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Abstract The anti-hyperglycemic medication metfor-
min has potential to be the first drug tested to slow aging
in humans. While the Targeting Aging with Metformin
(TAME) proposal and other small-scale clinical trials
have the potential to support aging as a treatment indi-
cation, we propose that the goals of the TAME trial
might not be entirely consistent with the Geroscience
goal of extending healthspan. There is expanding epi-
demiological support for the health benefits of metfor-
min in individuals already diagnosed with overt chronic
disease. However, it remains to be understood if these
protective effects extend to those free of chronic disease.
Within this editorial, we seek to highlight critical gaps in
knowledge that should be considered when testing met-
formin as a treatment to target aging.
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Introduction

Aging is a primary risk factor for nearly every chronic
disease. Identifying strategies that target the shared bio-
logical mechanisms of aging could lead to interventions
that postpone the onset of most debilitating age-related
chronic diseases. The World Health Organization re-
cently added Bold age^ to the 2018 International Clas-
sification of Disease (ICD), but the Food and Drug
Administration (FDA) does not currently recognize ag-
ing as a treatment indication. The Targeting Aging with
Metformin (TAME) proposal could be the first clinical
trial to examine an intervention to slow aging rather than
to treat a specific age-related chronic disease in humans
(Barzilai et al. 2016). An additional overarching goal of
this effort is to create a regulatory framework that rec-
ognizes aging as an indication for treatment. Clinical
trials that aim to postpone the onset of age-related mor-
bidities have potential to provide paradigm-shifting ev-
idence to support aging as a future treatment indication.
We are strong supporters of targeting aging as a condi-
tion. However, in this editorial, we introduce new per-
spectives about metformin as the first intervention for
these goals.

An effective treatment that targets aging prevents
chronic disease

Matt Kaeberlein recently summarized the Bhealth^ of
the healthspan concept (Kaeberlein 2018). In this edito-
rial, healthspan was defined as Bthe period of life spent
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in good health, free from the chronic diseases and dis-
abilities of aging^ (Kaeberlein 2018). By this definition,
which we subscribe to, lifespan is divided into a period
free of disease (healthspan) and a period marked by the
accumulation of age-associated disease and disability
(Kaeberlein 2018; Seals et al. 2016). Importantly, these
two periods are distinct from each other with the period
free of disease—the healthspan—preceding the onset of
one or more age-related diseases. If the goal of a treat-
ment is to extend healthspan, the treatment must start
before any chronic diseases are present, thereby
delaying the onset of the first age-related chronic dis-
ease. It is worth noting that the National Institute on
Aging (NIA) Interventions Testing Program (ITP) uses
treatments throughout a lifespan while investigating the
potential of treatments to promote healthy aging (Nadon
et al. 2008).

Although the term healthspan is associated with the
TAME proposal (Barzilai et al. 2016; Justice et al.
2018), it does not appear that the goal of TAME is to
extend healthspan. The TAME proposal seeks to de-
termine if metformin can target aging by slowing the
sequelae of existing age-related morbidity. The pro-
posed trial will test if metformin can delay the time
that individuals already burdened with a chronic dis-
ease develop new, additional age-related conditions.
This approach is likely an effort to accomplish the trial
within a realistic time-table (5–10 years), sufficient
sample size (n = 3000), and commensurate budget
($50 million). However, in line with current
Geroscience initiatives, and the concept of healthspan,
we believe that it is also critical to evaluate the efficacy
of metformin to extend healthspan in individuals who
are currently free of chronic disease. A potential first
step before investing in a large, expensive, multi-center
clinical trial is to identify if metformin can improve
hallmarks of healthy aging in individuals without overt
disease, and to determine the characteristics of the
individuals who do or do not reap the health benefits
of metformin. Within the population of disease-free
individuals, some individuals are at greater risk for
developing chronic disease because of the range of
metabolic health and prevalence of risk factors. Some
individuals may, for example, be more amenable to the
health benefits of metformin while others are not.
Therefore, there is still a critical need for studies to
understand how metformin may extend healthspan in
subjects without disease, but with varying degrees of
risk for age-related comorbidities.

Mechanisms of action are not well understood

One ongoing difficulty with determining the efficacy of
metformin is that its mechanism of action is still not
completely understood. The primary target tissue of
metformin is believed to be the liver, while evidence
suggests metformin can also be detected and influence
metabolic processes in the skeletal muscle, adipose tis-
sue, intestine, brain, and cardiovascular tissues (Buse
et al. 2016; Gormsen et al. 2016; Kane et al. 2010;
Konopka et al. 2016, 2018; Kulkarni et al. 2018; Lee
and Ko 2014; Long et al. 2017; Madiraju et al. 2014,
2018; Wang et al. 2012). The ability of metformin to
influence multiple tissues is an attractive characteristic
of a treatment to target aging in the whole organism.

Several studies in animals and cells have shown that
supraphysiologic doses of metformin can inhibit com-
plex I of the electron transport system (ETS) leading to
decreased mitochondrial respiration and/or H2O2 emis-
sions in the skeletal muscle, fibroblasts, liver, heart, and
cancer cells (Bridges et al. 2014; Brunmair et al. 2004;
Kane et al. 2010; Martin-Montalvo et al. 2013; Owen
et al. 2000; Wessels et al. 2014; Wheaton et al. 2014).
Complex I is the first complex within the ETS and
operates by oxidizing NADH, transferring electrons
via iron-sulfur clusters, and reducing ubiquinone.
Emerging evidence suggests that metformin non-
competitively and reversibly binds to a step that is
coupled to ubiquinone reduction to inhibit complex I
(Bridges et al. 2014). Studies in submitochondrial par-
ticles also suggest that metformin inhibits complex I
before but not after the initiation of respiration
(Bridges et al. 2014). However, it is important to high-
light that not all studies demonstrate that metformin
inhibits complex I (Kristensen et al. 2013; Larsen et al.
2011; Madiraju et al. 2014, 2018). These equivocal
findings vary depending on the metformin dose, mito-
chondrial preparation and protocol, and subject charac-
teristics. Incompletely defined mechanisms of action for
metformin lead to uncertainties about its efficacy in a
diverse population.

The positive effects of metformin are not universal

Although there is growing evidence to support the
health benefits of metformin, to date, no studies have
demonstrated health or lifespan-extending effects of
metformin in humans. Metformin is an attractive
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potential aging treatment due to 60 years of documented
safety, high adherence rates, low cost, and benefits in
those with metabolic disease. However, the health ben-
efits of metformin are not universal. Evidence
supporting the use of metformin to increase lifespan
and health outcomes originates from lower order model
organisms (Cabreiro et al. 2013; De Haes et al. 2014;
Onken and Driscoll 2010), whereas rodent models have
been more mixed (Anisimov et al. 2008, 2011; Dhahbi
et al. 2005; Martin-Montalvo et al. 2013; Smith et al.
2010; Strong et al. 2016). Although the majority of
health outcomes improve in rodent models, lifespan
either increases (Anisimov et al. 2008, 2011; Dhahbi
et al. 2005; Martin-Montalvo et al. 2013) or remains
unchanged with metformin treatment (Smith et al. 2010;
Strong et al. 2016). One study not supporting lifespan
extension is notable because it was part of the NIA
Interventions Testing Program (ITP) using heteroge-
neous mouse models that are designed to mimic the
genetic diversity of humans (Strong et al. 2016). In
humans, even the effectiveness of metformin for T2D
is variable. When genome-wide association studies
(GWAS) have attempted to predict genetic determinants
of metformin treatment efficacy for T2D, only 20–34%
(depending on physiological outcome) of variability
was accounted for (Zhou et al. 2014). Therefore, there
are several important questions related to treatment ef-
ficacy of metformin for healthspan that remain to be
definitively answered.

Is metformin effective in individuals without type 2
diabetes?

In human clinical trials, retrospective data and trials in
populations with type 2 diabetes (T2D) show improved
overall survival with metformin (Bannister et al. 2014),
as well as decreased risk of all-cause mortality and
cardiovascular disease (UKPDS Group 1998), cancer
incidence (Gandini et al. 2014; Wu et al. 2014), and
cognitive decline (Cheng et al. 2014; Ng et al. 2014). A
recent meta-analysis of clinical trials in human subjects
also demonstrated that that diabetics taking metformin
have lower all-cause mortality and/or cancer incidence
than other diabetics and the general population
(Campbell et al. 2017). Although these trials in human
subjects build a strong rationale that metformin has
potential health and lifespan-extending effects, the com-
pleted studies were in subjects with T2D and/or other

comorbidities, and none were in subjects absent of
disease.

In non-diabetic individuals, the benefits of metformin
are less clear. Treating non-diabetic patients with
4 months of metformin (1000 mg/day) after acute myo-
cardial infarction did not improve left ventricular ejec-
tion fraction (Lexis et al. 2014) nor confer long-term
benefits of reducing the onset of new diabetes or major
adverse cardiac events (Hartman et al. 2017). Eighteen
months of metformin treatment (1700 mg/day) in older
(63 years), non-diabetic patients with heart disease im-
proved several indices of glycemia including HbA1c,
fasting glucose, fasting insulin, and HOMA-IR but did
not influence carotid intima-media thickness (Preiss et al.
2014). The landmark Diabetes Prevention Program ex-
amined the progression to T2D in 3234 subjects at risk
for diabetes (Knowler et al. 2002). Over the 3 years of
study, the metformin treatment group (1700 mg/day)
demonstrated a 31% lower progression to T2D and the
lifestyle intervention group demonstrated a 58% lower
progression to T2D compared to the placebo control
(Knowler et al. 2002). However, the effect of metformin
was minimal in those with a lower BMI (< 30 kg/m2) and
lower fasting glucose (< 110 mg/dL), a pattern that was
not observed in the lifestyle intervention. These data
suggest that within a group of individuals at risk for
T2D, the healthier subjects did not reap the same benefits
from metformin as their relatively less healthy counter-
parts. In further support, a small study of 20 insulin-
resistant individuals found that metformin (1700 mg/
day) improved indices of insulin sensitivity in subjects
that had T2D or a family history of T2D, but actually
worsened insulin sensitivity in obese subjects without
T2D or family history of T2D (Iannello et al. 2004).
Therefore, there remains a lack of support for metformin
extending healthspan in human subjects, which requires
further resolution of how individuals with low, moderate,
and high risk may benefit from metformin treatment.

Are the health benefits of metformin secondary
to glucose and/or insulin lowering effects?

It is currently unknown if the benefits of metformin on
healthspan are primarily due to positive effects on glu-
cose control. Within the UK Prospective Diabetes Study
(UKPDS), metformin, sulfonylurea, and insulin had
similar benefits on median fasting plasma glucose and
HbA1c over the 10-year follow-up of individuals with
T2D (UKPDS Group 1998). Despite similar glucose
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control, the metformin treatment group (median dose of
2550 mg/day) had lower risk of developing micro- or
macrovascular complications, diabetes-related death,
and all-cause mortality compared to insulin and sulfo-
nylurea treatment (UKPDS Group 1998). Similarly, a
recent meta-analysis of clinical trials in human subjects
also demonstrated that metformin had decreased cardio-
vascular disease compared to diabetics on other glucose-
lowering therapies (Bannister et al. 2014). These data
would suggest that the improved health outcomes in
patients prescribed metformin cannot be completely
explained by glucose-lowering effects. However, these
findings do not rule out the impact of increased exoge-
nous or endogenous insulin on cardiovascular compli-
cations or death in patients within the comparator insulin
or sulfonylurea treatment groups. Although some stud-
ies suggest that the glucose-lowering effects may not
completely explain the full protective benefits of met-
formin compared to other glucose lowering medica-
tions, it remains to be determined if the cardiovascular
and mortality benefits in T2D or potentially other pop-
ulations are a direct result of metformin or secondary to
lowered glucose and/or insulin.

Is metformin effective in older adults?

Antagonistic pleiotropy is a well-known concept that
something may have opposing effects dependent on
stage of life (Williams 1957). Therefore, there may be
a need to start healthspan-extending treatments later in
life, but prior to the onset of chronic disease. In regard to
metformin, a study examined metformin treatment
starting at 3, 9, and 15 months of age in female outbred
SHR mice (Anisimov et al. 2011). Metformin extended
lifespanwhen started at 3 and 9months in mice with and
without tumors. However, when started later in life,
metformin did not influence lifespan in mice with tu-
mors and decreased lifespan in mice without tumors
(Anisimov et al. 2011). In humans, similar glycemic
control can be achieved by intensive treatment in young
and old individuals wi th T2D (ADVANCE
Collaborative Group et al. 2008; Miller et al. 2014a),
but these studies included a cocktail of glucose-lowering
agents and not specifically metformin. No studies have
directly tested if metformin can maintain its primary
indication of lowering glucose or other purported
health-related benefits in older versus middle aged or
younger adults. In ~ 3000 participants enrolled in the
Diabetes Prevention Study, 20% of the subjects were

older (≥ 60 years). Although the study was not designed
or powered a priori to detect significant differences
between subgroups such as age, secondary analysis
suggests a trend for differences between age groups in
response to metformin (Crandall and Barzilai 2003;
Diabetes Prevention Program Research Group et al.
2006; Knowler et al. 2002). Metformin delayed the
development of T2D in the youngest cohort by 44%
(21 to 60 95% CI) but did not affect the incidence of
T2D in adults ≥ 60 years old (11%; − 33 to 41 95% CI)
(Knowler et al. 2002). Additionally, based on the confi-
dence intervals, there appears to be nearly twice the
variability in older compared to younger groups, with
some older participants ending up worse with metfor-
min treatment than the placebo group. These data sug-
gest that age may influence the effectiveness and the
variability in response to metformin. In support of these
findings, older adults (62 years) consuming metformin
during aerobic exercise training had nearly twice the
variability in the change in insulin sensitivity compared
to the placebo group with nearly half of the participants
ending up with worse insulin sensitivity after treatment
(Konopka et al. 2018). If metformin is to be recom-
mended to aging adults as a therapy to extend
healthspan, studies are needed to directly test the influ-
ence of age on the effectiveness of metformin therapy.

Is metformin effective in combination with other
geroprotective therapies?

As a practical issue, it is important to understand if
metformin is effective when combined with other
established approaches to improve health. Caloric re-
striction without malnutrition and rapamycin are two of
the most well studied interventions to extend lifespan in
multiple animal models. When metformin is combined
with caloric restriction in a diabetic rat model, there
appears to be a greater effect on lowering postprandial
glucose and proteins involved with hepatic lipogenesis
than either treatment alone (Linden et al. 2015). Al-
though metformin alone did not extend lifespan in the
ITP trial, the addition of metformin to rapamycin ex-
tended median lifespan by 23% in male and female
heterogeneous mice. Compared to historical trials of
rapamycin alone (Miller et al. 2011, 2014b), the addition
of metformin to rapamycin extends lifespan to a similar
extent in females and perhaps a greater extent in males
(Strong et al. 2016). The potential for a greater lifespan
extension in males when combining metformin and
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rapamycin does not appear to be related to the ability of
metformin to alleviate glucose intolerance caused by
rapamycin at a young age (Weiss et al. 2018).

Although informative, rapamycin and caloric restric-
tion are not yet considered treatment strategies for
humans. On the other hand, mounting evidence indi-
cates that long-term exercise training is a bona fide
treatment to extend human healthspan (Blair et al.
1989; Cartee et al. 2016; Physical Activity Committee
2018; Zampieri et al. 2015; Williams 2001). Moderate-
to-vigorous intensity physical activity is inversely relat-
ed to premature mortality, cardiometabolic disease, im-
mobility, and several cancers (Physical Activity
Committee 2018). Exercise training induces multiple
adaptations, including increased cardiorespiratory fit-
ness (CRF), insulin sensitivity, skeletal muscle size,
and function. In apparently healthy individuals, each
3.5 ml kg−1 min−1 increase in CRF was associated with
an 11%, 16%, and 14% reduction in all-cause, cardio-
vascular disease, and cancer mortality (Imboden et al.
2018). Insulin resistance is associated with a myriad of
age-related chronic conditions, including T2D, CVD,
and frailty (Barzilay et al. 2007; Bonora et al. 2002;
Facchini et al. 2001; Petersen et al. 2003). Age-related
loss of musclemass is also associatedwith the decline of
CRF, insulin action, dependence, and mobility
(Goodpaster et al. 2001, 2006; Reed et al. 1991; Reid
and Fielding 2012; Reid et al. 2008). How then does
metformin interact with exercise training to influence
CRF, insulin sensitivity, and skeletal muscle mass?

We recently completed a randomized double-blind
aerobic exercise training study in individuals that had
one risk factor for T2D but were otherwise healthy. Half
of the individuals (n = 27) received 1500–2000 mg of
metformin with the exercise training, while the other
half (n = 26) received a placebo (Konopka et al. 2018).
When metformin was added to exercise training, the
exercise-induced improvement in skeletal muscle mito-
chondrial respiration, CRF, and whole-body insulin sen-
sitivity were attenuated (Konopka et al. 2018). In addi-
tion, some individuals actually had decrements in
whole-body insulin sensitivity. Our results are similar
to other studies that show metformin attenuated the
exercise-induced increase in CRF and prevented the
increase in insulin sensitivity in non-diabetic individuals
(Malin et al. 2012; Sharoff et al. 2010). These effects do
not seem to be unique to aerobic exercise training.
Preliminary indications from a double-blind placebo-
control clinical trial in the elderly (Long et al. 2017)

show that metformin may also blunt the hypertrophic
response to resistance exercise training measured by
DXA, and muscle density measured by computed to-
mography (personal communication).

Due to the close relationship of CRF, insulin action,
and skeletal muscle mass to mortality, morbidity, and
quality of life, the antagonistic effect of metformin on
CRF, insulin sensitivity, and skeletal muscle mass in
non-diabetic young (Braun et al. 2008; Sharoff et al.
2010), middle-aged (Malin et al. 2012), and older
(Konopka et al. 2018; Peterson et al. 2018) adults raises
important questions about the efficacy of metformin to
extend healthspan. Indeed, several important points
need to be further examined to understand: are the
inhibitory effects of clinical doses of metformin on some
important physiological adaptations only apparent when
challenged with exercise, does the range of metabolic
health—even within individuals free of chronic
disease—influence the positive or negative impact of
metformin treatment, and what are the long-term impli-
cations of metformin treatment on healthspan when
started prior to the onset of chronic disease.

Conclusion

For this perspective, we have provided a different out-
look about using metformin as the first treatment to
target aging. We have taken the viewpoint that a clinical
trial demonstrating an increase in healthspan is critically
important for Geroscience. We acknowledge that the
TAME proposal may not be targeting healthspan but
rather the prevention of further accumulation of chronic
disease. While this goal may indicate aging as an under-
lying mechanism for chronic disease, this approach may
not be totally consistent with current Geroscience goals.
We believe that an intervention designed to extend
healthspan should, by definition, begin before the accu-
mulation of age-related comorbidities. In addition, the
intervention should be effective in delaying the onset of
disease even when started later in life. Finally, the inter-
vention should not be detrimental in those that are
disease free, or when used in combination with other
healthspan-extending treatments such as exercise. We
are at an exciting and pivotal time where the TAME
proposal and other small-scale clinical trials could pro-
vide the necessary evidence to demonstrate that the
biology of aging in humans can be modulated to extend
healthy lifespan.
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