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Abstract Stroke is one of the leading causes of death
and permanent disability in the elderly. However, most
of'the experimental studies on stroke are based on young
animals, and we hypothesised that age can substantially
affect the stroke response. The two-vessel occlusion
model of global ischemia by occluding the common
carotid arteries for 15 min at 40 mmHg of blood pres-
sure was carried out in 3- and 18-month-old male
Sprague—Dawley rats. The adhesion molecules E- and
P-selectin, cell adhesion molecules (CAMs), both inter-
cellular (ICAM-1) and vascular (VCAM-1), as well as
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glial fibrillary acidic protein (GFAP), and cleaved
caspase-3 were measured at 48 h after ischemia in the
cerebral cortex and hippocampus using Western blot,
gPCR and immunofluorescence techniques. Diametric
expression of GFAP and a different morphological pat-
tern of caspase-3 labelling, although no changes in the
cell number, were observed in the neurons of young and
old animals. Expression of E-selectin and CAMs was
also modified in an age- and ischemia/reperfusion-
dependent manner. The hippocampus and cerebral cor-
tex had similar response patterns for most of the markers
studied. Our data suggest that old and young animals
present different time-courses of neuroinflammation and
apoptosis after ischemic damage. On the other hand,
these results suggest that neuroinflammation is depen-
dent on age rather than on the different vulnerability
described for the hippocampus and cerebral cortex.
These differences should be taken into account in
searching for therapeutic targets.

Keywords Ischemia - Age - Inflammation - Apoptosis -
GFAP- Selectins - CAMs

Abbreviations

BBB Blood-brain barrier

BSA Bovine serum albumin

CA Cornu Ammonis

CAM Cellular adhesion molecules
DABCO 1,4-Diazabicyclo(2.2.2)octane
DAPI 4’,6-Diamidino-2-phenylindole
GFAP Glial fibrillary acidic protein

@ Springer



9703, Page 2 of 14

AGE (2014) 36:9703

/R Ischemia/reperfusion
ICAM Intercellular adhesion molecule

MCAO  Middle cerebral artery occlusion

MRI Magnetic resonance imaging

PFA Paraformaldehyde

PBST Buffer sodium phosphate with Triton X-100

TBST Tris-buffered saline 50 mM with Tween-20
0.2%

VCAM  Vascular adhesion molecule

Background

Stroke is one of the most important cause of death
worldwide according to the World Health Organization
(WHO 2011) and the main cause of permanent disability
(Donnan et al. 2008). Ischemia causes necrosis in neu-
rons in the first hours after insult in the area where blood
flow has been reduced to less than 15 % (ischemic core)
(Tamura et al. 1981; Nedergaard et al. 1986; Duverger
and MacKenzie 1988). After longer periods, areas with
blood flow up to 40 % (penumbra areas) (Ginsberg and
Pulsinelli 1994; Hossmann 1994; Back 1998) present
delayed cell death, mainly by apoptosis (Mehta et al.
2007). Thus, the goal of neuropharmacological targeting
is mainly addressed to preserve or rescue the neurons in
the penumbra area of apoptotic delayed cell death (Rami
et al. 2008; Fricker et al. 2013). Apoptosis is also tightly
related with the strong neuroinflammation elicited by
stroke and the impairment of the blood—brain barrier
(BBB) (Amor et al. 2010). In the inflammatory
response, adhesion molecules play crucial roles since
they mediate recruitment and infiltration of neutrophils
across the vascular endothelium (Sughrue et al. 2004;
Petri et al. 2008). This process requires the sequential
action of different selectins and cell adhesion molecules
(CAMs) (Stanimirovic and Satoh 2000; Yilmaz and
Granger 2008), and we hypothesised that the balance
of these molecules could mirror the time-course of this
recruitment. In addition, the impairment of the BBB is
neutrophil-dependent (Anthony et al. 1997; Perry et al.
1997; Blamire et al. 2000) and, therefore, should be
mirrored by the expression of these molecules. This
expression could help to identify the BBB permeability
at different ages. The impairment of the BBB is also
related to astrocyte activation (Ivens et al. 2007,
Cacheaux et al. 2009), where quiescent astrocytes be-
come reactive astrocytes. This process modifies these
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cells substantially, inducing crucial changes in the ex-
pression of cytoskeletal molecules, such as the glial
fibrillary acidic protein (GFAP) (Sofroniew and Vinters
2010; Colangelo et al. 2014). Reactive astrocytes release
soluble factors that are related to the recruitment of
leukocytes for crossing the BBB and initiate neuroin-
flammation in the central nervous system (CNS) (Li
etal. 2011).

Ischemia focal models reveal an intrinsic gradient of
damage from the ischemic core that has to be considered
when a structure is studied (Ayuso et al. 2010). Most of
the results from focal models are morphological data
based on immunofluorescence and magnetic resonance
imaging (MRI) (Dziennis et al. 2011; Liu and
McCullough 2012), and many of them are based on
the leukocyte response (Stevens et al. 2002; Gelderblom
et al. 2009). In addition, despite the fact that strokes
mainly occur in the elderly, current studies are mainly
performed on young animals and data from old animals
are very scarce (Collins et al. 2003; Wasserman et al.
2008). Particularly, studies on transcriptional expression
of specific molecules that bind neutrophils (e.g. selectins
and CAMs) are very limited and are practically non-
existent in old animals (Liu and McCullough 2012),
despite their importance for gaining insight into the
leukocyte infiltration process.

Age is considered the most relevant factor for stroke
risk (Rojas et al. 2007; Rosamond et al. 2008). Since
many biochemical parameters decrease with aging
(Sinha et al. 2005; Bala et al. 2006; Arumugam et al.
2010; Liu and McCullough 2011; Liu et al. 2012), it
would expect a lessened ability of response to the stroke.
However, age-dependent differences in the time-course
of the stroke-induced response of different molecules
could play crucial roles in the discovery of new thera-
peutic targets or therapies (Anyanwu 2007). In this
regard, we present here a study comparing for the first
time the ischemic-induced apoptotic damage (delayed
cell death), GFAP, and selectin and CAM adhesion
molecules involved in leukocyte infiltration and GFAP
and show their age dependence.

Material and methods

Animals

Young (3-month-old) and old (18-month-old) male
Sprague—Dawley rats, 400+50 and 750480 g,
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respectively, were housed at 22+1 °C in a 12-h light/
dark controlled environment with free access to food
and water. Twenty rats of each age group were divided
randomly into ischemic and sham-operated groups. Ex-
periments were performed in accordance to the Guide-
lines of the Council of the European Union (63/2010/
EU), following Spanish regulations (RD 53/2013, BOE
8/2/2013) for the use of laboratory animals. Experimen-
tal procedures were also approved by the Scientific
Committee of the University of Leon. All efforts were
made to minimise animal suffering and to reduce the
number of animals used.

Transient global ischemia

Animals were anaesthetised in an anaesthesia induction
box supplied with 4 % halothane (Sigma-Aldrich) at
3 L/min in 100 % oxygen. After induction, anaesthesia
was maintained with 1.5 to 2.5 % halothane at 800 mL/
min in 100 % oxygen using a rat face mask. Trimetaphan
(kindly provided by Roche Applied Science) was used as
the main hypotensor agent (15 mg/mL, 0.3 mg/min),
administered through the femoral artery, to obtain
moderate hypotension (4050 mmHg). This prevents
blood flow through the circle of Willis in the two-vessel
occlusion models of global ischemia. Arterial tension was
also modulated by changing the halothane concentration,
which has intrinsic hypotensive effects (Bendel et al.
2005). Body temperature was controlled with a rectal
probe and maintained at 36+1 °C during surgery using
a feedback-regulated heating pad. Both common carotid
arteries were exposed and occluded with atraumatic
aneurysm clips for 15 min of transient global ischemia.
Then, animal arterial blood pressure was left to recover,
the femoral artery catheter was removed and the animal
was sutured.

After recovering consciousness, rats were maintained
in standard conditions for 48 h (reperfusion time). Pro-
cedures in sham-operated rats were performed exactly
as for ischemic animals except that carotid arteries were
not clamped.

RNA and protein studies

Forty-eight hours after the ischemic insult, animals were
decapitated, their brains quickly removed and transferred
into a brain rodent matrix (ASI instruments) at 4 °C in
order to obtain 2 mm thick sagittal slices at a distance of
1 mm to the medial line. The Cornu Ammonis 1 (CAl)

hippocampal region, Cornu Ammonis 3 (CA3) hippo-
campal region and cerebral cortex (CX) were dissected
from those slices under a microscope, frozen in dry ice
and stored at —80 °C. Total RNA and protein of each of
these regions were extracted using the TriPure™ isolation
reagent (Roche Applied Science) following the manufac-
turer’s instructions and then stored at —80 °C.

Reverse transcription and gPCR

RNA integrity was assessed using the Experion RNA
HighSens Analysis Kit (Bio-Rad Laboratories) follow-
ing the manufacturer’s instructions. Possible contamina-
tion with DNA was prevented by incubation with DNase
(Sigma-Aldrich) and checked by PCR.

The concentration of the total RNA in each sample
was determined by measuring its absorbance (260/
280 nm) using a NanoDrop ND-3300 spectrophotome-
ter (NanoDrop Technologies). Six hundred nanograms
of total RNA of each sample was used as a template for
reverse transcription using the High Capacity comple-
mentary DNA (cDNA) Reverse Transcription Kit
(Applied Biosystems) according to the manufacturer’s
instructions. The cDNA obtained was used as a template
for the quantitative real-time PCR (qPCR) assays.
Primers were designed using Primer Express software
(Applied Biosystems), and those with efficiencies lower
than 90 % were discarded. Forward and reverse primers
used in this study (efficiency values between 90 and
110 %) are shown in Table 1.

Real-time PCR was performed using a
StepOnePlus™ Real-Time PCR System, and SYBR
Green PCR Master Mix (Applied Biosystems) was used
as the fluorescent DNA-binding dye. Optimal qPCR
conditions in our assays were obtained with 2 pulL of
1/10 cDNA and 300 nM of primers. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as a
reference gene for normalisation of different transcript
values. The normalised messenger RNA (mRNA) levels
were expressed as pact (ACt=Cltigrget—Ctgappn), and
fold changes were compared using the 2" method
(Livak and Schmittgen 2001). All of the qPCR assays in
this study were performed according to MIQE Guide-
lines (Taylor et al. 2010).

Western blot

Proteins were resuspended in 8 M urea and 4 % sodium
dodecyl sulphate (SDS) in the presence of a protease
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Table 1 Sequences of the primers used for RT-qPCR and GenBank accession numbers

Gene Forward primer Reverse primer Accession number
P-selectin acaggcagccctccaatgtgtg atttgacggctctgcacacggg [NM_013114.1]
E-selectin tgettecegtetttgecacace tecgtecttgetettetgtgeg [NM_017211.2]
VCAM-1 tgctectgacttgecageaccac tgtcatcgtcacagcagcacce [NM_ 012889.1]
ICAM-1 tgcagecggaaageagatggtg atggacgccacgatcacgaage [NM_012967.1]
GAPDH gggcagcccagaacatca tgaccttgcccacagect [NM_017008]

1CAM intercellular adhesion molecule, VCAM vascular adhesion molecule, GAPDH glyceraldehyde-3-phosphate dehydrogenase

inhibitor (complete protease inhibitor cocktail, EDTA-
free; Roche Applied Science), and their concentrations
were determined using the DC Protein Assay (Bio-Rad)
based on the Lowry method. Protein samples (25 pg per
lane) were resolved on a 10 % polyacrylamide gel
(SDS-PAGE; Bio-Rad) at 110 V for 120 min. Then,
proteins were transferred onto a nitrocellulose mem-
brane using a dry transfer system (Invitrogen) at 20 V
for 7 min. Nitrocellulose membranes were blocked in
5 % bovine serum albumin and 0.2 % Tween-20
(Sigma-Aldrich) in Tris-buffered saline (TBST) for
60 min at 25 °C. Then, membranes were incubated

overnight, at 4 °C, with the primary antibodies (Table 2).

Primary antibodies were labelled with their
appropriate secondary anti-rabbit or anti-mouse anti-
bodies complexed with horseradish peroxidase (Dako)
at a dilution of 1:3000. After incubation in Chemilumi-
nescence Luminol Reagent (Life Technologies), the ni-
trocellulose membranes were exposed onto the
proper films (ECL films, Amersham) to obtain
images of the protein bands labelled with the enzyme.
Densitometry analysis of the bands was performed with
ImageJ 1.46r (ImagelJ software).

Table 2 Primary antibodies and concentration used

Primary antibodies Manufacturer Concentration
P-selectin raised in rabbit Abcam 1 pg/mL
E-selectin raised in rabbit Abcam 0.67 pug/mL
ICAM-1 raised in rabbit Abcam 0.75 pug/mL
GFAP raised in rabbit Dako 1 pg/mL
{3-Actin raised in mouse Sigma-Aldrich 0.2 pg/mL

1CAM intercellular adhesion molecule, GFAP glial fibrillary acidic
protein
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Immunofluorescence assays

Animals used for this technique were perfused via the
aorta with a saline solution followed by a fixer solution
made of 4 % paraformaldehyde (PFA) (Merck) in
50 mM phosphate-buffered saline (PBS; pH 7.4) at
4 °C. The brains were removed, maintained overnight in
PFA at 4 °C and then stored until sunk in a
cryoprotectant solution made of 30 % sucrose in PBS,
pH 7.4. The brains were sectioned into 40 um thick
sagittal slices with a freezer microtome and then were
maintained in 0.025 % sodium azide (Sigma-Aldrich) in
PBS (pH 7.4) at 4 °C until analysis. Sections were labelled
with a rabbit primary antibody against the activated
caspase-3 (Cell Signalling) overnight at 4 °C. A biotinyl-
ated goat anti-rabbit antibody (Vector; 1:500) was used as
the secondary antibody and was labelled with stravidin
complexed with DyLight Alexa 592 (Molecular probes;
1:100). Nuclei were labelled with 4',6-diamidino-2-
phenylindole (DAPI) (Sigma-Aldrich; 1:1000) and
mounted in 3 % DABCO (Sigma-Aldrich) in glycerol-
water (1:1) to preserve the fluorescence. Slices were kept
at 4 °C in the dark. Images were obtained using a confocal
Nikon TE 2000 EZ.C1 microscope (Nikon).
Quantification of cleaved caspase-3-positive cells
was performed on six 40 um thick equidistant sagittal
sections that were between 1 and 4 mm lateral to the
middle line per rat. An optical dissector method
modified from Zarow et al. (2005) was used. A 60x
objective was used to perform the quantification. The
counting frame for the dissector was a 35%35 um
square, and for the fractionator volume, we used a
30-um height (discarding 5 wm of both lateral and
medial sides that were damaged in the cutting process).
In each of the sections, seven equidistant dissectors
along the cerebral cortex internal pyramidal layer, seven
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along CA1l and four along the CA3 pyramidal layers
were used per section. Cells were scored as apoptotic
when the nucleus was stained by the cleaved caspase-3
antibody and was condensed, or if at least 30 % of the
cytosol surrounding the nucleus was labelled. Other
staining patterns were considered as artefacts. The re-
sults were expressed as the percentage of cleaved
caspase-3-positive cells with respect to the total number
of cells.

Statistical analysis

Two-way ANOVA tests followed by Bonferroni # test
were conducted to detect interactions between age and
ischemia. The significance was set at the 95 % confi-
dence level. The statistical analysis was carried out
using GraphPad Prism 5 (GraphPad software).

Results

E-selectin mRNA levels on the hippocampus
and cerebral cortex

The analysis of the effect of age revealed that the cere-
bral cortex and CA1 showed significantly lower mRNA
levels in the aged sham-operated animals than in the
young sham-operated animals. However, we failed to
find differences in CA3. In contrast, we only detected an
age-dependent effect, with increased E-selectin
transcript levels, in the CA3 of injured animals
(Fig. 1a). In all of the structures studied, the ratios
between old/young sham-operated animals were

>
w

significantly lower than the ratios for old/young ische-
mia/reperfusion (I/R)-injured animals.

In young animals, we only detected the I/R effect in
the CA1 and CA3 hippocampal structures where E-
selectin mRNA levels of ischemic animals were
significantly lower than those of their respective sham-
operated animals. In old animals, E-selectin transcript
levels were significantly higher than those of their re-
spective sham-operated animals in all of the structures
studies. Also, E-selectin mRNA levels were higher in
old injured animals than in young injured animals
(Fig. 2a). Two-way ANOVA analysis of E-selectin
transcripts revealed significant interactions for both
age and ischemia in all of the structures studied.

E-selectin protein levels on the hippocampus
and cerebral cortex

In the cerebral cortex, E-selectin protein levels were
significantly higher in both sham-operated and injured
old animals when compared to the young animals.
However, in the hippocampus, we failed to detect sig-
nificant differences in old animals when compared to
young animals.

I/R elicited increases in E-selectin in the cerebral
cortex and CA3 in young animals, but we could not
detect I/R-dependent differences in any of the structures
in the old animals (Fig. 3d-f).

P-selectin protein levels on the hippocampus
and cerebral cortex

We only detected age-dependent significant P-selectin
decreases in the cerebral cortex of sham-operated
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Fig. 1 Effect of age on mRNA levels. Fold change (2" in (a)
E-selectin, (b) VCAM-1 and (¢) ICAM-1 mRNA levels in old
sham-operated animals (open columns) as compared with young
sham-operated animals (represented as a value of 1, dotted line) in
the CA1l and CA3 hippocampal structures and the CX. Black

columns represent old I/R-injured animals as compared to their
respective young I/R animals (represented as a value of 1, dotted
line). Age-dependent significant differences are represented by an
asterisk, and significant differences between old animals are indi-
cated by a yen sign (p<0.05, two-way ANOVA, n=5)
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Fig. 2 Effect of 48-h /R on mRNA levels. Fold change (224"
in (a) E-selectin, (b) VCAM-1 and (¢) ICAM-1 mRNA levels
between I/R-injured animals when compared with their respective
sham-operated animals in the CA1 and CA3 hippocampal struc-
tures and the CX. Three-month-old I/R animals (open columns)
and 18-month-old animals (black columns) are compared with

animals and in the CA3 of old I/R animals when
compared with the respective young animals. I/R
induced significant changes only in young animals,
with significant decreases in P-selectin levels in
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their respective sham-operated animals (represented as a value
of 1, dotted line). 1/R-dependent significant differences are
represented by a number sign, and significant I/R difference
as a consequence of age is represented by a yen sign (p<0.05,
two-way ANOVA, n=5)

the cerebral cortex and significant increases in P-
selectin in the CA3. Age and I/R showed a sig-
nificant interaction only in the CA3 of old animals
(Fig. 3a—c).

P-selectin CA3
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Fig. 3 Effect of age and I/R on selectin protein levels. Represen-
tative protein bands of P-selectin (84 kDa) and E-selectin (67 kDa)
in the CX (a and d), CAl (b and e) and CA3 (c and f) in young
(open columns) and old animals (black columns). The averages of
the densitometric analysis corresponding to five rats (mean+=SEM)
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normalised to respect to 3-actin (40 kDa) are indicated above the
bands. Age-dependent significant differences are represented by an
asterisk, I/R-dependent significant differences are represented by a
number sign and significant interactions between and age and I/R
are represented by a yen sign (p<0.05, two-way ANOVA, n=5)
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ICAM-1 mRNA levels on the hippocampus and cerebral
cortex

In the hippocampus and cerebral cortex, intercellular
adhesion molecule 1 (ICAM-1) transcripts of old
sham-operated animals were significantly higher when
compared to young sham-operated animals. In contrast,
ICAM-1 transcripts in old injured animals were
significantly lower than those of young animals in both
the cortex and hippocampus (Fig. 1c).

I/R elicited increases in ICAM transcript levels in all
the structures of both young and old animals. However,
in young animals, this effect was more noticeable. We
found significant interactions between I/R and age in all
structures studied (Fig. 2c).

ICAM-1 protein levels on the hippocampus and cerebral
cortex

We only found age-dependent significant increases in
ICAM-1 protein levels in the CAl of sham-operated
animals. However, old injured animals had higher levels
of this protein in the cerebral cortex and CAl than
young injured animals. We only found I/R-dependent
increases of ICAM-1 levels in the CA3 in both young
and old injured animals (Fig. 4a—).

VCAM-1 mRNA levels on the hippocampus
and cerebral cortex

Considering the effect of age, vascular adhesion mole-
cule 1 (VCAM-1) transcripts in the cerebral cortex were
significantly lower in the old animals when compared to
the young animals in both sham-operated and I/R-in-
jured animals. However, VCAM-1 mRNA levels in the
hippocampus of old sham-operated animals were sig-
nificantly higher than those of the young animals. The
transcripts in old injured animals were significantly
lower than those in young injured animals in both the
cerebral cortex and hippocampus (Fig. 1b).

The results of the effect of I/R are shown in Fig. 2b.
Significant I/R-dependent increases in VCAM-1
transcript levels were observed in young animals
for all of the structures studied when compared with
their young sham-operated animals. This is in con-
trast to the significant decreases observed in old
injured animals with respect to old sham-operated
animals in all the structures studied.

GFAP protein levels on the hippocampus and cerebral
cortex

GFAP mRNA levels at 48 h after reperfusion in
young and old animals have been previously
described (Montori et al. 2010c), and therefore,
we only present the results corresponding to the
GFAP protein levels. Regarding the effect of age,
young sham-operated animals had significantly
lower GFAP levels in the cerebral cortex when
compared with the hippocampal structures. In
contrast, GFAP levels of old sham-operated ani-
mals were lower in the hippocampus than in the
cerebral cortex. With respect to the effect of I/R,
we observed that GFAP levels decreased 48 h
after I/R in young animals in all structures when
compared with the sham-operated animals. This is
in contrast with the increase in GFAP levels ob-
served in the old injured animals when compared
with their respective sham-operated animals
(Fig. 4d-f).

Cleaved caspase-3 immunolabelling
on the hippocampus and cerebral cortex

In the cerebral cortex, the quantification of the
apoptosis was performed in the cerebral cortical
layer V pyramidal cells and in the CAl and CA3
pyramidal cells by determining the percentage of
cleaved caspase-3-positive with respect to the total
number of cell pyramidal DAPI-stained nuclei. Two
different immunocytochemical patterns of cleaved
caspase-3 labelling were observed (Fig. 5). One of
them was characterised by a cytoplasmic labelling,
while the other showed labelling of mainly the
nuclear area that correlated with abnormal nuclear
morphology (Fig. 6d). The first pattern was
significantly higher in the pyramidal cells of old
animals than in young animals, while the nuclear
staining was significantly higher in young animals
than in old animals (Fig. 6d).

Age-dependent effects on apoptosis (measured
as the percentage of cleaved caspase-3 cells) were
only observed in the CA3 of sham-operated ani-
mals and in the CA1 of injured animals. However,
a noticeable I/R-dependent increase was observed
in all of the structures for both young and old
animals (Fig. 6a—c).
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Fig. 4 Effect of age and I/R on ICAM-1 and GFAP protein levels.
Representative protein bands of ICAM1 and GFAP in the CX
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and old animals (black columns). The averages of the densitometric
analysis corresponding to five rats (mean+=SEM) normalised to
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respect to (3-actin (40 kDa) are indicated above the bands. Age-
dependent significant differences are represented by an asterisk, I/R-
dependent significant differences are represented by a number sign
and significant interactions between and age and I/R are represented
by a yen sign (p<0.05, two-way ANOVA, n=5)

cleaved capase-3
A
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<

Fig. 5 Different labelling patterns of apoptosis. Labelling of
cleaved caspase-3 shows two different patterns: nuclear labelling
(arrows), which is predominant in young animals, and

cytoplasmic labelling (asterisks), which is predominant in old
animals. Nuclear labelling with DAPI and merged images.
Bar=20 pum
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and I/R-injured (black columns) animals. The pattern of staining in
both young and old I/R-injured animals in the different structures is

Discussion

The main results of this study can be summarised as
follows: (a) The effects on the leukocyte transmigration
markers, E-selectin, VCAM-1 and ICAM-1 transcrip-
tion are modified by both ischemia and age, and there is
a significant interaction between these two factors; (b)
some of the results did not reach significance in the
protein analysis of this process, but significant effects
of both age and ischemia and its interaction are consis-
tent with the mRNA results; and ¢) in a similar way, the
results of GFAP as a marker of gliosis and the cleaved
caspase-3 as a marker of cell death show the effect of
age and ischemia and their significant interaction.

Selection of times and markers

The process of brain inflammation that follows I/R starts
within the first hours after injury and continues for
weeks (Schilling et al. 2003; Tanaka et al. 2003; Yilmaz
et al. 2006). However, the maximal recruitment of cir-
culating inflammatory cells in the brain occurs 2 days
after ischemia (Stevens et al. 2002; Gelderblom et al.
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also shown (d). Age-dependent significant differences are repre-
sented by an asterisk, and I/R-dependent significant differences are
represented by a number sign. No significant interactions between
age and I/R were found (p<0.05, two-way ANOVA, n=5)

2009; Jin et al. 2010). Thus, comparison between young
and old animals at this time is crucial to determining
age-dependent differences. The onset of apoptotic mor-
phology in the core of the lesion has been described to
occur between 6 and 12 h, but the development of cell
death in the penumbra is difficult to know (Lipton
1999). Some studies on focal ischemia indicate that
48 h after ischemia, 30 % of cells in the ischemic core
appear damaged, but show no signs of death, and 15 %
of cells are apparently healthy (Li et al. 1998). On the
other hand, 48 h after ischemia is considered the limit of
the viability for cells in the penumbra area (Meisel et al.
2005; Durukan and Tatlisumak 2007; Kadhim et al.
2008; Lakhan et al. 2009; Kriz and Lalancette-Hebert
2009; Candelario-Jalil 2009). Thus, we chose this time
for the study because it seems to be critical in the
analysis for both inflammation and cell death.

One of the hallmarks of inflammation in the brain is
the activation of glia, and GFAP is probably the best
marker of gliosis (Busch and Silver 2007; Rolls et al.
2009). In this regard, gliosis drives a change in mor-
phology that requires the expression of GFAP, which is a
necessary marker to evaluate neuroinflammation.
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Adhesion molecules are markers that should be
monitorised since the recruitment of neutrophils re-
quires an adhesion process to allow the cell transmigra-
tion across the vascular endothelium (Wang et al. 2007).
In this regard, selectins and CAMs are the most relevant
molecules involved in the adhesion process
(Stanimirovic and Satoh 2000; Wang et al. 2007; Petri
et al. 2008). In an attempt to estimate the role of neuro-
inflammation in apoptosis, we used the effector cleaved
caspase-3, which is considered the main marker in
apoptosis (He et al. 2006; Wang et al. 2013; Fan et al.
2014).

Cell death

Although we did not find age-dependent changes in the
number of apoptotic cells at 48 h after I/R, differences in
the apoptotic activity modulated by age have been
described at 8 days after global ischemia in the hippo-
campal CAl region (He et al. 2006). Our results show
differences in the apoptotic labelling, indicating
age-dependent differences in the time-course of apopto-
sis. In this regard, the pattern of a predominant nuclear
staining has been described as a later stage in the apopto-
sis process than the cytoplasmic staining (Eckle et al.
2004). Our data indicate that at 48 h after /R, old animals
exhibit earlier apoptotic stages than young animals,
which could represent a higher ratio of cell death in
young rats, or age-dependent differences in the time-
course of the apoptosis. The similar amounts of the total
number of neuronal nuclei for the different conditions and
the general similar percentages of apoptotic cells led us to
assume that differences in the pattern of caspase labelling
mirror differences in the apoptotic time-course rather than
the total amount of death due to apoptosis. Studies carried
out using a middle cerebral artery occlusion (MCAO)
model indicate that cell death in aged animals is higher
after 3 days of the injury (Popa-Wagner et al. 2007).
However, the time-course of cell death in this model
and the one studied here is difficult to compare. The areas
studied in the MCAO model are close to the infarct core
(Popa-Wagner et al. 2007), while our model simulates
only the penumbra area. The distance of a cell to the
infarct core is crucial in deciding whether the cell survives
or dies, and obviously, the onset of apoptosis can be
radically different.

A secondary conclusion of the results of the analysis
of the ischemic and sham-operated cell ratios in both
young and old animals is that 48 h after I/R is too early
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to properly measure age-related differences in the
caspase-dependent delayed cell death.

The low affinity binding

Our data show that both P- and E-selectins are expressed
in the brains of young (3 month) and old (24 month) rats
and that there are age-dependent differences between
them in the 48-h I/R response. Thus, while E-selectin
transcript levels observed in old sham-operated animals
are lower than their corresponding young sham-
operated animals, 48-h I/R rats reveal an age-
dependent increase in transcription. This indicates that
E-selectin transcription is maintained at least until the
age studied in this report, which is in contrast with our
initial hypothesis. In this regard, we thought that age-
dependent decreases in the enzymatic activity (Sinha
et al. 2005; Bala et al. 2006) could be due to decreases
in their expression.

E-selectin has been reported to induce the expression
of CD11/CDI18 integrins, which are required for the
neutrophils to bind with high affinity to VCAMs (Petri
et al. 2008). Thus, our results (both in mRNA and
protein) support that the low affinity binding (rolling)
is maintained in at least the old animals studied here.
Protein results also indicate that CA3 and CX, but not
CAL, presented and increased I/R-dependent responses
in young animals, which correlate with the lower vul-
nerability of the CA3 and cortex to ischemic damage.
However, this difference was not maintained in the older
animals, as has been recently reported (Lalonde and
Mielke 2014).

P-selectin presented a constitutive expression in pe-
ripheral tissues, but not in the cerebral endothelium
(Gotsch et al. 1994; Barkalow et al. 1996). The mRNA
transcript levels were too low to study accurately, and
therefore, we only analysed the P-selectin protein levels.
Our data suggest that in old animals, this protein pre-
sents a lessened ability of response, in contrast to what
was observed for E-selectin. It is also possible that at
48 h after I/R, P-selectin is not at its highest concentra-
tion since it is released earlier than E-selectin (Zhang
et al. 1998). Therefore, we must note that, although the
transcription of the E-selectin gene is maintained, we
cannot be sure what happened with P-selectin since it
could follow a different time-course. We also found I/R-
dependent differences in P-selectin in young animals,
both in the cerebral cortex and CA3, but not in CAl, as
was observed for E-selectin, although in P-selectin, the
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CA3 and CX present a diametric response. These types
of differences suggest different types of regulation of the
cerebrovascular unit in different areas of the brain.
Differences in the endothelium along different areas of
the brain have already been described (Mclntosh and
Warnock 2013). Our data support that these differences
could be lessened by age.

High affinity binding

Our results indicate an age-dependent diametric
response in the CAMs and E-selectin transcripts in
sham-operated animals, thus indicating that the
transcriptional response of the molecules related with
low and high affinity binding of neutrophils is modified
by aging. The protein response is not as clear, but it must
be taken into account that the method of protein detec-
tion is less accurate than qPCR detection. In addition,
some overlap in the function of ICAM-1 and selectins
(Salas et al. 2006) could explain why the differences are
less evident when protein expression was compared.
The results for [ICAM-1 expression support the idea that
transmigration or the high affinity binding is maintained
or even increased in all of the structures of older animals
after the ischemic damage.

Thus, the response of the selectins and CAMs ob-
served in I/R-injured animals adds further support to the
idea that there are age-dependent differences for the
molecules involved in low and high affinity binding of
the neutrophils. Thus, this study shows that age modifies
the response of these adhesion molecules either by
altering their transcription or their time-course
expression.

GFAP

One of the most noticeable findings in our study was the
diametric response of GFAP to the ischemic insult in
young and old animals. The results from the young
animals confirm the ischemia-dependent decrease in
GFAP expression that was previously described 48 h
after reperfusion in a 4VO model of global ischemia in
young Wistar rats (Zhang et al. 2007). Several studies
provide evidence that aging brain reacts stronger to I/R
with an early inflammation response (Badan et al. 2003;
Popa-Wagner et al. 2007; Buga et al. 2013), and it has
been reported that aged Sprague-Dawley rats present an
carly glial scar in an MCAO model (Popa-Wagner et al.
2006). Also, GFAP reactivity in humans has been

described to depend on the age of patient (Dziewulska
1997). All of the above is consistent with our results.
Thus, all of the reports show differences in GFAP pro-
tein expression between young and old animals.

The hippocampus and cerebral cortex have been
reported to have different vulnerabilities to the ischemia
(Kirino et al. 1985; Dijkhuizen et al. 1998; Xu et al.
2001). This difference is consistent with differences
observed in the expression of different neurotransmitter
system genes (Montori et al. 2010a, b, c¢) or markers of
reticulum stress (Llorente et al. 2013). Our results show
that changes induced by age modify this structure-
dependent vulnerability.

In summary, this study shows different responses in
old and young animals at 48 h of I/R, including different
patterns of apoptotic labelling, GFAP reactivity and
molecules involved in high and low affinity binding of
neutrophils. We think that these age-dependent
differences represent changes in the time-course re-
sponse to I/R and should be taken into account in the
treatments of or during the development of therapeutic
targets for stroke.
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