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Abstract A phenotype of indefinite growth arrest ac-
quired in response to sublethal damage, cellular senes-
cence affects normal aging and age-related disease.
Mitogen-activated protein kinases (MAPKs) are capable
of sensing changes in cellular conditions, and in turn
elicit adaptive responses including cell senescence.
MAPKs modulate the levels and function of many pro-
teins, including proinflammatory factors and factors in
the p21/p53 and p16/RB pathways, the main senes-
cence-regulatory axes. Through these actions, MAPKs
implement key traits of senescence—growth arrest, cell
survival, and the senescence-associated secretory phe-
notype (SASP). In this review, we summarize and dis-
cuss our current knowledge of the impact of MAPKs in
senescence. In addition, given that eliminating or sup-
pressing senescent cells can improve health span, we
discuss the function and possible exploitation of
MAPKs in the elimination (senolysis) or suppression
(senostasis) of senescent cells.
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Introduction

Cellular senescence is a program implemented by cells
responding to a variety of stresses that cause macromo-
lecular damage. In turn, cells that become senescent
exhibit long-term growth arrest and the senescence-
associated secretory phenotype (SASP), through which
cells secrete proinflammatory and tissue-remodeling
factors that have local and systemic impacts
(Gorgoulis et al. 2019). Senescence has been found to
be both beneficial and detrimental for organ homeosta-
sis (He and Sharpless 2017). Among its benefits, senes-
cence contributes to embryonic development, wound
healing, and tumor suppression in young persons
(Collado and Serrano 2010; Munoz-Espin et al. 2013;
Storer et al. 2013; Demaria et al. 2014). On the other
hand, the adverse effects of senescent cells accumulat-
ing in tissues are often apparent with advancing age, as
they exacerbate age-related pathologies including can-
cer, sarcopenia, diabetes, and Alzheimer’s disease
(Campisi 2013; Lopez-Otin et al. 2013; van Deursen
2014; McHugh and Gil 2018). Given the harmful influ-
ence of senescent cells during aging, there is much
interest in clearing senescent cells therapeutically
through genetic and pharmacologic approaches
(Demaria et al. 2014; Baker et al. 2016; Chang et al.
2016). While the clinical usefulness of current genetic
approaches to intervene in senescence (discussed by
Soto-Gamez and Demaria 2017; McHugh and Gil
2018) are limited, there has been an escalation of efforts
to identify chemical senolytic and senomorphic/
senostatic interventions to combat age-associated
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diseases (Childs et al. 2014; Zhu et al. 2015; Yosef et al.
2016; Kirkland and Tchkonia 2017).

To develop rational approaches directed at senescent
cells, it is essential to understand the molecular pro-
grams that enable the various senescence traits. The
best-studied senescence-associated signaling pathways
are triggered by damage to DNA and other cellular
components that activate the p53 (TP53)-p21
(CDKN1A) axis, the p16 (CDKN2A)-retinoblastoma
(RB) axis, and the secretion of SASP factors (Lujambio
2016; Soto-Gamez and Demaria 2017; Herranz and Gil
2018). While these pathways are robustly influenced by
the PI3K-mTOR (phosphoinositide 3-kinase-
mammalian target of rapamycin) signaling kinases, the
regulation of senescent traits by MAPK (mitogen-
activated protein kinase) cascades is becoming increas-
ingly apparent (Xu et al. 2014; Martinez-Zamudio et al.
2017). The three main classes of MAPKs include
ERK1/2 (extracellular signal-regulated kinase), JNK
(c-Jun N-terminal kinase), and p38; among these,
ERK1/2 and p38 are most closely linked to cellular
senescence (Sun et al. 2007; Debacq-Chainiaux et al.
2010; Passos et al. 2010; Freund et al. 2011; Deschenes-
Simard et al. 2013; Storer et al. 2013). Although JNK
appears to have a less prominent role in senescence,
recent reports have implicated this MAPK in senescent
traits (Lee et al. 2010; Spallarossa et al. 2010; Yosef
et al. 2017; Vizioli et al. 2020). Key aspects of the
influence of MAPKs on growth suppression, resistance
to apoptosis, and other traits of senescent cells have only
emerged in recent years (Fig. 1) (Ziaei et al. 2012;
Herranz et al. 2015; Culerrier et al. 2016; Slobodnyuk
et al. 2019). Here, we review our knowledge and discuss
the role of MAPKs on senescence traits.

MAPK networks in cellular senescence

Discovered in the early 1990s, MAPKs represent major
signaling cascades in cell biology (Pearson et al. 2001).
This superfamily of proteins is mainly comprised of
kinases that mediate chains of phosphorylation events.
Using simplified terminology, membrane receptors ac-
tivated by mitogens, cytokines, and stress agents acti-
vate MAPKKKKs, which phosphorylate MAPKKKs,
which in turn phosphorylate MAPKKs, and these then
phosphorylate MAPKs. Downstream effectors of
MAPKs include several proteins such as kinases and
transcription factors, among others, that control cell

proliferation, differentiation, survival, and motility
(Cargnello and Roux 2011). In physiologic conditions,
these phenotypes are under tight molecular control by
MAPKs, but in pathologic conditions such as cancer,
cardiovascular disease, and neurodegeneration, MAPK
signaling is often aberrant.

Although MAPKs encompass a large number of
kinases, the best known MAPKs are ERKs (1 and 2),
p38s (α, β, γ, and δ), and JNKs (1, 2, and 3). MAPKs
control cell response programs by phosphorylating and
thereby regulating the activity of many proteins impli-
cated in senescence. In particular, ERK1/2 regulates
senescence-associated proteins including RSKs,
Sprouty, and MYC (Campaner et al. 2010; Macia et al.
2014; Munoz-Espin and Serrano 2014; Sun et al. 2018)
and p38 regulates ATF6, ZNHIT1, HBP1, p53, MK2,
and MK5 (Zhang et al. 2006; Sun et al. 2007; Debacq-
Chainiaux et al. 2010; Druelle et al. 2016; Macedo et al.
2018). Besides regulating transcription of senescence-
associated genes, MAPKs and their effectors (e.g.,
MNK1, MK2, RSKs) can also control gene expression
programs post-transcriptionally by phosphorylating and
thereby modulating the activity of RNA-binding pro-
teins (RBPs) implicated in senescence, such as HuR,
AUF1, PTBP1, TTP, GRSF1, and hnRNPA1 (Wang
et al. 2005; Wang et al. 2016; Ziaei et al. 2012;
Alspach et al. 2014; Wiley and Campisi 2016;
Georgilis et al. 2018; Noh et al. 2018; Noh et al.
2019). Phosphorylation by MAPKs often alters the abil-
ity of RBPs to bind target mRNAs, as shown for HuR,
TTP, and AUF1, and modulates the fate of these
mRNAs (Grammatikakis et al. 2017; Soni et al. 2019).
In addition, the MAPK substrates MK2, MNK1, and
RSK appear to be essential for the translation of SASP
factors (Herranz et al. 2015; Roux and Topisirovic 2018;
Sun et al. 2018) and link MAPKs with the mTOR
pathway, which is activated in senescent cells
(Tomimatsu and Narita 2015). In short, MAPK signal-
ing governs transcriptional and translational programs in
senescent cells.

MAPKs as sensing elements in senescence

As a cellular response to sublethal damaging or onco-
genic stressors, senescence relies on MAPKs to imple-
ment robust and specific molecular programs. Tradition-
ally, activation of ERK1/2 has been associated with
mitogenic signaling, while p38 and JNK are generally
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implicated in stress signaling (Dhillon et al. 2007;
Pimienta and Pascual 2007). In senescence, the
ERK1/2 pathway is activated by aberrant RAS/RAF
signaling, DNA damage, and oxidative stress (Pearson
et al. 2001; Kim et al. 2003; Khalil et al. 2011). RAS
activates the RAF-MEK axis to induce ERK1/2 phos-
phorylation (Mebratu and Tesfaigzi 2009), while suble-
thal genotoxic damage signal through ATM-AKT to
activate ERK1/2 and implement an anti-apoptotic, pro-
senescence program (Viniegra et al. 2005; Bozulic et al.
2008; Khalil et al. 2011). Of note, senescence-associated
oxidative damage has been shown to activate ERK1/2
through the inhibition of MAPK phosphatases (Kim
et al. 2003) as well as by the induction of signaling of
receptor tyrosine kinases (RTKs) by reactive oxygen
species (Lei and Kazlauskas 2009).

Oxidative stress is traditionally linked to p38 activa-
tion (Xu et al. 2014). In this regard, ERK1/2 signaling
triggered by oncogenes (e.g., RAF(V600E) or
HRAS(V12G)) induces senescence at least partly
through a rise in oxidative stress leading to the activa-
tion of p38 (Wang et al. 2002). However, only a few
mechanisms by which oxidative stress directly activates
p38 to trigger cell senescence have been proposed
(Passos et al. 2010; Kodama et al. 2013), and other

pathways, such as DNA damage-induced senescence
through increased GADD45A expression by p53 have
implicated p38 as a contributor to the response
(Moskalev et al. 2012).

Senescence cell cycle arrest by MAPKs

The indefinite growth arrest of senescent cells is
established and maintained primarily by the cyclin-
dependent kinase (CDK) inhibitors p21 (CDKN1A),
p16 (CDKN2A), and p15 (CDKN2B) (Hernandez-
Segura et al. 2018; Casella et al. 2019). The abundance
of these CDK inhibitors is under the direct control of
MAPKs, particularly ERK1/2 and p38. Paradoxically,
while ERK1/2 signaling promotes cell proliferation in
dividing cells, it promotes growth arrest in senescent
cells; as reported, altered translocation to the nucleus as
well as magnitude and duration of activation redirected
ERK1/2 function towards cell cycle arrest instead of
proliferation (Ebisuya et al. 2005; Zou et al. 2019).

In senescence, p21 is induced transcriptionally by
p53 following DNA damage (d’Adda di Fagagna
2008). The transcriptional status of p53 is regulated
post-translationally in several ways, including

Fig. 1 Known implications of MAPK pathways in cellular senes-
cence traits. After exposure to senescence-inducing stimuli,
MAPK pathways (mainly p38 and ERK1/2) drive the implemen-
tation of the senescence phenotype. MAPKs exert direct control

over the main senescence traits—cell survival, cell cycle arrest,
and the senescence-associated secretory phenotype (SASP). The
main MAPK regulatory events thus far implicated in senescence
are indicated.
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phosphorylation, altered protein levels, and subcellular
localization (Baar et al. 2017; Hafner et al. 2019). p38
directly influences p53 activity in senescent cells by
phosphorylating p53 at Ser15 and thus stabilizing it
(Xu et al. 2014), while the p38-effector MK5 phosphor-
ylates p53 and enhances transcription of p21 mRNA
(Sun et al. 2007). ERK1/2 also modulates p53 post-
translationally (Wu 2004), but these effects are not well
studied in senescence. MAPKs enhance p21 mRNA
transcription through transcription factors activated by
stimuli other than DNA damage (Abbas and Dutta
2009); for instance, both p38 and ERK1/2 activate
ELK1 and SP1, which drive transcription of p21mRNA
(Shin et al. 2011; Kim et al. 2014b). In addition, ERK1/2
activation promotes p21 transcription by SP1 and
SMAD proteins (Pardali et al. 2000; Kim et al. 2006;
Luo 2017). Thus, even in the absence of DNA damage,
MAPKs strongly elevate p21 abundance. Accordingly,
ERK1/2 activation contributes to developmental senes-
cence, a senescence phenotype that relies mainly on
DNA damage-independent induction of p21 (Munoz-
Espin et al. 2013; Storer et al. 2013).

The senescence proteins p16 (CDKN2A) and p14
(ARF) are expressed from the CDKN2A locus
(Munoz-Espin and Serrano 2014); p16 inhibits CDKs
that phosphorylate RB, while p14 helps stabilize p53
(Kim and Sharpless 2006). Transcription of the
CDKN2A locus is repressed epigenetically through
Polycomb group (PcG) proteins (Bracken et al. 2007;
Ito et al. 2018). In this paradigm, the MAPK effector
MK3 phosphorylates and reduces the levels of PcG
protein BMI1, thus promoting senescence (Voncken
et al. 2005; Lee et al. 2016). Additionally, transcription
from the CDKN2A locus is controlled by SWI/SNF
protein complexes (Kia et al. 2008), which evict PcG
proteins and enhance p16 transcription. In this context,
MAPK p38 positively regulates the function of the SWI/
SNF protein BAF60 (Simone et al. 2004). Furthermore,
p38 facilitates the transcription of p16 mRNA by acti-
vating the histone acetyltransferase P300 (Li et al. 2010;
Wang et al. 2012). Finally, transcription of p16 mRNA
is further promoted by MAPKs that activate ETS, SP1,
and MSK1 (Ohtani et al. 2001; Wu et al. 2007; Shin
et al. 2011; Culerrier et al. 2016).

MAPKs also modulate the activity of RBPs that
control the stability and/or translation of mRNAs
encoding senescence-associated CDK inhibitors. In this
context, MNK1 phosphorylates hnRNPA1 and dissoci-
ates it from p16 and p14 mRNAs, rendering them more

stable and enabling increases in p16 and p14 protein
levels (Zhu et al. 2002; Ziaei et al. 2012). In another
example, phosphorylation of HuR by p38 increases
HuR binding to p21 mRNA, increasing p21 mRNA
stability and elevating p21 levels (Wang et al. 2000;
Lafarga et al. 2009), even though HuR levels decline
overall in senescent cells (Wang et al. 2001; Lee et al.
2018). TTP phosphorylation by the MAPK effector
MK2 leads to dissociation of TTP from p21 mRNA
and increases p21 mRNA stability and p21 production
(Al-Haj et al. 2012). Finally, degradation of the RBP
AUF1 by the proteasome in an MK2-regulated manner
might contribute to the stabilization of target p21 and
p16 mRNAs and the reduction in telomerase transcrip-
tion seen in senescent cells (Wang et al. 2005; Chang
et al. 2010; Pont et al. 2012; Li et al. 2013).

Regulation of SASP by MAPKs

The SASP is a complex trait believed to be responsible
for many of the pathophysiologic effects of senescent
cells (Gorgoulis et al. 2019). SASP factors include many
proinflammatory cytokines, growth factors, angiogenic
factors, and matrix metalloproteinases.

MAPKs are upstream regulators of NF-κB, a major
transcriptional coordinator of the SASP. Upon
senescence-inducing stimuli, p38 enhances the DNA
damage-driven NF-κB transcriptional activity, which
in turn promotes the transcription of SASP genes in-
cluding IL6, IL8, and GM-CSF (Rodier et al. 2009;
Freund et al. 2011; Alimbetov et al. 2016). Although
not assessed in senescent cells, MSK1, an effector of
p38 and ERK1/2, enhances NF-κB function and in-
creases the transcription of SASP factors IL6 and
CXCL8 (Vermeulen et al. 2003; Reber et al. 2009). In
senescence induced by oncogenic RAS, elevated
ERK1/2 signaling promoted NF-κB-mediated SASP
protein production (Catanzaro et al. 2014). Activation
of the MAPK substrate RSK1, an enhancer of protein
synthesis, elevated IL8 production (Sun et al. 2018),
while the MAPK substrate MNK1 phosphorylated
eIF4E and thereby enhanced the translation of proteins
including SASP factors and MK2 (Wendel et al. 2007;
Wu et al. 2013; Herranz et al. 2015). Activated MK2, in
turn, phosphorylated ZFP36L1 and thereby suppressed
its ability to degrade target mRNAs encoding SASP
components (Herranz et al. 2015). Finally, a recent
report shows that JNK activation in senescent cells
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promotes cGas-STING signaling and enhances the
SASP (Vizioli et al. 2020).

Among the many SASP factors regulated indepen-
dently of NF-κB (Davalos et al. 2010), TGFβ, PDGFA,
and CTGF were induced by NOTCH signaling in se-
nescent IMR-90 fibroblasts, producing a distinct early
wave of the SASP (Hoare et al. 2016). TGFβ promotes
senescence by increasing the expression of p15 and p21
(Munoz-Espin et al. 2013), and activates p38 through
TGFβ-activated kinase 1 (TAK1) (Yu et al. 2002;
Passos et al. 2010). Conversely, p38 can induce TGFβ
production by activating NOTCH signaling in RAS-
overexpressing fibroblasts or by activating ATF2 (Kim
et al. 1992; Weijzen et al. 2002). mTOR is required for
the induction of TGFβ in senescent cells (Aarts et al.
2017), but whether MAPKs modulate the early SASP is
still unknown.

MAPK-regulated RBPs also play important roles in
SASP regulation. Beyond influencing growth arrest (see
above), RBPs such as AUF1, HuR, hnRNPA1, GRSF1,
and TTP are also linked to the expression of SASP
factors (Ross et al. 2012; Hashimoto et al. 2014;
Alspach and Stewart 2015; Wang et al. 2016; Noh
et al. 2019). For example, MNK1 phosphorylated
hnRNPA1 (Ziaei et al. 2012) and enabled NF-κB tran-
scription of proinflammatory SASP mRNAs (Wang
et al. 2016), while phosphorylation of ZFP36L1 by
MK2 caused dissociation and stabilization of IL8 or
IL1B mRNAs, encoding major SASP factors (Herranz
et al. 2015). Activated MK2 might also phosphorylate
AUF1 to induce its dissociation from target IL6 and IL8
mRNAs in senescent cells (Alspach and Stewart 2015).
The reduction of HuR levels in senescence increased the
levels of NF-κB-regulated SASP factors (Hashimoto
et al. 2014), while other RBPs, such as PTBP1, induced
the SASP trait globally (Georgilis et al. 2018). MAPK-
regulated RBPs that specifically promote SASP factor
production could be promising therapeutic targets.

MAPKs in senescent cell survival

Senescent cells are normally resistant to apoptotic cell
death, even though they show activation of apoptotic
pathways. To persist within tissues, senescent cells rely
on pro-survival nodes, including proteins in the anti-
apoptotic programs driven by BCL2, PI3K-AKT, and
p53 (Childs et al. 2014; Baar et al. 2017; Kirkland and
Tchkonia 2017; Yosef et al. 2017). In light of evidence

that clearance of senescent cells from tissues improves
age-related pathologies (including fibrotic diseases,
sarcopenia, cardiovascular disease, cachexia, diabetes,
and Alzheimer’s disease (van Deursen 2014; McHugh
and Gil 2018)), there is intense interest in exploiting
senolysis in aging, age-related diseases, and situations in
which senescent cells accumulate (e.g., cancer therapy).

While elevated levels of cell damage promote apo-
ptosis, sublethal doses lead cells to a senescent state
(Childs et al. 2014). In this respect, MAPK signaling
together with other signaling pathways such as the DNA
damage-p53 axis contribute to implementing an appro-
priate cellular outcome (Gong et al. 2010). For example,
low doses of DNA damage cause ERK1/2 activation,
ensuring cell survival, but higher doses fail to activate
ERK1/2 and instead result in cell death by apoptosis
(Dai et al. 2008; Khalil et al. 2011), and in some cases,
ERK1/2 activation may itself promote cell death (Tang
et al. 2002). Activation of p38 generally increases with
damage severity (Gong et al. 2010; Lumley et al. 2017),
but p38 may also be pro-apoptotic or pro-survival de-
pending on the trigger and cell type (Igea and Nebreda
2015); in some cases, the pro-survival effect of p38 in
senescent cells may be linked to the induction of au-
tophagy (Slobodnyuk et al. 2019). Additionally, p21
induction opposes apoptosis in senescent cells, and its
expression is enhanced by both ERK1/2 and p38
MAPKs (see above) (Yosef et al. 2017). A deeper un-
derstanding of how MAPK signaling in senescent cells
influences apoptosis is needed.

One of the most frequent approaches to eliminate
senescent cells from aged tissues and organs is by
treating with a combination of Dasatinib plus Quercetin
(D + Q). The senolytic effect of this combination of
drugs was first discovered in a screen of proliferative
and senescent cells (Zhu et al. 2015). Quercetin, a fla-
vonoid, is a pleiotropic inhibitor of many kinases (Russo
et al. 2012; Russo et al. 2017; Bruning 2013). It can
promote apoptosis in response to different stresses that
activate ERK1/2 or p38 and induce senescence (Kim
et al. 2014a; Gong et al. 2018). Dasatinib inhibits many
tyrosine kinases (Montero et al. 2011) including SRC,
BCR-ABL, C-KIT, PDGFR, and Ephrin receptors
(Daulhac et al. 1999; Matsumoto et al. 1999; Kim
et al. 2008; Galan-Moya et al. 2008; Abbaspour Babaei
et al. 2016; Kania and Klein 2016), and thereby blocks
signaling through MAPKs. Interestingly, some ligands
linked to the function of these tyrosine kinases are SASP
factors, and thus Dasatinib might be suppressing the
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anti-apoptotic protection engendered by SASP factors.
Moreover, the receptor-associated protein Caveolin-1 is
highly expressed on the senescent cell plasma mem-
brane (Volonte and Galbiati 2009; Kim et al. 2017)
and can help activate receptors by secreted factors such
as TGFβ, Ephrins, EGF, and FGFs (Pol et al. 2000;
Razani et al. 2001; Vihanto et al. 2006; Katz et al. 2007;
Shao et al. 2008; Feng et al. 2012).

Maintenance of senescence by MAPKs

Identifying the mechanisms by which the senescent phe-
notype is maintained long-term is a major question in
aging and cancer. MAPKs are proposed to contribute to
this persistent phenotype, as activation of both p38 and
ERK1/2 increases over time in senescence (Kim et al.
2003; Freund et al. 2011). Indeed, oxidative stress caused
by the persistent activation of ERK1/2 can preclude the
function of phosphatases, thus creating a positive feed-
back loop (Kim et al. 2003; Colavitti and Finkel 2005).
Additionally, in senescent cells ERK1/2 and p38 promote
the expression of Caveolin-1, which interacts with and
inactivates phosphatases PP2A or PP2C, thus retaining
active MAPKs and ATM and reinforcing the constitutive
signaling through MAPKs and p53 (Meskiene et al.
2003; Dasari et al. 2006; Volonte and Galbiati 2009).
The coordinated actions of p53 and p38 may contribute
to the enduring growth arrest of senescent cells, since
activation of p53 in response to MDM2 antagonists
causes irreversible growth inhibition only under atmo-
spheric oxygen (21% O2), which can occur in certain
instances of senescence such as during wound repair
and in lung disease (Parrinello et al. 2003; Wiley et al.
2018). Given the role of p38 in sensing oxidant stress,
persistent p38 signaling could promote a low but
prolonged induction of p53 levels in senescence (Sun
et al. 2007; Purvis et al. 2012).

MAPKs may also contribute to the maintenance of
senescence by alternative ways. For example, senescent
cells implement global chromatin rearrangements called
senescence-associated heterochromatic foci (SAHF)
(Narita et al. 2003). These foci form in cells that are
engaged in growth arrest by pRB (Zhang et al. 2005)
and require the p38 effector protein HBP1 (Zhang et al.
2013). The p38 MAPK pathway also fuels a DNA
damage-dependent activation of NF-κB-STAT3, trig-
gering a positive feedback loop in senescent cells
(Kuilman et al. 2010; Freund et al. 2011. Finally, p38

and ERK1/2 may reinforce mTOR signaling for a com-
plete, long-term implementation of the senescence phe-
notype (Leontieva and Blagosklonny 2010; Gutierrez-
Uzquiza et al. 2012; Laberge et al. 2015).

Together, these findings suggest that MAPKs con-
tribute to the maintenance of senescence and the long-
term growth arrest phenotype of senescent cells.

MAPKs and senescence in age-associated brain
diseases

Recent studies have revealed that cellular senescence
plays a key role in many age-associated neurodegener-
ative pathologies, such as Alzheimer’s disease (AD)
(Bussian et al. 2018; Zhang et al. 2019) and Parkinson’s
disease (PD) (Chinta et al. 2018). Although MAPKs
have not been tightly linked to senescence in neurode-
generation, evidence for their implications is beginning
to emerge.

Phosphorylation of p38 is increased in brains from
aged mice (Li et al. 2011), and p38 activity is increased
in AD when compared with age-matched brains
(Hensley et al. 1999). The fact that p38 phosphorylation
increases in regions where neurofibrillary tangles are
found (Zhu et al. 2000) helps to support a role for p38
in Tau phosphorylation (Hanger et al. 2009; Maphis
et al. 2016). Interestingly, senescent astrocytes, which
are central players in AD pathogenesis (Salminen et al.
2011; Bhat et al. 2012), are highly dependent on p38
signaling for their phenotype (Mombach et al. 2015).
ERK1/2 activity has also been implicated in Tau phos-
phorylation and in enhancing neurodegeneration in AD
(Ferrer et al. 2001; Kirouac et al. 2017; Sun and Nan
2017). Conversely, it was recently found that amyloid
oligomers induce ERK1/2 pathway in the hippocampus
in the early stages of AD (Faucher et al. 2015).

Cellular senescence has also been found to be detri-
mental in the pathogenesis of PD, as removal of senescent
cells was protective in mice that developed PD after
paraquat treatment (Chinta et al. 2018). PD pathogenesis
could be exacerbated by SASP factors secreted by senes-
cent astrocytes andmicroglia in PD brain (Calabrese et al.
2018). Although the role of MAPKs in PD-associated
senescence has not been studied directly, MAPKs are
central mediators of the cellular response to stress, in-
flammation, and survival signals, all of which occur in the
PD environment. Moreover, the activation of p38 by
stress factors in microglia leads to the proinflammatory
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environment that exacerbates neurodegeneration in PD
(He et al. 2018). ERK1/2 activation is required for harm-
ful astrocytic inflammation within the nervous system
(Zhuang et al. 2005) and suppression of ERK1/2 im-
proves some side-effects of PD treatment, such as L-
DOPA-induced dyskinesia (Santini et al. 2007). In sum,
more comprehensive knowledge of MAPKs implicated
in neurodegeneration-associated senescence is needed.

Concluding remarks and perspectives

MAPK pathways are integral to senescent traits. In
response to stimuli capable of triggering senescence,
MAPKs function as sensors to identify the type and
extent of damage, and help to decide whether the ensu-
ing response ought to be cell proliferation, differentia-
tion, apoptosis, senescence, or other. If cells adopt a
senescent response, MAPKs participate directly in the
various traits of senescence. First, MAPKs contribute to
implementing the gene expression programs that enable
indefinite growth arrest, including increasing production
of p21 and p16. Second, as integral mediators of the
SASP trait, MAPKs control the production and secre-
tion of SASP factors transcriptionally via NF-κB-
dependent and -independent pathways, as well as post-
transcriptionally by controlling the activity of RBPs that
govern the production of SASP and other senescence-
associated factors. Third, MAPKs are central to the anti-
apoptotic phenotype that ensures the long-term survival
of senescent cells. Therefore, understanding the role of
MAPKs in balancing senescence-associated prolifera-
tion, gene expression, and survival is essential for the
design of effective senotherapies.

As MAPKs control a large number of downstream
effectors, in-depth analysis is also needed for identifying
the specific contribution of MAPKs to traits like growth
arrest, SASP, and resistance to apoptosis. Along with
these needs, there are still many aspects of senescence
that remain to be fully understood. For example, supe-
rior senescence markers must be identified; at present,
classical markers such as senescence-associated β-Gal
activity, p21 or p16 abundance, and SASP factor levels
are not universal markers of senescence, and they lack
sufficient specificity and sensitivity. Given that senes-
cence can be detrimental or beneficial depending on the
specific senescence paradigm, identifying the contribu-
tion of MAPKs to each senescence phenotype could
uncover new tools (e.g., MAPK inhibitors) for

therapeutic benefit. Improved animal models of senes-
cence must also be developed and studied, and full
catalogs of proteins and RNAs driving human senes-
cence programs in cultured cells and in tissues/organs
in vivomust be identified systematically. Finally, robust
panels of senolytic and senostatic interventions to elim-
inate or reprogram senescent cells, respectively, must be
uncovered. As we gain deeper knowledge of the pleio-
tropic signaling pathways and gene expression pro-
grams driving senescence, including those orchestrated
by MAPKs, we will be able to design more rational
approaches to modify the senescent cell compartment
for therapeutic benefit.
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