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Abstract Aging population presents a major challenge
for many countries in the world and has made the
development of efficient means for healthspan extension
a priority task for researchers and clinicians worldwide.
Anti-aging properties including antioxidant, anti-in-
flammatory, anti-tumor, and cardioprotective activities
have been reported for various phytobioactive com-
pounds (PBCs) including resveratrol, quercetin,
curcumin, catechin, etc. However, the therapeutic po-
tential of orally administered PBCs is limited by their
poor stability, bioavailability, and solubility in the gas-
trointestinal tract. Recently, innovative nanotechnology-
based approaches have been developed to improve the
bioactivity of PBCs and enhance their potential in
preventing and/or treating age-associated disorders, pri-
marily those caused by aging-related chronic inflamma-
tion. PBC-loaded nanoparticles designed for oral

administration provide many benefits over conventional
formulations, including enhanced stability and solubili-
ty, prolonged half-life, improved epithelium permeabil-
ity and bioavailability, enhanced tissue targeting, and
minimized side effects. The present review summarizes
recent advances in this rapidly developing research area.
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Introduction

Over the past decades, the average life expectancy has
been extended in all developed countries. According to
the current demographic projections, the number of
people over the age of 65 will rise worldwide from
524 million in 2010 to nearly 1.5 billion in 2050
(World Health Organization 2012). However, the trends
observed in the rise in longevity are not commonly
accompanied by the same trends toward the human
healthspan extension (Hansen and Kennedy 2016). A
rapid population aging presents an important challenge
for most developed countries because aging is a major
risk factor for almost all chronic pathological condi-
tions. The incidence of age-associated disorders, includ-
ing cardiovascular and neurodegenerative diseases, os-
teoporosis, type 2 diabetes, and different types of can-
cers, has been rising drastically over the past few de-
cades, and this presents a serious problem for healthcare
systems worldwide (Beard and Bloom 2015).
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Therefore, the development of efficient means for age-
related disease prevention and healthspan extension be-
comes a priority task for policy makers and research
organizations (Seals et al. 2016; Yabluchanskiy et al.
2018). Substantial progress in this field depends on our
ability to fully decipher the process of aging and to
understand and manipulate the basic processes contrib-
uting to aging (Crimmins 2015; Vaiserman and Marotta
2016; Vaiserman and Lushchak 2017).

Several compounds have been proposed to offer
protection against or alleviate symptoms associated with
chronic conditions. Of these, plant-derived natural com-
pounds (phytochemicals) offer great hope for the devel-
opment of novel drugs and supplements for treating age-
related chronic conditions (Martel et al. 2019). Phyto-
chemicals are secondary metabolites that protect plants
from a wide range of environmental stresses such as
environmental pollutants and microbial infections. Due
to these properties, phytochemicals are regarded as
promising candidates for the development of
healthspan-promoting applications. Dietary supplemen-
tations with phytobioactive compounds (PBCs) such as
resveratrol, quercetin, curcumin, epigallocatechin gal-
late, catechin, and sulforaphane have been repeatedly
reported to have anti-aging potential (Corrêa et al. 2018;
Santín-Márquez et al. 2019). In both animal and human
studies, various antioxidant (Franco et al. 2019), anti-
inflammatory (Zhu et al. 2018), anti-tumor (Chikara
et al. 2018), cardioprotective (Shah et al. 2019), neuro-
protective (Sarker and Franks 2018), and other anti-
aging activities of these compounds have been repeat-
edly reported. Moreover, there is evidence that several
flavonoids may affect the aging process at the cellular
level by suppressing the senescence-associated secreto-
ry phenotype (SASP), a fundamental aging process that
promotes aging-related systemic inflammation (Lim
et al. 2015, 2017; Perrott et al. 2017).

The therapeutic potential of orally administered
PBCs is, however, limited due to their low hydrophilic-
ity, intrinsic dissolution rate, chemical instability, low
absorption, scarce biodistribution, and poor penetration/
accumulation in the body (Khadka et al. 2014). This
ultimately governs the rate and extent of oral drug
absorption from solid dosage forms and affects their
bioavailability in the body. Recently, innovative
nanotechnology-based approaches were developed in
order to help maintain the bioactivity of PBCs following
oral administration. PBC-loaded nanoparticles (NPs)
designed for oral administration provide many benefits

over conventional formulations, including increased sta-
bility, enhanced solubility, prolonged half-life, im-
proved epithelium permeability and bioavailability, en-
hanced tissue targeting, and minimal side effects (Date
et al. 2016; Lin et al. 2017). In recent years, these
nanotechnological approaches have been increasingly
applied for treating chronic age-related pathological
conditions, including cardiovascular diseases (Martín
Giménez et al. 2017; Li et al. 2018), neurodegenerative
disorders such as Alzheimer’s and Parkinson’s diseases
(Silva Adaya et al. 2017), obesity (Zhang et al. 2018),
type 2 diabetes (Jeevanandam et al. 2015), and cancer
(Iqbal et al. 2018; Qiao et al. 2019). The present review
paper is specifically focused on the therapeutic potential
of PBC-loaded nanodelivery systems in treating age-
associated chronic diseases. For this review, we
searched the PubMed database to identify relevant pub-
lications and used various combinations of search terms
such as: Baging^, Bage-related disease^, Banti-inflam-
matory activity ,̂ Bantioxidant^, Bphytobioactive
compound^, Bphytochemical^, Bbioavailability ,̂
Bnanoparticle^, Bnanodelivery .̂ The search was limited
to studies published in the English language from 2006
to the present.

Main types of nanodelivery systems

Nanosystems intended for delivery of therapeutic agents
may be classified into two main types: liquid and solid
(Borel and Sabliov 2014). Liquid nanosystems include
nanoemulsions, nanoliposomes, and nanopolymersomes.
Nanoemulsions are mixtures of immiscible liquids, such
as water and oil (Jaiswal et al. 2015). The synthesis of
nanoemulsions is generally carried out using either me-
chanical or chemical methods. Mechanical methods in-
clude high-energy processes in which larger emulsion
droplets are broken down into smaller ones by certain
mechanical operations, whereas chemical methods lead
to spontaneous formation of emulsion droplets as a con-
sequence of the hydrophobic effects of lipophilic mole-
cules in the presence of emulsifiers. The basic difference
between nanoemulsion and conventional emulsion lies in
the size and shape of the particles dispersed in the sus-
pension. Ordinarily, the nanoemulsion droplet size falls in
the range of 20 to 200 nm.

Nanoliposomes are nanosized self-assembled vesi-
cles composed of phospholipid bilayers entrapping one
or more aqueous compartments (Chan and Král 2018).
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Methods for synthesizing liposomes include gentle hy-
dration and layer-by-layer electrostatic deposition tech-
nique. These vesicles may be either unilamellar (~ 100
nm) or multilamellar (ranged from 500 to 5 μm). Im-
portantly, nanoliposome-encapsulated biomaterials are
considered to be protected from external conditions.

Nanopolymersomes are stable nanoscale vesicles
composed of self-assembling block copolymers with
tunable degradation properties (Tuguntaev et al. 2016).
They are synthesized by methods similar to those used
for producing polymeric NPs. Due to their properties,
nanopolymersomes are able to encapsulate hydrophobic
or hydrophilic molecules either in the membrane bilayer
or in the aqueous core, respectively. Advantages of
polymer nanocarriers, compared to lipid carriers, in-
clude controlled release and enhanced stability and ver-
satility (Rastogi et al. 2009). Nanopolymersomes are
considered to be attractive drug carriers due to their
colloidal stability and low membrane fluidity.

Solid nanodelivery systems include nanocrystals, lip-
id NPs, and polymeric NPs. Nanocrystals are sub-
micron (typically 10 to 800 nm) colloidal dispersion
systems of pure (carrier-free) drug NPs, produced using
mechanical or chemical methods. The main advantage
of such NPs is reducing their particle size to nanoscale
range, leading to an increase of the particle surface area
in contact with the dissolution medium (Gigliobianco
et al. 2018). Thereby, nanocrystal formulations have
many benefits compared to conventional pharmaceuti-
cal formulations. These benefits include, among others,
improved dissolution rate and saturation solubility, and
also high drug loading (Zhou et al. 2017).

Solid-lipid NPs are similar to nanoemulsions, with
the exception that they contain lipids in a solid phase.
These NPs are sub-micron colloidal nanocarriers with
diameters ranging from 50 to 1000 nm. They are com-
posed of physiological lipids dispersed in water or in
aqueous surfactant solutions (Naseri et al. 2015; Mishra
et al. 2018; da Silva Santos et al. 2019). These NPs are
most commonly produced by high-energymethods such
as microfluidization and ultrasonication (Mehnert and
Mäder 2001). The advantageous features of these NPs
include small size, large surface area, high drug loading,
and the interaction of phases at the interface. These
types of nanocarriers were developed to overcome lim-
itations of other colloidal nanocarriers (e.g., emulsions,
polymeric NPs, and liposomes) since they demonstrate
benefits such as targeted drug delivery with excellent
physical stability and also a good release profile (Naseri

et al. 2015). One more advantage of solid-lipid NPs is
that they offer a means of entrapping lipophilic mole-
cules in stable particles without using organic solvents.
Due to unique size-dependent properties and capacity to
incorporate drugs, solid-lipid NPs provide multiple ther-
apeutic advantages, including feasibility for large-scale
production, versatility of incorporation of hydrophilic
and lipophilic drugs, high bioavailability of drugs, and
low toxicity (Bayón-Cordero et al. 2019).

Polymeric NPs are solid colloidal NPs with a size
of 10–1000 nm consisting of natural or synthetic
polymers (Crucho and Barros 2017; Khan et al.
2017). Two main strategies for preparation of poly-
meric NPs are polymerization of monomers and
dispersion of preformed polymers (Krishnamoorthy
and Mahalingam 2015). They are commonly pro-
duced from biodegradable and biocompatible poly-
mers or copolymers, in which drugs may be
entrapped or encapsulated within the carriers, and
are also physically adsorbed on or chemically linked
to their surfaces. Polymeric NPs fall into two main
subtypes, namely nanospheres where loaded drugs
are uniformly dispersed and nanocapsules where
drugs are confined to the inner oily or aqueous
cavities surrounded by tiny polymeric membranes
(Grottkau et al. 2013). Their attractive properties
include stability during storage, water solubility,
small size, nontoxicity, biodegradability, and long
shelf life (Kamaly et al. 2016). Due to their
physico-chemical properties, polymeric NPs have
high stability in plasma and good encapsulation
efficacy, and also enhanced solubility and stability
of hydrophobic drugs. This allows a decrease in
their toxicity, permitting a controlled release at tar-
get sites at relatively low doses (Kamaly et al.
2016).

In addition, different types of metallic NPs such as
gold, silver, copper, aluminum, magnesium, zinc, and
titanium NPs are increasingly used for active or pas-
sive drug delivery in various biomedical applications.
Metallic NPs with diameters ranging from 1 to
100 nm may be synthesized and modified with dif-
ferent chemical functional groups which allow them
to be conjugated with various drugs of interest to
specifically target particular cells (Mody et al.
2010). The relatively simple synthesis, biocompati-
bility, easy chemical modification, and tunable bio-
physical properties of metallic NPs make them highly
advantageous in nanomedicine appl icat ions
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(Lushchak et al. 2018). Some of the most widely used
nanodelivery systems are schematically presented in
Fig. 1.

Nanocarrier-based drug delivery systems:
achievements and perspectives

Oral delivery is regarded as the most accepted mode of
drug administration due to the obvious advantages of
this route compared to other delivery routes. The advan-
tages include simplicity of administration, high patient
compliance, painlessness, outpatient applicability, and
easy self-administration (Anselmo and Mitragotri
2014). While advantageous, the efficiency of oral drug
delivery may be substantially reduced due to chemical
and enzymatic barriers in the gastrointestinal tract.
Moreover, low bioavailability of many therapeutic bio-
molecules in the gastrointestinal tract is related to their
poor gastrointestinal solubility. To overcome these lim-
itations, novel and innovative drug delivery systems are
currently being developed. The oral delivery of thera-
peutic compounds such as drugs or bioactive substances
loaded onto nanocarrier systems has been a subject of
rigorous study over the past few years and has proven to

enhance the efficiency of compound delivery for thera-
peutic purposes (Lin et al. 2017; Kermanizadeh et al.
2018). The loading of drugs or bioactive agents occurs
in two ways: they are either integrated in the core matrix
of the NPs or attached on the surface (Lin et al. 2017).
With respect to pharmacokinetic properties, drugs de-
livered by nanocarriers commonly exhibit increased
half-life, prolonged circulation time, increased mean
residence time, and reduced clearance from the body
(Ravindran et al. 2018).

Currently, several nanodelivery systems for
biotherapeutics are in clinical trials and are increasingly
being introduced in clinical practice (Hajialyani et al.
2018). The most urgent challenge now is developing
innovative multifunctional nanosized materials capable
of specifically targeting particular cell types, tissues or
organs, and which also contain functionalities that allow
them to transfer therapeutics across biological barriers in
the body. Successful drug carrier systems must be char-
acterized by optimum properties for drug loading and
release, long storage life, and high therapeutic efficiency
with no or negligible side effects (Piazzini et al. 2018).
A high therapeutic potential of naturally derived sub-
stances motivates nanotechnologists to design innova-
tive nanomaterials that would improve their stability,

Fig. 1 Graphical representation of the most common types of NPs
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solubility, specificity, efficiency of cellular uptake/inter-
nalization, tolerability, and therapeutic index (Bilia et al.
2017).

In present-day controlled drug delivery and release
systems, various sorts of biocompatible drug
nanocarriers are applied (for detailed review, see Borel
and Sabliov 2014; Bilia et al. 2017; Ganesan et al.
2018a). Numerous materials and structures have been
developed as nanocarriers for either passive or active
therapeutic targeting. Following passive delivery, the
loaded agent is released by the diffusion or erosion of
the nanovector. The active delivery mode provides an
opportunity for controlled release of the transported
molecules at targeted sites by incorporating stimuli-
responsive components that may be triggered by specif-
ic stimuli, including variations in pH, exposure to light,
electric or magnetic field, ultrasound, heating, or contact
with concentrated ionic solutions or enzymes (Gu et al.
2018). Metallic NPs such as iron oxide, silver, and gold
NPs can be surface-modified to act as drug carriers
(Kong et al. 2017). The use of organic materials, how-
ever, seems to be preferred in this context since their
physicochemical properties may be finely tuned by
modifying their size, shape, chemical composition,
structural morphology, and surface characteristics
(Conte et al. 2017). In NPs and nanocapsules, therapeu-
tic agents may be conjugated to or encapsulated in
polymer chains.

Physicochemical characteristics of NPs such as their
absorption, distribution, metabolism, and excretion de-
pend on their size, charge, hydrophobicity, and targeted
biomolecules. The size of NP is an important parameter
that determines its entry into cells, pharmacokinetics,
and its interaction with the immune system (Hoshyar
et al. 2016). Surface properties of NPs such as their
hydrophobicity or hydrophilicity determine many of
the biological responses induced by these structures,
including interactions with plasma proteins, cellular up-
take, phagocytosis, immune responses, and particle re-
moval (Ajdary et al. 2018). Moreover, the cellular up-
take and cytotoxicity of medical NPs are largely depen-
dent on their surface charge (Fröhlich 2012). An impor-
tant feature of orally administered nanomedicines is
their ability to overcome the physical and chemical
barriers in the intestine, such as the acidic pH of the
stomach, the mucosal lining of the intestine, and the
selectively permeable enterocyte membranes, all of
which govern drug absorption (Moss et al. 2018). Due
to these properties, NPs can protect encapsulated

bioactive compounds from degradation following gas-
trointestinal digestion and cellular metabolism. NP-
entrapped bioactive compounds are ultimately released
in the intestines, in the circulatory system or in the cells
of various tissues. The subsequent biological fate of
these bioactive compounds depends on their chemical
and physical properties and the site of their release. An
important point is that the location of bioactive release
may be tailored using nanomaterials with specific sur-
face chemistry, thereby enabling the release of these
therapeutics in specific tissues (Martínez-Ballesta et al.
2018). In nanomedicine, targeting strategies play a piv-
otal role in overcoming side effects and minimizing
systemic drug administration. These strategies include
passive and active targeting (Kydd et al. 2017). Passive
targeting is achieved by modifying physiochemical
characteristics, hydrophobicity and pH of NPs, and uti-
lizing the enhanced permeability and retention (EPR)
effect of inflamed blood vessels. In active targeting,
biomarkers such as RNAs, proteins, carbohydrates,
lipids, and small metabolite molecules are used to reach
particular target sites (Conte et al. 2017). The efficacy of
entrapment of PBCs is also dependent on the molecular
weights of the compounds loaded onto the NPs. Increas-
ing the molecular weight leads to a decrease in entrap-
ment efficacy of these PBCs, resulting in lower bioavail-
ability (Ganesan et al. 2018b). Each type of
nanodelivery system provides distinct health benefits
depending on the compatibility of their properties, the
properties of the loaded bioactive agents and the desired
therapeutic applications (Gupta and Xie 2018; Rizvi and
Saleh 2018).

PBC-loaded nanodelivery systems

PBCs undoubtedly have great therapeutic potential in
treating complex diseases (Chikara et al. 2018; Sarker
and Franks 2018; Shah et al. 2019). Many PBC-loaded
nanodelivery systems have been repeatedly shown to be
efficient in modulating unfavorable processes such as
chronic oxidative stress and inflammation that are well-
known mediators of most age-associated pathological
conditions. A schematic diagram outlining the impact of
NP-delivered PBCs on the main cellular pathways in-
volved in inflammation is presented in Fig. 2.

PBC-loaded nanostructures which are the most well
studied to date are described in the subsections below.
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Chemical structures of these PBCs are given in Fig. 3
below.

Curcumin

Curcumin (diferuloylmethane) is a polyphenol extracted
from the rhizome of the Curcuma longa herb, which has
been widely used in Asia for centuries as a spice and
herbal medicine. It is known for its biological activities
that include anti-inflammatory, anti-oxidative, anti-neu-
rodegenerative, and anti-cancer properties that are at-
tributed to its unique molecular structure (Sarker and
Franks 2018). The therapeutic potentials of curcumin in
treating age-related pathological conditions, such as
chronic inflammation, atherosclerosis, hypertension,
type 2 diabetes, cardiovascular and neurodegenerative
diseases, rheumatoid arthritis, osteoporosis, chronic kid-
ney disorders, ocular diseases, and cancer, have been
well documented in the literature (for review, see Sundar
et al. 2018). In recent years, the health-promoting and

disease-preventing capabilities of this compound have
been increasingly examined in clinical trials (Salehi
et al. 2019). However, the therapeutic potential of
curcumin is currently limited due to its poor bioavail-
ability (Kumar et al. 2010). To overcome these obsta-
cles, the development of nanodelivery systems that im-
prove the therapeutic efficiency of curcumin has been
emerging as a promising innovative delivery approach
(Flora et al. 2013; Ahmad et al. 2014). Better anti-aging
properties of nanocurcumin formulations compared to
those of native curcumin have been shown in both
in vitro and in vivo studies. By encapsulating curcumin
in lipid NPs, nanogels, dendrimers or polymeric NPs, or
by conjugating it to metal oxide NPs, the water solubil-
ity and bioavailability of this agent have been substan-
tially improved resulting in an increase in its pharmaco-
logical efficiency (Shome et al. 2016). For example, the
oral bioavailability of poly lactic-co-glycolic acid
(PLGA) nano-formulation of curcumin was found to
be 22-fold higher than that of conventional curcumin

Fig. 2 Schematic representation of inflammation-related molecu-
lar pathways potentially affected by PBC-loaded NPs. The anti-
inflammatory effects of such NPs might be mediated through
inhibiting the production of nitric oxide (NO) by nitric oxide
synthase (iNOS), lowering the levels of prostaglandins and

arachidonic acid metabolites through inhibiting phospholipase
A2 (PLA2) and cyclooxygenase (COX) pathways, or down-
regulating the mitogen-activated protein kinase (MAPK) and nu-
clear factor kappa B (NF-κB) pathways
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(Tsai et al. 2011). In a cerebral ischemia rat model, the
use of curcumin-loaded solid lipid NPs led to a 16 times
greater bioavailability of curcumin in the brain as com-
pared with the use of native curcumin (Kakkar et al.
2013). Significantly improved oral bioavailability and
brain distribution of curcumin in comparison with free
curcumin was also observed in N-trimethyl chitosan
surface-modified solid lipid NPs (Ramalingam and Ko
2015). In both in vitro and in vivo models, convincing
evidence was also obtained that curcumin-loaded NPs
may exert significant antioxidant (Fan et al. 2018) and
anti-inflammatory (Wang et al. 2015a; Ameruoso et al.
2017; Dewangan et al. 2017; Li et al. 2017b; El-Naggar
et al. 2019) activities.

Quercetin

Quercetin is an important flavonoid present in various
fruits, vegetables, grains, and leaves. This compound is
well known for its antioxidant, anti-inflammatory, anti-
atherosclerotic, anti-obesity, anti-diabetic, anti-hyper-
tensive, and anti-hypercholesterolemic properties
(Anand David et al. 2016). However, the health benefits
of quercetin are limited due to its relatively low bio-
availability (Kawabata et al. 2015; Ganesan et al. 2017).
Indeed, initial studies of quercetin pharmacokinetics in

humans showed that oral bioavailability of this com-
pound is very low (less than 2% after a single oral dose).
The estimated absorption of quercetin glucoside, which
is the naturally occurring form of this compound, ranges
only from 3 to 17% in healthy individuals per 100 mg of
quercetin ingested (Li et al. 2016). Some innovative
approaches have been developed in recent years to
improve the bioavailability of quercetin. Among them,
the nanodelivery approach seems one of the most prom-
ising. Recently, quercetin-loaded solid lipid NPs were
developed that showed a significantly enhanced bio-
availability in comparison with a pure quercetin powder
(Vijayakumar et al. 2016). Quercetin-loaded NPs have
also been shown to improve antioxidant defense mech-
anisms in animal models (Chitkara et al. 2012; Alam
et al. 2016). Moreover, they were found to exert antiox-
idant effects and ameliorate inflammatory conditions in
different cell lines (Lee et al. 2016).

Resveratrol

Resveratrol is a well-known polyphenolic compound
with many pleiotropic activities including anti-aging
actions in various model organisms and in humans.
The anti-aging effects of resveratrol are attributed to its
ability to activate the mammalian silent information

Fig. 3 Chemical structures of the most widely used PBCs
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regulator 1 (SIRT1), and modulate the activity of nu-
merous proteins, such as peroxisome proliferator-
activated receptor coactivator-1α (PGC-1α), Akt/
protein kinase B, NF-κβ, and the FOXO family, all of
which are known to play important roles in aging pro-
cesses (Camins et al. 2009). Many of these activities
exhibit similar patterns to those seen in calorie restric-
tion (CR) treatments, thereby implicating the potential
of resveratrol as a CR mimetic (Li et al. 2017c). To date,
the efficiency and safety of resveratrol have been well
documented in 244 clinical trials, with an additional 27
clinical trials presently ongoing (Singh et al. 2019).
These studies provide evidence for the therapeutic po-
tential of resveratrol in treating various aging-associated
conditions including hypertension, obesity, type 2 dia-
betes, metabolic syndrome, cardiovascular disorders,
stroke, breast and colorectal cancers, chronic kidney
and inflammatory diseases, and also Alzheimer’s dis-
ease (Berman et al. 2017; Singh et al. 2019). Although
the clinical usefulness of resveratrol has been well doc-
umented, the therapeutic use of this compound is sub-
stantially limited due to its rapid metabolism and poor
bioavailability (Smoliga and Blanchard 2014; Csiszár
et al. 2015). Moreover, resveratrol has very low solubil-
ity in water, which results in its poor absorption by oral
administration (Chauhan 2015). Many preclinical stud-
ies and clinical trials are currently in progress to deter-
mine the appropriate dosage of resveratrol for oral ad-
ministration given its rapid metabolism and to create
structurally modified resveratrol derivatives that can
have higher bioavailability upon ingestion (Popat et al.
2013). For example, SRT501, a micronized liquid for-
mulation of trans-resveratrol, was shown to possess
roughly 5 times higher bioavailability than non-
micronized compound (Elliot and Jirousek 2008). How-
ever, this formulation was not well tolerated in several
clinical trials due to side effects including vomiting and
diarrhea in patients, which led to dehydration and renal
failure (Popat et al. 2013). As such, there was a strong
drive to investigate other formulations that act in a
similar manner to SRT501, but with fewer or no side
effects (Smoliga et al. 2012). Recently, several
nanosized resveratrol-loaded formulations were devel-
oped and studied for their potential clinical application.
For example, in male Wistar rats, the bioavailability of
trans-resveratrol through oral delivery with trans-
resveratrol-loaded lipid-core nanocapsules was shown
to be 2 times higher in the brain, kidney, and liver when
compared to free trans-resveratrol (Frozza et al. 2010).

Gastrointestinal safety was also improved compared to
free trans-resveratrol in the same animal model. The
bioavailability of intravenous administered folate-
conjugated human serum albumin-encapsulated resver-
atrol NPs has been also found to be 6-fold higher than
that of free resveratrol (Lian et al. 2019). In several
in vitro studies, antioxidant (Chen et al. 2015) and
anti-inflammatory (Siu et al. 2018) abilities of
resveratrol-loaded NPs have been also reported.

Genistein

Genistein is a soy isoflavonoid with promising thera-
peutic potential in combating many aging-related path-
ological conditions, including oxidative stress, inflam-
mation, obesity, type 2 diabetes, cancer, osteoporosis,
and neurodegenerative disorders (for review, see Saha
et al. 2014). However, a reduced bioavailability of ge-
nistein was observed in different animal models. More-
over, higher doses of this estrogen-like substance can
lead to toxicity and have endocrine-disrupting effects
(Patisaul 2017). Over the past few years, several inno-
vative nanoscale materials have been developed and
validated to improve the oral delivery of genistein and
to overcome its potential toxic effects (Rassu et al.
2018). Genistein-loaded polymeric micelles showed a
higher bioavailability through oral delivery than genis-
tein powder, most likely due to their higher solubility
and release in the gastrointestinal tract (Kwon et al.
2007). The oral bioavailability of genistein loaded in
solid lipid NPs was also significantly enhanced in rats in
comparison with that of bulk powders or suspensions of
genistein (Kim et al. 2017). Moreover, a high cytotox-
icity of genistein-conjugated gold NPs against cancer-
ous cells was demonstrated in a cell line test (Stolarczyk
et al. 2017).

Epigallocatechin-3-gallate

Epigallocatechin-3-gallate (EGCG) is a type of catechin
and the most abundantly found type of polyphenol in
green tea. It is known to exhibit a variety of healthspan-
promoting and anti-aging activities due to its antioxi-
dant, anti-inflammatory, anti-atherogenic, and anti-
tumor properties (Singh et al. 2011; Shi et al. 2018).
However, the findings obtained in epidemiological stud-
ies of this compound are ambiguous and often conflict-
ing with data from in vitro studies. This contradiction
may be at least partially due to the compound’s poor
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stability and low bioavailability (Mereles and Hunstein
2011; Krupkova et al. 2016; Chu et al. 2017). In order to
enhance the bioavailability of this PBC and improve its
delivery, many nanocarrier-based delivery systems such
as solid lipid NPs have been developed (Granja et al.
2017). For example, a study by Frias et al. (2016)
showed that EGCG can be successfully loaded onto
solid lipid NPs with a particle size of about 300–400
nm. This formulation was shown to have a greater
stability and a higher potential for oral delivery than
non-processed EGCG. The pH-sensitive EGCG-loaded
polymeric NPs were also shown to significantly modify
the pharmacokinetic profile of this compound and en-
hance EGCG bioavailability bymore than 2.4-fold com-
pared to EGCG powder alone (Zhang and Zhang 2018).
Moreover, an effect of NPs loaded with EGCG on
inhibiting breast cancer cells was observed (Zeng et al.
2017). EGCG-loaded NPs were also shown to exert
antioxidant (Avadhani et al. 2017) and anti-
inflammatory (Wu et al. 2017) effects with in vitro
models.

Potential of PBC-loaded nanodelivery systems
in prevention and treatment of age-related diseases

Over the last few years, accumulating evidence has
shown that PBC-loaded nanodelivery systems may be
efficient in preventing and treating a range of age-related
pathological conditions. The main findings from these
studies are summarized and discussed in subsequent
sections.

Metabolic disorders

The prevalence of obesity and other metabolic syn-
dromes including high cholesterol levels, high blood
pressure, and insulin resistance is well known to in-
crease significantly with age. The co-occurrence of ag-
ing and obesity was shown to substantially increase low-
grade inflammation (Binflammaging^), which was
found to be an important link between obesity, insulin
resistance, and age-related chronic disorders (Frasca
et al. 2017). An obesity-related disease such as type 2
diabetes (adult-onset or non-insulin-dependent diabetes)
is currently one of the most common age-related chronic
disorders around the globe. The pathophysiology of this
disease is characterized by impaired glucose

metabolism, declining beta-cell function and peripheral
insulin resistance (Skyler et al. 2017).

Various PBCs have been used for centuries in treating
metabolic disorders, especially in Asian traditional med-
icine (Governa et al. 2018). Since most PBCs have
strong anti-oxidative and anti-inflammatory potentials,
recent studies have focused on the anti-obesogenic and
anti-diabetic effects of these compounds. For example,
long-term green tea intake significantly improved lipid
metabolism and reduced waist circumference and body
mass index, whereas cocoa decreased blood glucose
levels and blood pressure (Amiot et al. 2016). In addi-
tion, soy isoflavones such as quercetin, hesperidin, and
citrus products improved lipid metabolism and cinna-
mon reduced blood glucose levels (Amiot et al. 2016).
Moreover, the anti-obesity and anti-diabetic effects of
PBCs such as curcumin (Wojcik et al. 2018), resveratrol
(Hou et al. 2019), genistein (Behloul and Wu 2013),
quercetin (Chen et al. 2016), and EGCG (Eng et al.
2018) have been reported in numerous studies. Second-
ary metabolites derived from seaweeds have also dem-
onstrated substantial anti-obesity and anti-hypertensive
properties and could provide additional compounds for
dealing with these conditions (Muradian et al. 2015;
Seca and Pinto 2018).

The intake of conventional anti-diabetic medications
is often associated with long-term side effects. There-
fore, the use of PBC-loaded NPs is receiving consider-
able attention as a promising alternative to synthetic
anti-diabetic medications (Anand et al. 2017; Ganesan
et al. 2017). In several animal models, orally adminis-
tered PBC-loaded NPs demonstrated an enhanced anti-
diabetic potential compared to native PBCs. For exam-
ple, NPs loaded with the isoquinoline alkaloid berberine
have anti-diabetic properties (Lee 2006) and demon-
strated both improved bioavailability and higher anti-
diabetic effects in a diabetic mouse model (Xue et al.
2013). More specifically, a substantial suppression of
body weight gains and improved glucose tolerance and
insulin sensitivity were observed in db/db mice when
berberine-loaded NPs were administered. In addition,
oral administration of such NPs led to a higher concen-
tration of berberine, which correlated with the suppres-
sion of several lipogenic genes such as fatty acid syn-
thase, stearoyl-CoA desaturase, and sterol regulatory
element-binding protein 1c, and the induction of the
lipolytic carnitine palmitoyltransferase-1 gene in liver
of db/db mice (Xue et al. 2015). More recently, signif-
icant hypoglycemic effects were revealed in both
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normal and diabetic rats orally administered with
selenium-layered NPs loaded with plant extracts known
to exhibit hypoglycemic properties, such as extracts of
mulberry leaf and Pueraria lobata (Deng et al. 2019).
The same study showed that these NPs can also promote
glucose utilization by adipocytes, attenuate the oxida-
tive damage, and enhance pancreatic function. Thus, it is
a potential remedy for dealing with diabetes.

Cardiovascular diseases

Many natural polyphenols are also known to have pro-
tective effects against atherosclerotic, arteriopathy, and
cardiovascular diseases due to their antioxidant, anti-
inflammatory, and vascular-protective properties
(Alfaras et al. 2016; Campesi et al. 2018). Recently,
PBC-loaded nanodelivery systems were developed to
improve o ra l b i oava i l ab i l i t y and ampl i f y
cardioprotective effects of these compounds. For exam-
ple, solid lipid NPs loaded with puerarin (the major
bioactive constituent in kudzu roots widely used in
China for the treatment of cardiovascular diseases)
showed 3 times higher bioavailability following oral
administration in heart and brain compared to free
puerarin (Luo et al. 2011). In an in vitro study, attenua-
tion of palmitate-induced cardiomyocyte apoptosis was
achieved by inhibiting NADPH-mediated oxidative
stress and increasing the Bcl-2/Bax ratio following
curcumin-loaded NP treatment in H9C2 embryonic rat
heart-derived cells (Li et al. 2017d). Moreover, using
colloidal curcumin NPs dissolved in gum ghatti solution
led to the restoration of the left ventricular fractional
shortening, a deterioration that is associated with heart
failure following myocardial infarction in male rats
(Sunagawa et al. 2012). Better therapeutic effects
against myocardial ischemia-reperfusion injury com-
pared to that of the non-modified extract were observed
in rats treated with solid lipid NPs loaded with the total
flavonoid extract from Dracocephalum moldavica L.
(Tan et al. 2017).

Most aging-associated cardiometabolic disorders are
well known to be accompanied by microvascular endo-
thelial dysfunction (Ungvari et al. 2018a, b). Accumu-
lating evidence suggests that this dysfunction may be
largely preventable by plant bioactives (Heiss et al.
2018). The supposed mechanisms by which PBCs pro-
vide endothelial protection include attenuated level of
oxidative stress, enhanced eNOS/NO bioavailability,
inhibited NF-κB activity, and also decreased expression

of cell adhesion molecules (Monsalve et al. 2017).
Therefore, an important question is whether
nanodelivery of PBCs could have the potential for pre-
vention and treatment of this dysfunctional condition.
However, this potential is still poorly understood and
needs further investigation.

Neurodegenerative disorders

The incidence of age-related neurodegenerative disor-
ders, such as Alzheimer’s and Parkinson’s diseases, has
increased dramatically over the last decades and is pre-
senting an important socio-economic problem across
most developed countries. The development of effective
strategies for the treatment of age-associated neurodegen-
eration is, therefore, regarded as a public health priority.
However, the treatment of these diseases is very difficult
due to the existence of the blood-brain barrier. This
selective permeability system that acts as a local gateway
against circulating foreign substances represents an im-
portant challenge in delivering therapeutic agents to the
brain. The development of nanotechnology-based sys-
tems for brain delivery, such as polymeric and metallic
NPs, liposomes, micelles, dendrimers, and carbon nano-
tubes, is currently being investigated bymany researchers
and drug designers as a promising solution for addressing
this challenge (Teleanu et al. 2018; Saeedi et al. 2019);
see Fig. 4 for schematic representation.

Alzheimer’s disease

The nanotechnology-based approach might be a prom-
ising treatment strategy for patients with Alzheimer’s
disease (de la Torre and Ceña 2018; Wong et al. 2019).
This disease is characterized by abnormal accumulation
of extracellular amyloid-beta plaques and intraneuronal
neurofibrillary tangles in the brain. It commonly mani-
fests as a type of dementia in aging individuals, leading
to cognitive abnormalities and memory loss that sub-
stantially interferes with their quality of life
(Magalingam et al. 2018). Alzheimer’s dementia is
one of the most common neurodegenerative disorders
affecting about 5.7 million Americans, with the number
of affected individuals projected to rapidly increase
because of an aging population (Rabinovici 2019). Al-
though a vast amount of information has been accumu-
lated over the past few decades regarding the causality
of this disease, effective drug treatments for
Alzheimer^s disease have yet to be identified. As such,
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numerous researchers and drug developers are urgently
looking for alternative treatment strategies to prevent
this disease from occurring or alleviate symptoms in
those already affected (Magalingam et al. 2018).

Over the last few years, PBC-loaded nanodelivery
systems were developed and tested in animal models
and have demonstrated a great potential in treating this
neurodegenerative disease (Karthivashan et al. 2018;
Kermanizadeh et al. 2018; Del Prado-Audelo et al.
2019). In several studies, NPs administered by intrana-
sal or intravenous routes provided enhanced bioavail-
ability in the brain when compared to free drug admin-
istration, thus preventing neuroinflammation and further
progression of the disease (Masserini 2013; Gao 2016).
For example, in a rat model of Alzheimer’s disease, rats
that were intravenously administered with quercetin-
loaded solid lipid NPs exhibited substantially better

memory-retention vis-à-vis test compared to those treat-
ed with pure quercetin (Dhawan et al. 2011). Moreover,
these NPs demonstrated a higher delivery of quercetin to
the brain with enhanced antioxidant effect in brain cells.
Similarly, NPs loaded with the alkaloid piperine (an
active compound found in black pepper) demonstrated
increased bioavailability in brain cells following intra-
peritoneal administration (Yusuf et al. 2012). In an ex-
perimentally induced model of Alzheimer’s disease, the
piperine-loaded NPs exhibited therapeutic effects on
disease progression by reducing oxidative stress and
cholinergic degradation.

In several recent studies, the anti-Alzheimer’s poten-
tial of NPs loaded with curcumin, known to modulate
the activity of several transcription factors and their pro-
inflammatory signaling pathways, was examined. Since
curcumin shows low bioavailability in vivo,

Fig. 4 Schematic representation of nanotechnology-based systems used for brain delivery of PBCs
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nanotechnology-based curcumin formulations were de-
veloped to achieve therapeutically relevant concentra-
tions of this compound in the brain (Ullah et al. 2017).
In a study by Barbara et al. (2017), the anti-
amyloidogenic potential of curcumin-loaded NPs was
examined in an in vitro model. In this research, a sig-
nificant decrease of amyloid-beta aggregates was ob-
served in primary hippocampal cell cultures treated with
curcumin-loaded polylactide-co-glycolic-acid (PLGA)
NPs. In an aluminum-induced mouse model of
Alzheimer’s disease, oral administration of curcumin-
loaded solid lipid NPs led to 32–155 times enhanced
bioavailability of curcumin compared to the control
group, and resulted in complete abolition of
aluminum-induced adverse behavioral changes, and im-
proved biochemical and histopathological alterations in
the brain (Kakkar and Kaur 2011). Improved treatment
efficiency of poly (lactic-co-glycolic acid) curcumin
NPs was also observed in Tg2576 mouse model of this
disease (Cheng et al. 2013).

Resveratrol is also regarded as a promising candidate
for the treatment of Alzheimer’s disease, owing to its
neuroprotective properties. Since resveratrol was found
to be rapidly metabolized in liver and intestinal epithe-
lial cells (within less than 2 h after intravenous injec-
tion), solid lipid NPs functionalized with monoclonal
antibodies against the transferrin receptor, were devel-
oped (Loureiro et al. 2017). These NP-antibody conju-
gates showed enhanced cellular uptake and proposed a
promising function as possible carriers to transport res-
veratrol extracts to the brain in an effort to treat
Alzheimer’s disease.

Quercetin-loaded NPs also showed a more stable
release of this compound over time with quercetin
NPs showing a 5% release of this compound in the
first hour post-administration and reaching 25% re-
lease after 8 h (Han et al. 2018). By contrast, pow-
der quercetin only showed a 2% release in the first
hour after administration before reaching a release
saturation profile of just 4% after 2 h. Additionally,
quercetin-loaded NPs showed a 6-fold greater re-
lease of quercetin compared to the powder form.
These characteristics made quercetin NPs an attrac-
tive therapeutic potential for various conditions. In-
deed, the same study demonstrated that quercetin
NPs have promising therapeutic potentials in
preventing and or treating Alzheimer’s disease due
to their activity as amyloid β inhibitors and free
radical scavengers (Han et al. 2018).

In a rat model of Alzheimer’s disease, EGCG-loaded
NPs were found to be effective in attenuating aluminum
chloride-induced adverse neurobehavioral impairments
by reducing the formation of neuritic plaque and neuro-
fibrillary tangles (Singh et al. 2018). Furthermore, a
recent study demonstrated that oral administration of
NPs loaded with EGCG and ascorbic acid enhanced
the accumulation of EGCG in the brain, resulting in an
increase in the number of synapses and reduced neuro-
inflammation and amyloid-beta plaque/peptide accumu-
lation in a mouse model of familial Alzheimer’s disease
(Cano et al. 2019).

Parkinson’s disease

Parkinson’s disease is the second most common neuro-
degenerative pathological condition after Alzheimer’s
disease, affecting about 10 million individuals world-
wide (Rousseaux et al. 2017). This disease occurs most
commonly in the elderly and is characterized by the
progressive loss of dopaminergic neurons and activation
of microglial cells. While various efficient symptomatic
treatments are presently available, there are no curative
or disease-modifying therapies available for this disor-
der. Since neuroinflammation associated with the loss of
dopamine-producing neurons in the brain is a pathologic
hallmark of Parkinson’s disease (Vivekanantham et al.
2015) , PBCs that demonstra te s t rong ant i -
neuroinflammatory responses are increasingly being in-
vestigated as potential therapeutics to treat Parkinson's
disease (da Costa et al. 2017). These compounds, how-
ever, have limitations for therapeutic oral delivery be-
cause of their extensive first-pass metabolism and diffi-
culties in crossing the blood-brain barrier (Ganesan et al.
2018b).

To overcome these issues and to maximize efficacy
in treating Parkinson’s disease, PBC-loaded
nanomedicines with a controlled size of 1–100 nm were
engineered and examined in animal models during re-
cent years (Ganesan et al. 2015). Nanosizing of PBCs
such as curcumin, quercetin, resveratrol, catechin, and
ginsenosides was shown to enhance their permeability
into the brain with maximized stability and therapeutic
effectiveness. In particular, several studies have demon-
strated the enhanced oral bioavailability of curcumin
loaded solid lipid NPs in the brain (Ramalingam and
Ko 2015, 2016). Similarly, the bioavailability of resver-
atrol loaded in N-trimethyl chitosan-g-palmitic acid
surface-modified solid lipid NPs was shown to be 3.8-
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fold higher than that from resveratrol suspension
(Ramalingam et al. 2016). In the study by da Rocha
Lindner et al. (2015), polysorbate 80-coated
poly(lactide) NPs loaded with resveratrol exerted signif-
icant neuroprotective effects against behavioral and neu-
rochemical changes induced by the neurotoxin 1-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine, which is known
to damage dopaminergic neurons and induce Parkinson-
like symptoms.

Rheumatoid arthritis

Rheumatoid arthritis is a systemic autoimmune
disease caused by chronic inflammation due to
age-associated decline of the immune system
(immunosenescence) (van Onna and Boonen
2016). The incidence of this disease increases with
age and peaks around the age of 70 to 79 years
(Cleutjens et al. 2019). The chronic immune sys-
tem stimulation occurring in rheumatoid arthritis is
suggested to promote premature aging and cause
comorbidities, such as cardiovascular disorders, os-
teoporosis, and cancers.

Various PBCs including resveratrol, curcumin,
hesperidin, thymoquinone, celastrol, and gambogic
acid have demonstrated high efficiency in treating
rheumatoid arthritis (Rahman et al. 2017). Such
activity of PBCs may be likely attributed to their
ability to decrease levels of inflammatory media-
tors such as cytokines, chemokines, nitric oxides,
activity of NF-kβ signaling, adhesion molecules,
lipoxygenase, and arachidonic acid molecules.
Since the bioavailability of PBCs is poor due to
their low aqueous solubility and high first-pass
metabolism after oral administration, application
of nanomedicines in treating rheumatoid arthritis
has gained significant attention recently. In a rat
model of the Complete Freund’s adjuvant (CFA)-
induced arthritis, oral and topical administration of
piperine-loaded solid lipid NPs resulted in a sig-
nificant reduction in TNFα protein levels, suggest-
ing that treatment with this NP has an anti-
rheumatic therapeutic potential (Bhalekar et al.
2017). In the same rat model, the protective po-
tential of curcumin-loaded solid lipid NPs in ame-
liorating CFA-induced arthritis via attenuating the
anti-oxidative and anti-inflammatory responses in
treated rats was demonstrated (Arora et al. 2015).

Osteoporosis

Osteoporosis is an age-associated disease characterized
by deterioration in bone mass and micro-architecture,
resulting in an increased risk of fragility fractures in
older individuals (Alejandro and Constantinescu
2018). Osteoporotic bone loss is accompanied by ele-
vated expression of proinflammatory cytokines. The
FDA-approved anti-osteoporosis drugs are expensive
and have numerous side effects. Therefore, searching
for novel, efficient, and safe drugs for treating this
disease is warranted. PBCs known to possess anti-
inflammatory properties such as curcumin, genistein,
resveratrol, quercetin, etc. are increasingly being
regarded as potential medications that prevent age-
related bone loss (Pandey et al. 2018). The results from
recent in vitro and in vivo studies are indicative of
effects of PBC-loaded NPs on biochemical markers
and biomechanical parameters during osteoporosis, sug-
gesting the potential of nanotechnological applications
in preventing and or treating osteoporosis (Barry et al.
2016). In in vivo studies, the curcumin-loaded
poly(lactic-co-glycolicacid) NPs were shown to poten-
tiate the protective effect of curcumin against bone loss
in ovariectomized rats (Ahn et al. 2017). The adminis-
tration of curcumin-loaded β-cyclodextrin conjugated
gold NPs resulted in improved bone density and
prevented bone loss in ovariectomized C57Bl/6 mice
(Heo et al. 2014). In an ovariectomized rat model, a
formulation of quercetin-based solid lipid NPs was
shown to be more effective than free quercetin in restor-
ing bone mineral density in osteopenic animals (Ahmad
et al. 2016).

Cancer

Cancer is among the leading causes of mortality world-
wide. Treatment of cancer patients with chemotherapeu-
tic agents is known to be associated with unfavorable
pharmacokinetics, poor bioavailability, and severe sys-
temic toxicity. Problems with conventional anti-cancer
drugs have prompted the development of innovative
nanobiotechnological approaches that allow drug deliv-
ery to specific tumor sites and minimize toxicity in
healthy tissues in close proximity to the tumor
(Zamboni et al. 2012; Ahmad et al. 2018). NPs are
currently being extensively studied for their application
in oral delivery of PBCs in anti-cancer therapies. In
in vitro studies, enhanced anti-tumor activity was
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obtained for nanoengineered PBCs such as curcumin
(Hazzah et al. 2016; Meena et al. 2017; Dhivya et al.
2018; Montalban et al. 2018; Wang et al. 2018a, b; van
der Vlies et al. 2019; Somu and Paul 2019; Ni et al.
2019), resveratrol (Rodenak-Kladniew et al. 2017;
Wang et al. 2017), berberine (Wang et al. 2014a;
Zheng et al. 2018), aloe-emodin (Wang et al. 2012;
Chen et al. 2014), oridonin (Wang et al. 2014b), and
EGCG (Chavva et al. 2019) compared to respective
unmodified PBCs. Using in vivo models of induced
cancer, substantial inhibition of tumor proliferation and
angiogenesis and increased apoptosis of tumor cells
were repeatedly reported in mice given either intrave-
nous or oral administered with NPs co-loaded with
curcumin and specific anti-cancer drugs (Yang et al.
2015; Wang et al. 2015b; Kumari et al. 2017; Cui
et al. 2017; Wang et al. 2016; Yan et al. 2016; Li et al.
2017a), as compared to free drugs. Similarly, strong
anti-tumor properties were observed during in vivo stud-
ies with NPs loaded with resveratrol (Xu et al. 2016;
Zhang et al. 2019), quercetin (Gao et al. 2012; Zhu et al.
2017), EGCG (Siddiqui et al. 2014; Tang et al. 2018), or
berberine (Wang et al. 2018a, b).

Conclusions

The recent increase in life expectancy has led to a
growing burden of aging-associated diseases among
many human populations. Thus, population aging is
becoming an increasingly important economic and so-
cial challenge across developed countries. This is be-
cause aging per se is a major determining factor for all
age-associated conditions (Seals and Melov 2014; Seals
et al. 2016; Yabluchanskiy et al. 2018). Therefore, de-
velopment of interventions that target the aging process
is one of the most important current goals in biomedical
research (Vaiserman and Marotta 2016; Vaiserman and
Lushchak 2017; Myers and Lithgow 2019). Progress in
this field is undoubtedly largely dependent on elucidat-
ing the mechanistic pathways underlying aging
(Crimmins 2015; Zierer et al. 2015; Campisi et al.
2019). It is becoming increasingly apparent that age-
related chronic oxidative stress and associated systemic
inflammation are among the most important processes
contributing to the development of aging phenotypes.
Therefore, pharmacological modulation of pro-
oxidative and pro-inflammatory pathways is considered
to be a promising strategy to combat aging and

associated pathological conditions (Tan et al. 2018).
However, the use of pharmacological agents such as
synthetic antioxidants has, to date, produced rather dis-
appointing outcomes. Indeed, long-term supplementa-
tion with synthetic antioxidants failed to improve health
status and prevent age-related pathological conditions in
many clinical trials and epidemiological studies (Myung
et al. 2013; Bjelakovic et al. 2014; Gruber and Halliwell
2017). One possible explanation for these disappointing
results comes from the fact that chronic oxidative stress
and inflammation coexist in most aging-associated phe-
notypes. Therefore, the failure of clinical trials with
synthetic antioxidant supplementations might be ex-
plained, at least in part, by an inability to simultaneously
target both oxidative stress and inflammation by these
pharmacological substances. Indeed, such agents can
block particular pro-oxidative and/or proinflammatory
pathways but reinforce others (Biswas 2016). Based on
these considerations, the use of natural compounds
exhibiting both antioxidant and anti-inflammatory prop-
erties, such as polyphenols, seems preferable in com-
parison with synthetic ones because they are capable of
simultaneously reducing both oxidative stress and in-
flammation levels (Ganesan et al. 2017). Phytochemi-
cals have been shown repeatedly to have a substantial
potential for preventing and/or treating many disorders
caused by age-associated chronic oxidative stress and
systemic inflammation. However, poor stability, bio-
availability and solubility in the gastrointestinal tract
have limited their clinical applications until recently.
The use of nanocarriers to delivery PBCs was found to
enhance their solubility and stability, increase absorp-
tion in the gastrointestinal tract, protect from premature
enzymatic degradation and metabolism, and also pro-
long their circulation time, thereby limiting the negative
side effects of these compounds (Conte et al. 2017;
Mar t ínez -Ba l l es ta e t a l . 2018) . Cur ren t ly,
phytonanotherapy represents a promising innovative
approach that can overcome some of the drawbacks
present in conventional therapeutic strategies. Using
PBC-loaded nanoformulations may provide synergistic
benefits since this therapeutic option may be clinically
equivalent to standard treatment with synthetic drugs,
but with much lower side effects (Anand et al. 2017).
Therefore, such an approach would provide an alterna-
tive method to conventional therapeutic modalities for
management of age-related disorders and provide an
opportunity to overcome disadvantages related to using
these synthetic drugs. Onemore advantageous feature of
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nanodelivery systems is that they may help deliver
PBCs to various vital organs, particularly the brain,
through oral delivery. Indeed, the available research
evidence suggests that the bioavailability of particular
PBCs loaded in NPs may be 5 to 10 times higher than
that of their native forms, where surface modification of
these NPs allows sustained release of PBCs via oral
delivery (Ganesan et al. 2018b).

Despite obvious advantages of NPs for drug
delivery, some important challenges remain to be
resolved for better future application. For some
PBC-loaded nanoformulations, a burst drug release
can lead to cellular toxicity concerns, whereas
oppositely, a very slow drug release may cause
insufficient therapeutic activity to treat the disease.
Therefore, the development of different nanofor-
mulation designs with optimized release profiles
specific to the physicochemical properties of the
NP-loaded PBCs presents an important research
cha l l enge (L in e t a l . 2017 ) . Moreove r ,
nanomaterials that are being used to encapsulate
PBCs need to be further thoroughly investigated to
determine if these carriers themselves have any
harmful effects, especially if they will be used
over a long period of time by patients. More
specifically, these outstanding issues include:
whether these nanomaterials can bioaccumulate in
the human body? Would they be metabolized into
potentially harmful products? Would they be
completely degraded and excreted after delivering
their drug load? Are they going to become a
biohazard when excreted (in urine or feces) and
accumulated in the environment? In light of these
outstanding issues, we can conclude that, although
significant steps have already been taken to bring-
ing nanotherapeutic approaches closer to clinical
applications, additional research is needed to im-
prove the efficacy, long-term safety and cost-
effectiveness of nanosized delivery systems.
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