risk in T2D, such that over half of the
older adult population (> 65 years of age) in the USA are
either prediabetic or diabetic [34]. The hyperglycemia
associated with T2D is in stark contrast to the reduced
glycemia present with CR and is implicated in the
biological processes underlying fundamental aging
mechanisms and disease phenotypes. Thus, improve-
ments in the metabolism of glucose at the organismal
and cellular level might reasonably offer the means not
just to address T2D hyperglycemia as a treatment but
also to intervene in fundamental glucose metabolism
prior to development of an overt disease state, for the
purpose of improving the aging trajectory [16, 37].
While a variety of pharmaceutical classes of compounds
have been developed to treat T2D (biguanides, sulfo-
nylureas, thiazolidinediones, dipeptidyl peptidase 4 in-
hibitors, sodium-glucose linked transporters 2 inhibi-
tors, etc.), the subsequent focus of this review will be
on the alpha-glucosidase inhibitors (AGIs).

Acarbose is a candidate CRM that inhibits
alpha-glucosidase activity

Each class of T2D medications works through distinct
primary mechanisms of action, with AGIs predominantly

functioning in the gastrointestinal (GI) tract [25, 26, 38,
39]. The particular AGI of interest here is acarbose, a
pseudo-tetrasaccharide of bacterial origin that competi-
tively inhibits alpha-glucosidase and alpha-amylase en-
zymatic digestions (Fig. 1). In doing so, acarbose delays
and decreases monosaccharide cleavage from complex
carbohydrates in the diet, impacting monosaccharide ab-
sorption in the gut [25, 40]. This results in a delayed and
blunted postprandial glucose response, dampening the
variability in blood glucose over the course of the day,
particularly after meals that contain high amounts of
carbohydrates [40]. In line with the health and longevity
benefits observed with fiber supplementation, undigested
complex carbohydrates transit further down the GI tract,
resulting in an increased fiber-like effect [41–47]. Many
of the side effects of acarbose administration (i.e., flatu-
lence, bloating, and diarrhea) are related to its mimicry of
a high-fiber diet and diminish over time or may be
reduced by utilizing a dose-escalation protocol [25, 40,
48, 49].

Data from single-celled yeast to mammalian models
have demonstrated that manipulation of the dietary
amount and biochemical complexity of carbohydrates
can result in significant impacts on cellular aging and
organismal longevity [50–54]. In the budding yeast,
Saccharomyces cerevisiae, which has been used exten-
sively to study genetic and environmental/nutritional
contributors to aging, reducing the starting glucose con-
centration in the media or increasing the complexity of
sugars provided (i.e., by providing di- or tri-saccharides
which are enzymatically digested, imported, and metab-
olized more slowly and efficiently than monosaccha-
rides) both increase lifespan [50, 53]. Consistent with
these effects, incorporation of acarbose at 0.1% by
weight in a healthful laboratory diet with 66% carbohy-
drate by calories (21.2% protein and 12.8% fat) signif-
icantly increases overall, mean, and maximum lifespan
(90th percentile) in non-diabetic male mice (HET3
strain, median: control—807 vs. acarbose—984 days,
22% increase, p < 0.0001) and to a lesser but statistically
significant extent in female mice (HET3 strain, median:
control—896 vs. acarbose—939 days, 5% increase, p =
0.01 relative to controls) [55, 56]. These results extend
the previous observations of treatment efficacy and lon-
gevity promotion (recovery) in a model of diabetes with
rats [57].

The benefits of acarbose outside T2D effects on
longevity were replicated in a subsequent dose-
response study using the same dietary composition
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formulations with 0.04%, 0.1%, and 0.25% acarbose by
weight; where acarbose efficacy was shown to approach
a plateau in longevity at 0.1% percent (median lifespan,
males: control—830, acarbose [0.04%]—918, acarbose
[0.1%]—975, acarbose [0.25%]—964 days; females:
control—889, acarbose [0.04%]—887, acarbose
[0.1%]—933, acarbose [0.25%]—922 days) [58]. Im-
portantly, coincident with the longevity extension, mul-
tiple hormones implicated in lifespan regulation are
altered with acarbose treatment [59]. Fasting insulin
and insulin-like growth factor-1 (IGF-1) levels were
lowered which are associated with lifespan extension
that mimics a CR response, whereas fibroblast growth
factor-21 (FGF-21) was significantly elevated, in con-
trast with the lowering of FGF-21 observed with CR
[55]. Notably, the mechanism of action for acarbose is
such that in these non-diabetic, healthy mice, blood
glucose was not significantly lower under fasting con-
ditions [55]. In contrast, acarbose does reduce blood
glucose in both diabetic and non-diabetic animals dur-
ing the postprandial phase [57, 58, 60–64]. This is in
agreement with human studies where the primary ben-
efits of acarbose glycemic control are acute following a
meal, although longer-term benefits on insulin signaling
and body composition may additionally contribute to
T2D treatment efficacy [25, 26, 40, 48, 65–67]. Further-
more, no reduction in food intake was necessary for the
acarbose-associated longevity benefit, despite animals
having lower average body weight and body fat mass
relative to untreated controls [55, 56, 58]. Reduced
water intake has been reported with acarbose treatment
in laboratory models of T2D, coincident with reduced

blood glucose and urinary output; however, similar
measures have not been routinely reported in non-
diabetes focused, pre-clinical studies [64, 68]. Further-
more, the energy balance changes with acarbose treat-
ment initiation appear to be largely explained by alter-
ations in nutrient absorption [69–72], although compre-
hensive studies of energy expenditure (e.g., metabolic
rate) across acute and long-term acarbose treatment are
needed.

Systemic or off-target effects of acarbose

Although acarbose has low absorption kinetics with
approximately 3% or less absorbed into the systemic
circulation, and the primary mechanism of action of
AGIs is focused in the GI tract, effects on longevity
across multiple organ/systems via the small amount of
absorbed acarbose or its secondary metabolites are not
fully determined [40, 73]. As with other FDA-approved
medications, including T2D medications, simulation
work on acarbose protein binding domains and interac-
tion modeling has highlighted additional unexpected
potential interactions with “off-target” pathways (i.e.,
effects independent of alpha-glucosidase and alpha-
amylase inhibition), which are frequently not considered
when assessing acarbose effects [74]. Proposed off-
target effects of interest include 4-α-glucanotransferase
and maltose-binding periplasmic protein [74]. Whether
mechanisms in addition to alpha-glucosidase inhibition
contribute to acarbose’s effects independent of T2D
amelioration remains to be determined.

a b
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acarbose

glucose
α-glucosidase

T2D Management

Decreased PPG

Gut Microbiome Benefits

An�-cancer Ac�vi�es

Increased Longevity
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Fig. 1 The antidiabetic agent acarbose is an α-glucosidase inhib-
itor that provides multiple health benefits. a Acarbose is a pseudo-
tetrasaccharide that competitively inhibits the enzymatic activity
of α-glucosidases in the gut, thereby delaying and reducing the
release of glucose monomers from complex carbohydrates. As a

result, less glucose is absorbed in the upper intestines and made
available for systemic use. b Due to its potent glucoregulatory
ability, acarbose use promotes a wide range of health benefits,
including type 2 diabetes (T2D) management, and decreased
postprandial glucose (PPG). The figure was made with BioRender
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Acarbose has distinct metabolomic and gut
microbiome effects

In addition to improved glycemic control, acarbose
may also modulate metabolism within tissues.
Metabolomic profiling of liver and cecal samples
from acarbose-treated (0.1% by weight) C57BL/6J
mice compared with CR (40% reduction) or ad
libitum feed controls uncovered a characteristic sig-
nature of amino acid and lipid metabolism [75].
Despite some level of similarity between acarbose
and CR responses, unique differences exist in spe-
cific amino acids, bile acids, vitamin/cofactor, and
xenobiotic compounds. For example, CR treatment
resulted in a higher abundance of multiple vitamin/
cofactor, dipeptide, and ketone metabolites relative
to control and acarbose treatment, while responses
within subpathways of metabolites were at times
uniquely different with acarbose-treated females
which exhibit a smaller longevity benefit, relative
to acarbose-treated males and CR-treated males and
females (e.g., heme, multiple gamma-glutamyl ami-
no acids) [75]. These results reveal distinct effects
of each longevity-promoting intervention at the spe-
cific doses of acarbose and CR used in this partic-
ular dietary composition (i.e., NIH-31 based 22.4%
protein, 12.2% fat, and 65.4% carbohydrates by
kcal) [75].

G iven the bac t e r i a l o r i g i n o f aca rbose
(Actinoplanes and Streptomyces sp.) and as might
be anticipated with the change in GI digestion and
absorption of complex carbohydrates, acarbose-
induced shifts in the fecal microbiome have been
reported [76–80]. These are characterized by a rela-
tively greater prevalence of Bifidobacterium and low-
er Lactobacilli, likely driven by changes in nutrient
substrate availability and the resulting competitive
growth advantages to Bifidobacterium [76–84].
These microbiota shifts further contribute to metab-
olite differences observed with acarbose treatment,
although the extent, if any, to which specific metab-
olites or individual bacterial species abundance fur-
ther improve health or longevity outcomes is not yet
determined with acarbose [75, 76, 79, 85–91].
Whether the secondary metabolites related to
acarbose administration may have independent and
beneficial roles reflective of prior research on short-
chain fatty acids and ketone bodies is a further area of
research opportunity [92–100].

Evidence for the emerging use of acarbose
as an anti-cancer agent

Much like the early work with CR and cancer, the
impact of acarbose on glucoregulatory control could
be important for cancer control and/or treatment.
While acarbose blunts postprandial glucose excur-
sions, the overall effects on 24-h glucose levels tend
to be lower, but of a potentially meaningful magni-
tude [25]. With the high glycolytic demand of tu-
mors, the benefits of blunting postprandial glycemic
excursions could, in theory, have implications for
cellular proliferation within the tumor microenviron-
ment. In support of this idea, a longitudinal study of
over 1.3 million newly diagnosed diabetics illustrated
that acarbose use for T2D management reduced the
risk of colorectal cancer incidence by 27% [101].
However, a study of newly diagnosed cancer patients
in Taiwan found that prior acarbose use was not
associated with any change in all-cancer risk, illus-
trating the need for additional investigation of this
question [102]. In rodent models, beneficial anti-
cancer effects of acarbose were found in APC+/Min

mice that are prone to developing bleeding intestinal
neoplasias, which culminate in anemia and shortened
lifespan. In this study acarbose use at 935 ppm re-
sulted in decreased tumor formation and increased
longevity [103]. Our own research using a pre-
clinical model of renal cancer has found that acarbose
administration at 0.1% in the diet (1000 ppm) can
inhibit renal tumor progression, strengthen protective
immune responses against tumors, and augment the
efficacy of an immune-based cancer therapy, sug-
gesting that acarbose may have clinical application
in the treatment of established renal tumors
(Orlandella et al., submitted).

While not the focus of the current review, the
biguanide metformin is likely the most highly studied
T2D medication regarding effects on cancer and lon-
gevity in rodent models [104]. It is of interest that
metformin’s longevity effects in rodents appear to be
somewhat strain-specific, with longevity benefits ob-
served in cancer-prone rodent strains and the extension
effect size proportionally larger with shorter-lived
strains [104, 105]. In humans, metformin use is associ-
ated with a reduced incidence of colorectal cancer,
similar to what has been reported with acarbose [106,
107]. In rodent models of established cancer, metformin
use has been reported to directly impair tumor cell
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proliferation, reduce hypoxia within solid tumors, and
improve protective immune responses [108]. The mech-
anisms of action of metformin for T2D (i.e., inhibition
of mitochondrial Complex I, AMP-activated protein
kinase activation, and decreased hepatic glucose pro-
duction) are distinct from those of acarbose [109]. Thus,
it may seem surprising that both acarbose and metfor-
min were identified through an in vitro screening for
compounds that impacted a genetic model of mitochon-
drial defect in iron-sulfur cluster formation defects with
Friedreich’s ataxia [110]. Even more intriguing are the
differential and opposing mitochondrial effects that
were shown with the two agents. Specifically, acarbose
increasedmitochondrial function (oxygen consumption)
whereas metformin had the opposite effect [110].
Whether acarbose is able to ameliorate the aging deficits
observed with mitochondrial diseases or preserve mito-
chondrial function with advancing age is an area of
future interest.

Acarbose effects on other age-related diseases

Early clinical studies supported a role for acarbose as
both a treatment after T2D establishment, as well as a
preventative intervention for pre-diabetes [67, 111,
112]. While these disease benefits were expected as
the focus of acarbose development and use, initially
more surprising may have been the cardiovascular-
related benefits which have also been observed in pa-
tients receiving acarbose for T2D, including reduced
cardiovascular disease, myocardial infarction, and hy-
pertension [111, 113–116]. Emerging data suggest that
postprandial glucose, triglyceride, and chylomicron re-
sponses, along with hormone improvements, may me-
diate some of these cardiovascular benefits [117–120].
In agreement with the increasingly recognized contribu-
tion of T2D to age-related neurologic disease risk (e.g.,
Alzheimer’s, Parkinson’s) [121, 122], recent studies
highlight the potential reduced risk of onset or progres-
sion of dementia in subjects with T2D receiving
acarbose treatment [123]. Finally, inflammatory-related
diseases like arthritis have growing support for benefits
from acarbose use to alleviate symptoms and reduce risk
of progression in pre-clinical and clinical models
[124–128], expanding the potential utility of acarbose
treatment to multiple types of age-related disease mech-
anisms with human aging relevance.

AGIs beyond acarbose

In addition to acarbose, multiple pharmaceuticals within
the AGI class (miglitol and voglibose) remain unreport-
ed regarding their ability to enhance longevity, exhibit
anti-cancer activity, and achieve CRM status using non-
diabetic laboratory models. Additionally, natural AGIs
of phytochemical/botanical origin (e.g., cinnamon, tea)
are being increasingly identified and experimentally
shown to alter and improve glycemic control
[129–134]. In fact, multiple botanically derived AGIs
show equivalence and/or superiority regarding in vitro
pharmacokinetics to acarbose, and combination treat-
ment with acarbose further enhances glycemic suppres-
sion [135, 136]. However, less data are available to
clarify whether botanical-derived AGIs can similarly
improve long-term physiologic, metabolic, and longev-
ity outcomes as seen with acarbose.

Summary and future studies

Additional studies of acarbose effects are needed at all
levels of translational science. Existing literature sup-
ports consideration of broad health benefits by targeting
glucoregulatory control in relation to co-morbidities and
diseases (e.g., cardiovascular, neurodegenerative) [37],
and may be informative in prioritizing study focus areas.
Pre-clinical work has not fully investigated the dietary
composition, strain background, and disease-status de-
pendence of acarbose’s effects on age-related disease
and longevity. The distinct mechanism of acarbose ac-
tion from other proposed CRM raises the possibility that
combinatorial therapies may be superior to any one
intervention for addressing the complexity of biological
aging across tissue types and organs. This may be par-
ticularly relevant in the context of sex-differential ben-
efits observed with lifespan enhancing interventions
(e.g., rapamycin, 17-estradiol) [55, 137–139]. Whether
other AGIs have similar or greater anti-aging benefits to
acarbose, particularly those of natural/botanical origin
that are consumed in everyday diets at varying levels,
remains understudied. Other T2D medication classes
that also reduce postprandial glucose and improve over-
all glycemia like sodium-glucose-linked transporters 2
(SGLT2) inhibitors, which increases glucose excretion
through urine, remain an interesting area of exploration
as potential CR mimetics [140–142].
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The AGI acarbose has a multi-decade safety profile
as an FDA-approved treatment for T2D. While under-
prescribed in the USA relative to metformin or other
T2D medications, a growing body of pre-clinical, clin-
ical, and epidemiologic research highlights the potential
for acarbose (Fig. 1) as a stand-alone therapy and/or
adjuvant treatment to address some of the most common
ailments of biological aging, including age-related dis-
eases and morbidities.
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