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Abstract Hypertension in the elderly substantially in-
creases both the risk of vascular cognitive impairment
(VCI) and Alzheimer’s disease (AD); however, the un-
derlying mechanisms are not completely understood.
This review discusses the effects of hypertension on
structural and functional integrity of cerebral micro-
circulation, including hypertension-induced alterations
in neurovascular coupling responses, cellular and mo-
lecular mechanisms involved in microvascular damage
(capillary rarefaction, blood-brain barrier disruption),
and the genesis of cerebral microhemorrhages and their
potential role in exacerbation of cognitive decline asso-
ciated with AD. Understanding and targeting the

hypertension-induced cerebromicrovascular alterations
that are involved in the onset and progression of AD and
contribute to cognitive impairment are expected to have
a major role in preserving brain health in high-risk older
individuals.
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Introduction

Hypertension in the elderly substantially increases the
risk of Alzheimer’s disease (AD); however, the under-
lying mechanisms are not completely understood
(Forette et al. 1998; Launer et al. 2000; Israeli-Korn
et al. 2010; Guo et al. 2001; Marr and Hafez 2014;
Petrovitch et al. 2000; van Dijk et al. 2004; Joas et al.
2012). In this review (published as part of the BTransla-
tional Geroscience^ initiative of the journal (Callisaya
et al. 2017; Kane et al. 2017; Kim et al. 2017; Liu et al.
2017; Meschiari et al. 2017; Perrott et al. 2017; Shobin
et al. 2017; Ashpole et al. 2017; Bennis et al. 2017;
Deepa et al. 2017; Grimmig et al. 2017; Hancock et al.
2017; Konopka et al. 2017; Podlutsky et al. 2017; Sierra
and Kohanski 2017; Tenk et al. 2017; Ungvari et al.
2017a; Urfer et al. 2017a, b)), the effects of hypertension
on structural and functional integrity of the cerebral
microcirculation are considered, with a primary focus
on cellular and molecular mechanisms involved in
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microvascular damage (capillary rarefaction, BBB dis-
ruption), neurovascular uncoupling, and the genesis of
cerebral microhemorrhages and their potential role in
exacerbation of cognitive decline associated with AD.

Hypertension and the pathogenesis of Alzheimer’s
disease: microvascular deposition of Aβ and tauopathy

Alzheimer’s disease is the most common cause for
dementia in the elderly and the sixth leading cause of
death in the USA. An estimated 5.5 million Americans
are living with AD in 2017, and it is projected that this
number will double in the next 20 years. Since the
original formulation of the vascular hypothesis of AD
in the 1990s, evidence has been fast accumulating which
strongly suggests that early stage of AD is indeed pri-
marily a microvascular disorder (Zlokovic 2011). Con-
sistent with this hypothesis, cerebrovascular dysfunction
may be the earliest and most abnormal biomarker of AD
progression. Large cross-sectional and longitudinal
population-based studies consistently showed that a re-
lationship exists between several vascular risk factors
and incidence and progression of AD (de la Torre 2010,
2012, 2013, 2017). Among the vascular risk factors for
AD, hypertension emerges as a critically important one,
as it is known to double the risk for AD in the elderly
(Forette et al. 1998; Launer et al. 2000; Israeli-Korn
et al. 2010; Guo et al. 2001; Marr and Hafez 2014;
Petrovitch et al. 2000; van Dijk et al. 2004; Joas et al.
2012). This observation led to several modifications and
expansions of the original vascular hypothesis of AD,
invoking hypertension-induced microvascular injury in
various pathological manifestations of AD, from cere-
bral microhemorrhages (Ungvari et al. 2017b) to blood-
brain barrier disruption and consequent neuroinflamma-
tion (Zlokovic 2011, 2008).

The amyloid cascade hypothesis has been the focus of
AD research for two decades, and despite recent chal-
lenges, it still remains a frequently invoked hypothesis to
explain the molecular cause of AD. The amyloid cascade
hypothesis posits that altered production, processing, and
deposition of amyloidβ-peptide (Aβ) both in the neuropil
and around cerebral microvessels plays a central role in the
development of AD, a concept that is supported by sub-
stantial genetic and biochemical data. Consistent with the
deposition of Aβ in the neurovascular unit, there is strong
clinical and experimental evidence that increased levels of
Aβ in AD associate with progressive, multifaceted
cerebromicrovascular impairment, which contributes to

both the development of early-stage pre-plaque cognitive
dysfunction as well as subsequent progression of the
disease (Zlokovic 2011; Gorelick et al. 2011; Iadecola
et al. 2009; Niwa et al. 2001, 2002a, b; Park et al. 2005;
Girouard and Iadecola 2006; Iadecola 2004; Park et al.
2014, 2013; Fotuhi et al. 2009; Skoog and Gustafson
2006). In agreement with the prediction based on both
the vascular hypothesis and the amyloid hypothesis of
AD, hyper tens ion exacerbates Aβ - induced
cerebromicrovascular impairment in AD, worsening the
disease and accelerating its progression. In recent years, a
series of important studies have provided critical insights
into the pathophysiological mechanistic links among hy-
pertension, Aβ deposition, and the development of AD
(Iadecola et al. 2009; Niwa et al. 2002a; Capone et al.
2012; Girouard et al. 2006; Kazama et al. 2004; Faraco
et al. 2016; Carnevale and Lembo 2011; Carnevale et al.
2012a, b; Diaz-Ruiz et al. 2009; Farkas et al. 2000; Hsu
et al. 2013; Sparks et al. 1995). Using transgenic mouse
models and angiotensin II infusion, Faraco and coworkers
confirmed the association between hypertension and AD
by showing that prolonged hypertension increases micro-
vascular amyloid deposition in Tg2576 mice and en-
hanced beta-secretase APP cleavage (Faraco et al. 2016).
Similar results were reported by other laboratories as well
(Diaz-Ruiz et al. 2009). Hypertension induced by trans-
verse aortic coarctation was also reported to exacerbate
Aβ deposition in the mouse brain, promoting cognitive
decline (Carnevale and Lembo 2011; Carnevale et al.
2012a, b). Further, there are studies extant showing that
interaction of hypertension and aging promotes
amyloidogenic gene expression in the mouse brain
(Csiszar et al. 2013a). Importantly, the effects of high
blood pressure on Aβ deposits in the mouse brain are
manifested within 4 weeks after induction of hypertension
(Carnevale and Lembo 2011; Carnevale et al. 2012a, b),
suggest ing that ear ly hypertension-induced
cerebromicrovascular impairment is sufficient to trigger
molecular processes contributing to the pathogenesis of
AD. There are studies suggesting that RAGE activation in
the cerebral microvessels is a crucial mechanism by which
hypertension promotes AD pathologies (Carnevale et al.
2012b). However, it is quite likely that several other
mechanisms play equally important roles (Nicolakakis
et al. 2008; Tong et al. 2012) and that inhibiting one or
more of these molecular targets can limit the onset of
microvascular-related AD deficits.

In addition to Aβ pathology, tau pathology is consid-
ered an important driver of disease progression in AD
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(Raskin et al. 2015). Albeit still not as extensively inves-
tigated as Aβ, recent studies have provided critical in-
sights into the mechanistic links between hypertension
and tau hyperphosphorylation and misfolding in AD. It
has been shown that experimentally induced hypertension
aggravates tau-related motor dysfunction in a mouse mod-
el of pure tauopathy (Diaz-Ruiz et al. 2009). Lobar
microbleeds were independently associated with a higher
likelihood of having an abnormal CSF phosphorylated tau
181 protein level (P = .004). Studies in a cohort of patients
from the Alzheimer’s Disease Neuroimaging Initiative
showed that, after adjusting for levels of CSF Aβ, lobar
microbleeds associated with hypertension were correlated
with accelerated longitudinal cognitive decline and with a
higher likelihood of having abnormal CSF levels of phos-
phorylated tau181 (Chiang et al. 2017). Intraneuronal tau
hyperphosphorylation preceded by Aβ deposition was
demonstrated in a hypertensive rat model, non-
transgenic spontaneously hypertensive stroke-prone rats
(SHRSP), that displays cerebral small vessel disease
(CSVD) as a consequence of hypertension, suggesting
that CSVD associated with hypertension leads to in-
creased brain Aβ and subsequent intraneuronal tau
hyperphosphorylation (Schreiber et al. 2014). In an inde-
pendent study, Kurata and collaborators showed that both
low- and high-dose telmisartan decreased numbers of Aβ-
and phospho-tau-positive neurons and decreased markers
of neuroinflammation (Kurata et al. 2014). Interestingly, a
potential direct role of hyperphosphorylated and
misfolded tau in cerebromicrovascular dysfunction was
suggested by a recent report of tau oligomer accumulation
in cerebrovasculature of AD and progressive supranuclear
palsy (PSP) patients, suggesting that aberrantly misfolded
tau may accumulate in cells of cerebromicrovasculature in
AD and in Bpure^ tauopathies (Castillo-Carranza et al.
2017).

Hypertension-induced capillary rarefaction

The brain is the most metabolically active organ in the
human body. While it only accounts for 2% of the body
mass, it consumes 20–25% of the body’s total energy
requirements. Since energy stores in the brain are scarce,
adequate supply of nutrients is crucial to support normal
cerebral function. The brain relies on a dense cerebral
microcirculatory network (600 km total length) for con-
tinuous supply of nutrients and O2 and for effective
washout of metabolic waste products. It is generally
considered that a decline in capillarization in the brain

tissue (i.e., cerebromicrovascular rarefaction) contrib-
utes to a decline in cerebral blood flow that reduces
metabolic support for neural signaling, thereby exacer-
bating neuronal dysfunction (Khan et al. 2002; Riddle
et al. 2003; Sonntag et al. 1997; Troen et al. 2008;
Tucsek et al. 2014). In that regard, it is important that
increased deposition of Aβ has been shown to pro-
foundly affect brain microvasculature, resulting in de-
generation and disappearance of capillaries (Roher et al.
1993) and small vessels (Yamaguchi et al. 1992). Cap-
illary loss ultimately also leads to an impaired clearance
of Aβ, which further promotes vascular damage (Faraco
and Iadecola 2013). Capillary loss can reach up to 30%
in AD aged population when compared to control sub-
jects (Fischer et al. 1990; Buee et al. 1994) and is
strongly associated with a reduced cerebral perfusion
(Buee et al. 1994). A reduction in cerebral perfusion
occurs early in the development of AD before the brain
atrophy, and the most severe changes occur in the areas
with Aβ and tau pathology (Johnson et al. 2005; Hirao
et al. 2005). Patients with mild cognitive impairment
also exhibit hypoperfusion in the areas most affected in
AD (Johnson et al. 2005; Brown and Thore 2011).
Impor tant ly, hyper tens ion per se promotes
cerebromicrovascular rarefaction (Feihl et al. 2009;
Sokolova et al. 1985; Suzuki et al. 2003; Tarantini
et al. 2016a; Toth et al. 2015a) and this effect is signif-
icantly exacerbated in old age (Toth et al. 2015a). On the
basis of the existing evidence, we posit that the effects of
hypertension, AD and old age are highly synergistic,
and that hypertension in elderly AD patients results in an
exacerbated microvascular structural damage. The
mechanisms underlying hypertension-induced micro-
vascular rarefaction are likely multifaceted and may
involve endothelial impairment, endothelial apoptosis,
decreased NO bioavailiability, oxidative stress, and an
imbalance in humoral pro- and anti-angiogenic factors
(Tarantini et al. 2016a). The cerebral microcirculation is
subject to continuous dynamic structural adaptation, a
concept that implies a high plasticity of the cerebral
microvascular network (Riddle et al. 2003). Our current
understanding is that there is a dynamic balance be-
tween capillary regression and growth and that both
destruction of capillaries and impaired angiogenesis,
due to dysregulated production of autocrine/paracrine
regulators of angiogenic processes, is a critical mecha-
nism involved in cerebromicrovascular rarefaction
(Tucsek et al. 2014; Ungvari et al. 2010). It is likely that
both in AD and in hypertension, capillary regression/
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destruction is a primary cause for capillary rarefaction,
which is exacerbated by secondary impairment of cap-
illary regrowth. Importantly, comparative analysis of
cerebral capillary ultrastructure reveals similar cerebral
capillary damage in AD and hypertension (Farkas et al.
2000). Previous studies provide evidence that in AD,
capillaries indeed die. The histological footprint of this
increased capillary loss is the formation of Bstring ves-
sels^ (Bghost vessels^), which are thin, acellular connec-
tive tissue strands, remnants of capillaries, with a lack of
endothelial cells (Brown 2010). Capillary regression
occurs by endothelial apoptosis, a process initiated by
cellular damage, a decline in pro-survival factors, and/or
increased presence of pro-apoptotic extracellular signals
(including the toxic effects of Aβ) (Fonseca et al. 1832;
Lyros et al. 2014; Religa et al. 2013; Wilhelmus et al.
2007). Recent evidence shows that macrophages also
play a key role in capillary regression. Further studies
are warranted to better understand the synergistic roles
for AD, hypertension, and aging processes in regulation
of microvascular regression. AD patients are typically
old, and there is strong evidence that aging itself is
associated with dysregulation of multiple aspects of
the angiogenic process, including induction of endothe-
lial cell proliferation, migration, and tube formation
(Viana et al. 2015). In experimental mouse models,
hypertension also results in dysregulated expression of
pro- and anti-angiogenic genes (Tarantini et al. 2016a).
Age- (Csiszar et al. 2014; Ungvari et al. 2011a, b) and
perhaps AD- (Joshi et al. 2015; Kanninen et al. 2009)
related mechanisms responsible for impairment of en-
dothelial angiogenic capacity likely also include dysreg-
ulation of Nrf2, a newly discovered regulator of endo-
thelial angiogenic processes (Valcarcel-Ares et al.
2012). There is also strong evidence that a causal link
exists among decreased bioavailability of NO, impaired
angiogenesis, and microvascular rarefaction (Ungvari
et al. 2010). Endothelium-derived NO is both a down-
stream mediator of pro-angiogenic VEGF and IGF-1
signaling and a critical regulator of microvascular endo-
thelial cell viability. There is ample evidence that AD/
microvascular deposition of Aβ (Zlokovic 2011;
Girouard and Iadecola 2006; Tong et al. 2012; Austin
et al. 2013; Di Marco et al. 2015; Kimbrough et al.
2015), hypertension (Girouard and Iadecola 2006;
Girouard et al. 2006; Chrissobolis et al. 2012; Pires
et al. 2013; Girouard et al. 2007), and old age (Csiszar
et al. 2014; Banki et al. 2015; Csiszar et al. 2002, 2004;
Tarantini et al. 2016b; Ungvari et al. 2007; Modrick

et al. 2009; Pena Silva et al. 2012) per se promotes
microvascular endothelial dysfunction. Thus, it is highly
likely that impaired cerebromicrovascular NO produc-
tion significantly contributes to microvascular rarefac-
tion in old hypertensive AD patients. Several additional
mechanisms may also be considered to contribute to
structural microvascular rarefaction in hypertensive
AD patients, including pericyte damage (Toth et al.
2013a), increased pre-capillary arteriolar constriction
and cessation of capillary blood flow, increased suscep-
tibility to microemboli, platelet adhesion, and macro-
phage activation. Further, the mechanisms underlying
the exacerbation of microvascular injury in hypertensive
AD patients are also likely to include hemodynamic
factors.

There is strong evidence that under normal condi-
tions, pressure-induced myogenic constriction of proxi-
mal cerebral arteries, as a critical homeostatic mecha-
nism that assures that increased systemic arterial pres-
sure, cannot penetrate the distal portion of the cerebral
microcirculation and cause damage to the thin-walled
arteriolar and capillary microvessels (Toth et al. 2013a,
2014a; Kontos et al. 1978; Harper and Bohlen 1984).
Young cerebral arteries in the absence of AD exhibit
functional and structural adaptation to hypertension,
including an augmented myogenic constriction at high
pressures and autoregulatory adaptation, which protects
the cerebral microcirculation from pressure-induced in-
jury (Toth et al. 2013a, 2014a). In contrast,
autoregulatory adaptation to hypertension in compro-
mised both in aging (Toth et al. 2013a, b, 2014a;
Springo et al. 2015a) and in AD (Iadecola et al. 2009;
Niwa et al. 2002a; Toth et al. 2017; Brickman et al.
2015; den Abeelen et al. 2014; Tarumi et al. 2014;
Iadecola 2014). Pathological loss of autoregulatory pro-
tection in old hypertensive AD patients likely allows
high blood pressure to penetrate the distal, injury-prone
portion of the cerebral microcirculation, leading to sig-
nificant downstream damage (Toth et al. 2017).

Hypertension-induced blood-brain barrier disruption

In recent years, overwhelming evidence has accumulated
demonstrating that blood-brain barrier (BBB) breakdown
contributes to theonset andprogressionof thepathological
processes associated with AD (Zlokovic 2011, 2008;
Carnevale et al. 2012b; Sagare et al. 2013a; Mackic et al.
2002, 1998; Montagne et al. 2015; Sagare et al. 2013b;
Winkler et al. 2015;Bell andZlokovic2009;Hallidayet al.
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2016; Nelson et al. 1862; Zlokovic 2013). Hypertension,
especially inaging, isknowntosignificantly increaseBBB
permeability (Toth et al. 2013a, 2014a; Mueller and
Heistad 1980; Zhang et al. 2010), which has been linked
to the hypertension-induced exacerbation of AD patholo-
gies in mouse models (Carnevale and Lembo 2011;
Carnevale et al. 2012a, b). The mechanisms of
hypertension-related BBB disruption are likelymultiface-
ted andmay involve increased endothelial oxidative stress
and endothelial injury, pericyte damage, and changes in
tight junctions, which form an essential structural compo-
nent of the BBB (Toth et al. 2013a; Takemori et al. 2013).
Pericytes are important cellular constituents of the BBB
(Zlokovic 2008), and recent studies demonstrate that
pericyte deficiency in Pdgfrβ+/− mice leads to significant
impairment of BBB function (Bell et al. 2010) and that
pericyte loss exacerbates AD-like neurodegeneration in
mice (Sagare et al. 2013b). Importantly, hypertension in
aging was shown to promote pericyte loss (Toth et al.
2013a), which may contribute to BBB disruption, exacer-
bating AD pathogenesis. Pericytes have also key roles in
preservation of the structural integrity of the cerebral mi-
crocirculation (Winkler et al. 2011); thus, loss of pericytes
is also likely to contribute to hypertension-inducedmicro-
vascular rarefaction in brain (Tarantini et al. 2016a; Toth
et al. 2013a). Through the damaged BBB, plasma constit-
uents, including IgG, thrombin, and fibrinogen, enter the
brain parenchyma (Toth et al. 2013a), which induce of
neuroinflammation by activating microglia (Bruce-Keller
et al. 2010; Pistell et al. 2010; White et al. 2009; Davalos
et al. 2012; Carreno-Muller et al. 2003). There is substan-
tial evidence implicating oxidative stress, microglia acti-
vation, andneuroinflammation in thedevelopmentofAD-
like pathologies in hypertensive mice (Carnevale and
Lembo 2011; Carnevale et al. 2012a, b).

Hypertension-induced neurovascular uncoupling

Energy and O2 demand of the brain tissue vary both spa-
tially and temporally with changes in neuronal activity,
which require prompt adjustments of blood flow by regu-
lating arteriolar resistance in a highly controlled fashion to
maintain cellular homeostasis and function (Mathiesen
et al. 1998; Enager et al. 2009). This is accomplished
through a process termed neurovascular coupling (or
Bfunctional hyperemia^), which is orchestrated by an
inter-cellular signaling network comprised of neurons
and astrocytes, as well as smooth muscle cells and endo-
thelial cells of cerebral microvessels (Petzold andMurthy

2011; Stobart et al. 2013; Wells et al. 2015; Chen et al.
2014). There is compelling evidence that AD patients
exhibit significant impairment of neurovascular coupling
responses (Hock et al. 1997; Rombouts et al. 2000). These
findingsaccordwith theconclusionsofpre-clinical studies
demonstrating that in rodent models of AD, functional
hyperemia is also significantly impaired (Rancillac et al.
2012; Shin et al. 2007), at least in part, due to increased
oxidative stress (Park et al. 2005, 2008; Nicolakakis et al.
2008). Experimental studies support a causal link between
impaired neurovascular coupling and cognitive impair-
ment (Tarantini et al. 2015). Indeed, recent evidence sug-
gests that pharmacological interventions that rescue
neurovascular coupling responses result in improved cog-
nitive function in mice with AD pathologies (Nicolakakis
et al. 2008;Tong et al. 2012). In that regard, it is significant
that hypertension also causes marked neurovascular dys-
function (Girouard and Iadecola 2006;Capone et al. 2012;
Girouard et al. 2006; Kazama et al. 2004; Faraco et al.
2016; Kazama et al. 2003). Hypertension-induced
neurovascular uncoupling superimposed on amyloid pa-
thologies is likely tosignificantlyexacerbatedysregulation
ofCBFand cognitive decline. Indeed, inAβPPswe/PS1dE9
mice angiotensin II-induced hypertension was reported to
exacerbate impairment of cerebral blood flow regulation
(Wiesmann et al. 2016). There is substantial evidence
obtainedboth inpre-clinical and in clinical studies demon-
strating that aging per se impairs neurovascular coupling
responses (Tonget al. 2012;Balbi et al. 2015; Fabiani et al.
2013; Sorond et al. 2013; Toth et al. 2014b; Zaletel et al.
2005; Park et al. 2007), suggesting that combinationof old
age, amyloid pathologies, and hypertension likely results
in a critical mismatch between supply and demand of
oxygen and metabolic substrates in functioning cerebral
tissue (Iadecola et al. 2009).

Hypertension-induced cerebral microhemorrhages

Cerebral microhemorrhages (CMHs; also described as
microbleeds) are small chronic intracerebral hemor-
rhages (< 5 to 10 mm in diameter), which develop due
to the rupture of small arteries, arterioles, and/or capil-
laries (Ungvari et al. 2017b). Hypertension (Jeerakathil
et al. 2004; Cordonnier et al. 2007; Romero et al. 2014;
Roob et al. 1999; Sveinbjornsdottir et al. 2008; Vernooij
et al. 2008), advanced age (Jeerakathil et al. 2004; Chai
et al. 2016; Caunca et al. 2016), and cerebral amyloid
angiopathy and AD (Yates et al. 2011, 2014; Pettersen
et al. 2008; Benedictus et al. 2013) are the major risk
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factors for CMHs. The prevalence of CMHs reaches
50% in patients at risk (Ungvari et al. 2017b). CMHs
are clinically important as they may exacerbate cogni-
tive decline in AD patients. There is strong experimental
evidence that aging or vascular AD pathologies exacer-
bate the effects of hypertension on the pathogenesis of
CMHs (Ungvari et al. 2017b; Toth et al. 2015a, 2017;
Tarantini et al. 2017), worsening the clinical outcome.
The cellular and molecular mechanisms by which hy-
pertension promotes CMHs include induction of oxida-
tive stress and MMP activation in the vascular wall,
breakdown of the extracellular matrix, pathological
structural adaptation to high blood pressure, and/or im-
pairment of myogenic autoregulatory protection, which
allows high blood pressure to penetrate the vulnerable
distal portion of the cerebral microcirculation (Toth et al.
2015a, 2017; Tarantini et al. 2017; Wakisaka et al. 2008,
2010). Future studies are needed to identify effective
strategies for microvascular protection to prevent the
development of CMHs, thereby delaying cognitive de-
cline in AD patients.

Conclusion

Strongepidemiological andexperimental evidence indicate
that hypertension in the elderly promotes the pathogenesis
of AD and/or exacerbates cognitive decline by inducing
capillary rarefaction, BBB disruption, and consequential
neuroinflammation, by impairing neurovascular coupling

responses and promoting the genesis of cerebral
microhemorrhages. Because clinical trials with Aβ
targeting antibodies (i.e., bapineuzumab and solanezumab)
and γ-secretase inhibitors (semagacestat) failed (Laske
2014;Doodyet al. 2013), research into treatments that exert
microvascular protection and thereby may prevent
development/progression of the disease became a high
priority. In light of recent pre-clinical and clinical trials
showing that anti-hypertensive drugs (including diuretics,
angiotensin I receptorblockers, andangiotensin-converting
enzyme inhibitors) may have beneficial effects in AD,
further studies of the interaction between hypertension and
AD pathophysiology are highly warranted. In addition to
repurposing existing drugs with microvascular protective
effects (Nicolakakis et al. 2008; Papadopoulos et al. 2014,
2016), geroscience research has identified promising novel
molecular targets involvedin theregulationofcellularaging
processes that can be targeted to improve neurovascular
health. Among them, the mTOR inhibitor rapamycin
(Urfer et al. 2017a) shows great promise in treating AD, as
it was shown to rescue cerebromicrovascular function and
improvecognition inpre-clinicalmodels of thedisease (Lin
et al. 2013, 2017; Galvan and Hart 2016; Richardson et al.
2015). Many other geronic factors involved in aging pro-
cesses, including IGF-1 (Ashpole et al. 2017; Podlutsky
et al. 2017), Nrf2 (Ungvari et al. 2011a, b; Valcarcel-Ares
etal.2012;Pearsonetal.2008;Ungvarietal.2011c;Bailey-
Downsetal. 2012),andfactors involved in redoxregulation
(Deepa et al. 2017; Grimmig et al. 2017; Konopka et al.

Fig. 1 Cerebromicrovascular alterations by which hypertension
promotes the pathogenesis of vascular cognitive impairment and
AD. Hypertension promotes microvascular oxidative stress and
microvascular injury, which are exacerbated in aging (Girouard
et al. 2006; Toth et al. 2015a, 2013a; Springo et al. 2015b). In
patients with AD pathologies, hypertension increases the deposi-
tion of Aβ and exacerbates cerebromicrovascular dysfunction
induced by Aβ. Microvascular injury, aggravated by structural

and functional microvascular maladaptation to hypertension, leads
to blood-brain barrier disruption promoting neuroinflammation,
microhemorrhages, and microvascular rarefaction. Hypertension-
induced, oxidative stress-mediated neurovascular uncoupling fur-
ther compromises the blood supply to the brain. The model pre-
dicts that these hypertension-induced structural and functional
microvascular alterations critically contribute to cognitive decline
in high-risk elderly patients
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2017), were shown to influence microvascular health, reg-
ulating neurovascular coupling responses (Tarantini et al.
2016b; Toth et al. 2014b, 2015b, c), angiogenesis and
capillary rarefaction (Tarantini et al. 2016a; Valcarcel-Ares
et al. 2012; Banki et al. 2015; Sonntag et al. 2013; Csiszar
et al. 2013b; Ungvari et al. 2013), and the pathogenesis of
cerebral microhemorrhages (Ungvari et al. 2017b; Toth
et al. 2013a, b, 2014a, 2015a, 2017; Springo et al. 2015a;
Tarantinietal.2017).Newdevelopmentsinourunderstand-
ing of these microvascular mechanisms and their patho-
physiological roles may lead to novel interventions for
delaying the progression of AD (Fig. 1).
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