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Abstract The diet in the elderly does not provide a
sufficient level of nutrients needed to maintain an ade-
quate healthy status leading to micronutrient deficien-
cies and impaired immune response with subsequent
development of degenerative diseases. Nutrient “zinc”
is a relevant micronutrient involved in maintaining a
good integrity of many body homeostatic mechanisms,
including immune efficiency, owing to its requirement
for the biological activity of many enzymes, proteins
and for cellular proliferation and genomic stability. Old
people aged 60–65 years and older have zinc intakes
below 50% of the recommended daily allowance on a
given day. Many causes can be involved: among them,
altered intestinal absorption, inadequate mastication,
psychosocial factors, drugs interactions, altered subcel-
lular processes (zinc transporters (Zip and ZnT family),
metallothioneins, divalent metal transporter-1). Zinc

supplementation may remodel the immune alterations
in elderly leading to healthy ageing. Several zinc trials
have been carried out with contradictory data, perhaps
due to incorrect choice of an effective zinc supplemen-
tation in old subjects showing subsequent zinc toxic
effects on immunity. Old subjects with specific IL-6
polymorphism (GG allele carriers; named C−) are more
prone for zinc supplementation than the entire old
population, in whom correct dietary habits with foods
containing zinc (Mediterranean diet) may be sufficient in
restoring zinc deficiency and impaired immune response.
We summarise the main causes of low zinc dietary intake
in elderly reporting an update on the impact of zinc
supplementation upon the immune response also on the
basis of individual IL-6 polymorphism.
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Introduction

The elderly population above the age of 60–65 years
shows a higher risk of developing nutritional disorders
caused by the ageing process itself coupled with a
series of physiological, biochemical, biological and psy-
chological changes, which in turn alter the individual
physical activity as well as general behaviour, dietary
habits and social interactions (Meunier et al. 2005).
Several clinical symptoms are linked to this situation,
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including dermatitis, diarrhoea and especially alterations
in immunocompetence (Hambidge 2000; Cunningham-
Rundles et al. 2005).

Generally, adequate nutrition plays a pivotal role in
maintaining healthy status (Hambidge 2010) and immu-
nocompetence in humans (High 1999) with possible
extension of the life span (Chernoff 2005). Among the
micronutrients, zinc is essential in the elderly in terms of
its impact on biological, biochemical and immune func-
tions (Shankar and Prasad 1998; Mocchegiani et al.
1998; Haase et al. 2006b).

Zinc deficiency in humans is quite prevalent, affect-
ing over two billion people (Prasad 2008). Nutritional
zinc deficiency is widespread throughout developing
countries. A lot of evidences support the belief that the
main factor associated with zinc deficiency seems to be
an inadequate zinc dietary intake influenced in turn by
other several intrinsic and extrinsic factors (Gibson et al.
2008). Indeed, zinc is well recognised as an essential
trace element for all organisms and plays an important
role in the development and integrity of the immune
system affecting both innate (T, NK, and NKTcells) and
adaptive (anti/pro-inflammatory cytokine production)
immune responses (Prasad 2000; Ibs et al. 2003;
Bogden 2004; Haase et al. 2006b; Mocchegiani et al.
2009). Zinc is required for DNA synthesis, RNA tran-
scription, cell division and activation (Prasad 2007) as
well as in preventing apoptosis (Fraker 2005). Zinc has
also a significant role as “zinc signal” because affecting
the signal transduction for immune cell functions (Haase
and Rink 2009a). All these effects have been identified
in experimental animals and humans where an altered
zinc status can affect the immunocompetence (Prasad
1998; Haase and Rink 2009b; Mocchegiani et al.
2008d). Zinc deficiency coupled with altered immune
response, as occurring in ageing, leads to an increased
susceptibility for some age-related diseases (Vasto et al.
2006; Prasad 2009). As a consequence, several studies
suggest the usefulness of a zinc supplementation in the
prevention and/or treatment of diseases associated with
zinc deficiency (Prasad 2009; Haase and Rink 2009b;
Mocchegiani et al. 2008d). The aim of this review is to
evidence some possible causes of low zinc dietary in-
take in ageing and the main effects of zinc on immuno-
senescence. Moreover, we discuss the potential role of
the zinc supplementation in elderly in order to restore
the immune response in relation to individual genetic
background that is represented by IL-6 polymorphism.
Such an assumption is based on the fact that the

production of IL-6 increases in ageing leading to chron-
ic inflammation, named “inflammaging” (Franceschi
2007), with subsequent altered intracellular zinc homeo-
stasis (Mocchegiani et al. 2006).

Dietary zinc deficiencies

Zinc deficiency is an important factor in the origin of
certain common diseases that affect and cause morbidity
among the elderly. Zinc is a critical trace element in
human health for tissue growth, taste acuity, connective
tissue growth and maintenance, immune response, pros-
taglandin production, bone mineralisation, proper thy-
roid function, blood clotting, cognitive functions, foetal
growth and sperm production (Sandstead 1994). Zinc is
also required for the biological activity of enzymes, for
cell proliferation and for “zinc finger” DNA motifs
(Mocchegiani et al. 1998). Clinical evidences support
the pathological consequences that can occur during
zinc deficiency that is a serious public health problem
from young up to old age (Table 1). Such a deficiency in
ageing is typically the result of an inadequate zinc
dietary intake that may occur as a response to reduced
energy requirements or age-related sensory impairment
(Stewart-Knox et al. 2005). It has been reported that
mild zinc deficiency is a significant clinical problem in
free-living elderly people: only 42.9% have a sufficient
intake of zinc (defined as >67% of the recommended
daily allowance (RDA)) (Prasad et al. 1993). These data
have been confirmed by other studies (ZENITH project,
Andriollo-Sanchez et al. 2005; ZINCAGE project,
Mocchegiani et al. 2008a; Japan study, Kogirima et al.
2007 and German study from the Max Ruben Institute,
MRI 2008). In the latter, 44% of men and 27% of
women (age range, 65–80 years) do not reach the rec-
ommendation. Moreover, the Third National Health and
Nutrition Examination Survey (NHANES) documented
a decrease in zinc intake with advancing age, and only
42.5% of old participants (age, ≥71 years) showed an
adequate zinc intake (defined as ≥77% of the RDA)
(Briefel et al. 2000).

Such a reduced zinc dietary intake in ageing leads to
low intracellular zinc ion availability, which has been
well documented using specific fluorescent zinc probe
(Haase et al. 2006a). The low intracellular zinc ion
availability occurs despite the plasma zinc levels may
be in the normal range, suggesting that the determination
of plasma zinc can be misleading to detect a real zinc
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Table 1 Clinical consequences and risk factors in zinc deficiency from young up to old age

Reference Clinical risk factors and pathologies associated with Zn deficiency

Vasto et al. (2006) Increased total cholesterol

Grahn et al. (2001) Macular degeneration

Bunk et al. (1989) Decreased plasma concentrations of vitamin E

Cipriano et al. (2009) Accumulation of senescent cells with short telomeres

Mocchegiani et al. (1998),
Dardenne (2002), Bogden (2004),
Haase et al. (2006b), and Prasad (2008)

Impairment of the immune response (cell-mediated immunity
and humoral immunity) and impairment of thymic and extrathymic
T cell pathways (NKT cell number and function)

Eberle et al. (1999) Abnormalities in bone growth and bone formation and mineralisation

Gur et al. (2002) Osteoporosis

Hambidge (1992) Diarrhoea

Hambidge (2000) Pneumonia

Kury et al. (2002) Acrodermatitis enteropathica

García et al. (2009) Obesity especially in children

Gibson et al. (2002) Lack of sexual development in females

Leek et al. (1988) Delayed skeletal maturation and defective mineralisation
of bone (monkeys)

Little et al. (1989) Possible contributor to loss of appetite

Evans (1986) hair loss, impotence, skin lesions, weight loss and delayed wound healing

Lyon et al. (2003)
and Giacconi et al. (2004)

Hypertension and increased risk factor for atherosclerosis and
cardiovascular diseases

Mackenzie et al. (2007) Altered neonatal and infant behaviour and cognitive and motor performance

Fraker (2005) Decreased cell proliferation and increased cell death (apoptosis)

Markovits et al. (1990) Decreased taste acuity

Cousins (1985) and
Mocchegiani et al. (2008b)

Reduced concentration of blood metal transport proteins
(ceruloplasmin, albumin and α2-macroglubulin)

Meunier et al. (2005) High susceptibility to oxidative damage of membrane fractions

Marcellini et al. (2006) Negative consequences on human behaviour

Meunier et al. (2005) Decreased absorption of dietary folate

Malavolta et al. (2010)
and Mocchegiani et al. 2011)

Increased Cu/Zn ratio as predictor of frailty and mortality in old age

Mocchegiani et al. (2006) Increased inflammation and limited zinc release by Metallothioneins

Taysi et al. (2008) Decreased erythrocyte and cardiac antioxidant capacity

Marcellini et al. (2006) Mood disorders

Tinker and Rucker (1985) Defective connective tissue

Prasad (1985) Weight loss

Prasad (1985) Hypogonadism in males

Prasad (1985) Growth retardation

Prasad (1985) Delayed puberty in adolescents

Prasad (1985) Mental lethargy

Prasad (1985), Dardenne (2002),
and Mocchegiani et al. (2007)

Altered hormone productions (insulin, glucocorticoids,
thyroid hormones, IGF-1, growth hormone, melatonin, testosterone,
progesterone and thymulin)

Cakman et al. (1996) and Prasad (2000) Decreased resistance to infection, imbalance of Th1/Th2 paradigm

Mariani et al. (2006) and Haase and Rink (2007) Abnormalities in cytokine and chemokine secretions and functions

Sandstead (2000) and Marcellini et al. (2006) Neuropsychological impairment

Sato et al. (2002) Exacerbated hypertension and cardiovascular diseases
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deficiency in elderly (Mocchegiani et al. 2006) that in
turn does not reflect the reduced dietary zinc intake
(ZINCAGE project) (Mocchegiani et al. 2008a). Such a
reductionmay be due tomany factors related to the ageing
process. Among them, altered intestinal absorption, alter-
ation in zinc transporter proteins, inadequate mastication,
psychosocial factors, drug interactions and competition
between zinc and other bivalent minerals (copper, iron,
calcium and selenium) or vitamins may be involved. Old
subjects display also a reduction in zinc cellular uptake in
comparison to young-adults perhaps due to the cellular
senescence, which is less responsive to zinc because
altered gene expressions of some zinc transporters (Zip1,
Zip2 and Zip3) on cellular membrane occur (Giacconi et
al. 2011). Alternatively, epigenetic mechanisms might
occur in the promoter region of the zinc transporters
leading to an hypermetylation of the gene with subsequent
decreased zinc absorption in the intestinal lumen, as sup-
posed for the zinc transporter ZnT5 (Coneyworth et al.
2009). Anyway, regardless of the mechanism involved,
the zinc dietary intake and intestinal zinc absorption are
deficient in aging leading to an increased risk for the
appearance of degenerative age-related diseases.

Altered intestinal absorption

The amount of zinc in a meal affects zinc absorption
(Lonnerdal 2000). The higher the amount of zinc in a
meal, the less the fractional absorption of zinc as a
percentage. With the use of radiolabelled zinc solutions
in water and measuring the zinc absorption by the whole
body in human adults, 40 μmol of zinc produces
73% of absorption vs. 46% when 200 μmol was admin-
istered (Sandström and Cederblad 1980). Zinc absorption
also consists of a specific saturable carrier-mediated
component and a nonspecific unsaturable diffusion-
mediated component (Menard and Cousins 1983; Steel
and Cousins 1985). Taking into account that zinc is

predominantly transported via the specific saturable
transport mechanism (Sandström 1992), the fractional
zinc absorption decreases when dietary zinc increases,
whereas the amount of zinc absorbed increases linearly
at higher dietary levels. However, in presence of dietary
ligands the concentration of absorbed zinc is lower
(Sandström 1992). In old humans, zinc absorption, es-
pecially in the small intestine, is lower than young-adult
individuals but it is independent by zinc dietary intake
(August et al. 1989). Therefore, other factors can influ-
ence zinc absorption. Among them, the amount of zinc
present in the intestinal lumen, the presence of dietary
promoters (e.g. human milk and animal proteins) and
altered physiological states have been reported (Lonnerdal
2000). Another factor influencing the zinc absorption is
the presence of phytates and other minerals (iron and
calcium) in the diet that may act as inhibitors binding
zinc or blocking its action (Lonnerdal 2000; Hambidge
2010). Recently, a cross-over study in young and elderly
healthy women using two different diets containing two
phytate concentrations (phytate/Zn molar ratio023
(high phytate content) and phytate/Zn molar ratio010
(low phytate content)) for 9 days showed that phytates
did not alter plasma zinc concentrations and urinary zinc
excretion in both groups (Kim et al. 2007).

Although this last finding suggests that phytate may
not be as important in zinc absorption, the age-related
changes in intestinal architecture may play a key role.
Studies in old animals have shown that the ageing pro-
cess is accompanied by alterations entailing some of the
following intestinal changes: alterations in villus shape
(cilia), increased collagen alteration, mitochondrial
changes, crypt elongation and prolonged replication time
of cryptal cells (Thomson 2009). These changes might at
least explain the altered zinc absorption in the elderly, as
suggested by August et al. (1989) and Turnlund et al.
(1982), with a reduction of 30% in old individuals with
respect to the young-adult ones.

Table 1 (continued)

Reference Clinical risk factors and pathologies associated with Zn deficiency

Sayeg Porto et al. (2000) Short stature

Moroni et al. (2005), Mariani et al. (2008),
and Haase and Rink (2009b)

Decreased functionality in monocytes, neutrophils,
natural killer cells, granulocytes and phagocytosis

Mocchegiani et al. (2008c) Risk factor for the development of diabetes

Varela et al. (1992), Su and Birmingham (2002),
and Nova et al. (2004)

Possible contributor to anorexia nervosa

Karaca et al. (2007) Dwarfism
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Decreased zinc absorption in elderly may also oc-
cur in large intestine owing to degenerative alterations
in enterocytes and intestinal microvilli (Elmes and
Jones 1980). The causes of these physio-pathological
alterations in large intestine are still unknown. Any-
way, regardless of these factors, when the capacity of
the intestinal absorption diminishes, the zinc deficien-
cy develops with subsequent loss of appetite, impaired
immune functions followed by the appearance of
many clinical evidences (Table 1), including hair loss,
diarrhoea, impotence, eye and skin lesions, weight
loss, delayed wound healing, taste abnormalities and
mental lethargy (Evans 1986).

Mastication and changes in oral structures

Poor dentition and loss of dental pieces are common
events among the elderly, while the satisfactory pros-
thetic replacement option decreases. The inability to
masticate properly leads to several modifications in
dietary models since there is a tendency to avoid and
substitute certain foods often zinc rich, such as red
meat or hard cheese, with other more soft zinc-poor
foods, such as bread. These losses may be also generally
caused by periodontal diseases, which might in turn be
originated by deficits of some minerals in the diet
(calcium, phosphorous and zinc) (van der Putten et al.
2009). Although few oral diseases are characteristic in
the elderly, some pathological states are frequent in old
individuals representing a critical factor for a correct
zinc dietary intake. The most common oral diseases in
old people are especially those ones related to mucosa
membrane inflammation and/or atrophy, xerostomia
(dry mouth), leukoplakia and malignant neoplasia
(Swoboda et al. 2008). On the other hand, old subjects
with mucosal erythema, stomatitis, angular chielitis and
atrophic glossitis, display low plasma zinc concentrations
(Sweeney et al. 1994). Therefore, an improved mastica-
tion through individual prosthetic replacement is strongly
recommended in elderly in order to increase dietary zinc
consumption and, at the same time, to reduce oral mucosa
inflammation through an improved mastication.

Psychosocial factors

Although the energy requirement is diminished in
ageing owing to low physical activity (Starling and
Poehlman 2000) with subsequent higher incidence of
diet-related illnesses (Drewnowski and Shultz 2001),

some psychosocial factors can have a strong impact on
dietary habits and ultimately low zinc dietary intake.
Marital status, depression, mental status, education,
socioeconomic status, dietary habits and convenience
play an important role as well. Under this profile,
psychological–social factors are crucial in determining
the “frailty syndrome” in old people (Lang et al.
2009). An incorrect or non-intake of certain foods
containing zinc together with psychological-social
factors leads to determine specific phenotype bio-
markers for “frailty”. In this context, high Cu/Zn ratio
is a strong predictor of “frailty” and mortality in old
people associated with marital status, depression, die-
tary habits and physical activity (Malavolta et al.
2010; Mocchegiani et al. 2011). These findings give
further support to the relevance of the interrelationship
among correct diet, psychological factors and physical
activity for healthy ageing (Drewnowski and Evans
2001; Topinková 2008). On the other hand, increased
score of depression and impaired cognitive perform-
ances were associated with low serum zinc levels in a
cohort of elderly people (Marcellini et al. 2006).

Drug interactions

There are numerous cases of adverse drug/nutrition
interactions in the elderly. While several drugs
(i.e. cefuroxime, erythromycin ethylsuccinate and
HMGCoA-reductase inhibitor lovastatin) should
be taken with foods to maximise their absorption and
efficacy, other drugs (ampicillin, ciprofloxacin, doxycy-
cline and captopril) should not be taken with food in
order to have an optimal absorption and efficacy of the
drugs (Genser 2008). However, drug therapy may fre-
quently interfere with digestion, absorption, utilisation
or excretion of essential nutrients altering enzyme bio-
synthesis, coenzyme or protein transport and hormones
metabolism. Moreover, medication can produce appe-
tite, olfactory and taste abnormalities, which in turn
affect the nutritional status (Genser 2008). Elderly
patients usually have more than one permanent daily
medication treatments leading to a high risk of interac-
tion between drugs and zinc absorption (Basu and
Donaldson 2003). One of the mechanisms by which
some drugs may interfere with zinc absorption is due
to the presence of oxidised Metallothioneins that, acting
as antioxidant agents to protect the cells against drug
toxicity, provoke a limited zinc capture by enterocytes
and no storage of zinc in specific cellular organelles

AGE (2013) 35:839–860 843



named “zincosomes” (Maret and Sandstead 2006). As a
consequence, the absorption of intestinal zinc is strongly
limited and the majority of zinc ions is excreted by urine
and the zinc signals, indispensable for cell functions, are
quenched (Krezel et al. 2007). Therefore, old people
under prolonged drug treatments may need zinc supple-
ment in order to reduce the risk of this interaction.
However, Costarelli et al. (2008), using microarray
analysis, have been recently reported the existence of
positive interactions between HMGCoA-reductase
inhibitors and zinc against stress and inflammation in
old atherosclerotic patients, in whom some genes related
to zinc and inflammatory/immune response are up-
regulated or down-regulated depending on their func-
tion. In particular, HMGCoA-reductase inhibitors in-
crease intracellular zinc ion bioavailability associated
with an up-regulation of Metallothionein 2A and
PPARα and a down-regulation of IL-8. Moreover, the
zinc transporters ZnT6 and Zip4 are up and down-
regulated, respectively, by HMGCoA-reductase inhibi-
tors. These findings suggest, on one side, the existence
of positive effects by this interaction against inflamma-
tion and oxidative stress; on the other side, they pin-
point a better cellular zinc efflux/influx by zinc trans-
porters. Therefore, the zinc–drug interaction may be
also positive. The measure of intracellular zinc ion bio-
availability and the effect of the drugs on individual
genetic background, using microarray analysis, may be
valid tools to discern between negative and positive
effects of the drugs. As a result, the best individual
therapy or prevention may be performed in ageing and
age-related diseases.

Dietary components (zinc and other mineral
and vitamin interactions)

Interaction of zinc–calcium

The interactions between zinc and other minerals are
relevant for studying zinc absorption. The interaction
between zinc and calcium or iron is of interest. Al-
though the long-term use of calcium supplements has
limited effect on the zinc status (Sandström 2001), old
literature reports that the content of calcium in the diet
might affect zinc absorption from phytate-containing
meals (Oberleas et al. 1966). Ellis et al. (1987) have
shown that this interference is dependent on the balance
between calcium and phytate in the diet: the phytate ×
calcium/zinc millimolar ratios ≤200 is recommended in

order to obtain an adequate zinc bioavailability from
human diets. However, an excess of calcium does not
seem to interfere on zinc absorption by phytate because
the zinc absorption was inhibited of about only 25% by
high dietary phytate (Hunt and Beiseigel 2009), suggest-
ing that the absorption of zinc may not be as influenced
by increased ingestion of calcium, even when dietary
phytate is high. Other authors instead report in postmen-
opausal women that high calcium may interfere in zinc
absorption with a negative zinc balance (measured as
the difference between zinc intake and faecal zinc
recovery) owing to the presence of high phytates in the
diet (Wood and Zheng 1997). Although different mech-
anisms of zinc and calcium absorption in small intestine
have been proposed through the binding with prosta-
glandin E and vitamin D, respectively (Song and
Adham 1978), experiments in rats have however shown
that calcium may interfere in intestinal zinc absorption
because a competition between zinc and calcium for the
same transcellular transporting carriers on the mem-
brane surface occurs (Dursun and Aydoğan 1994).

From these findings, the effects of zinc–calcium
interaction are still unclear and require further studies.
Anyway, the possible presence of a negative zinc
balance by high calcium intake is strongly suggestive
because a negative zinc balance is already present in
ageing (Mocchegiani et al. 1998), with thus a strong
caution when giving calcium supplements to elderly
individuals without performing a first clinical control
on calcium and zinc status.

Interaction of zinc–iron

Situations that seem to also encounter problematic
interactions are those related to zinc–iron interaction
especially when iron is administered in solution or as a
separate supplement rather than being incorporated
into a meal. Studies showed that high concentrations
of iron can have a negative effect on zinc absorption in
human adults when zinc and iron are given in solution
and on an empty stomach (Sandstrom et al. 1985). It
has been suggested that suppression of zinc absorption
by iron occurs when given in an aqueous medium
because of a competition for common nonspecific
pathways. This suppression cannot occur when iron
and zinc are given during a meal because zinc can be
absorbed via an alternate pathway with the aid of
ligands formed during protein digestion (Whittaker
1998). Anyway, an antagonism between iron and zinc
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exists because both of them use for their transport the
divalent metal transporter-1 (DMT1) found in enter-
ocytes of the small intestine (Gunshin et al. 1997).
Experiments conducted in Caco-2 cells in presence
or absence of foetal bovine serum in the incubating
medium have shown that the apical uptake of 65Zn+2

was significantly reduced in presence of iron and
serum, suggesting that Fe interferes with the absorp-
tion of Zn. The absorption of 55Fe+2 was also de-
creased by excess iron, both in presence and absence
of serum. Only in absence of serum, however, the
reduction in Fe absorption correlated with a decrease
in DMT1 expression (Tallkvist et al. 2000). This study
implies that Zn uptake may be independent by the
DMT1 mechanism. Other mechanisms may be in-
volved. A family of human intestinal Zn transporters
(Zip family) was recently identified. Zip14 seems the
more involved in zinc and iron uptake in the gastroin-
testinal tract (Liuzzi et al. 2006; Cousins 2010).

Interaction of zinc–copper/selenium

Zinc also interferes with other micronutrients, such as
copper and selenium, in which Metallothioneins (MT)
are engaged. Since zinc induces the synthesis of MT,
copper entering the cell displaces zinc from the protein
because copper is more tightly bound to MT than zinc.
This bound copper becomes unavailable for transfer
out of the cell thereby decreasing zinc absorption
(Cousins 1985). With regard to selenium, the interac-
tion with zinc is of benefit because selenium through
glutathione peroxidise reduces oxidised MTwith subse-
quent zinc release by MT and antioxidant effect of free
zinc ions, via activation of antioxidant zinc-dependent
enzymes (superoxide dismutase) (Maret 2003). Of in-
terest is the s-glutathionylation of MT that it may occur
under nitrosative and oxidative stress in ageing leading
to oxidised MT in the thiol groups. Glutathione,
via selenium, reverses this phenomenon leading to
functional MT with possible re-release of zinc by MT
(Casadei et al. 2008).

Interaction of zinc–vitamins

Finally, of interest is the interaction of zinc with some
vitamins (A, D and E) because zinc affects the trans-
porters of the vitamins, as for example retinol-binding
protein for vitamin A (Smith 1980) or tocopherol for
vitamin E (Bunk et al. 1989). The interaction between

zinc and vitamin D is suggestive because zinc participates
in the constitution of vitamin D (especially D3 isoform)
receptor DNA binding domain through two zinc finger-
like motifs (Freedman and Towers 1991), favouring the
re-absorption of calcium at kidney level and phosphorus
at intestinal level. Therefore, the interaction between
zinc and vitamin D is also crucial for a good functioning
of many organs and tissues, including brain and bone.

Absorption of zinc (subcellular processes)

Absorption can be considered as the processes of
influx into the enterocyte and through the basolateral
membrane and of transport into the portal circulation.
The subcellular mechanisms involve zinc transporters,
MT and the transmembrane transporter DMT1.

Two recently identified families of zinc transporter
proteins, ZnT (SLC30) and Zip (SLC39), are respon-
sible in maintaining intracellular zinc homeostasis.
The prevailing view of zinc transporter functionality
is that transporters in the ZnT family function to
reduce cytosolic zinc concentration, either by efflux
across the plasma membrane or by intracellular se-
questration in subcellular compartments (Palmiter
and Huang 2004). Zip family transporters function
acts in the opposite direction, to increase cytosolic
zinc concentration (Eide 2004). Effects of ageing on
zinc homeostasis and dietary requirements mediated
through effects on zinc transporters are most likely to
be through transporters with a particular direct role in
intestinal absorption and/or endogenous secretion.
Current evidence indicates that, within the ZnT family,
ZnT1, ZnT5 and ZnT6 may be of particular impor-
tance in intestinal zinc transport processes. The local-
isation of ZnT1 to the basolateral membrane of the
intestinal enterocyte in rat and mouse (McMahon and
Cousins 1998; Yu et al. 2007), coupled with its func-
tion in reducing cytosolic zinc concentration (Palmiter
and Findley 1995), indicates a role for ZnT1 in the
efflux of zinc absorbed from the intestinal lumen
across the basolateral enterocyte membrane.

The same task also occurs for ZnT5 and ZnT6 that
act also in the zinc uptake across the enterocyte apical
membrane, other than efflux direction (Cragg et al.
2005). The localisation and functional and regulatory
properties of Zip4 and Zip5 indicate that they play a
particular role in the absorption of dietary zinc. Zip4 is
expressed at the apical enterocyte membrane in mouse
at increased levels in animals fed a zinc-deficient when
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compared with a zinc-replete diet (Dufner-Beattie et al.
2003), consistent with a role in dietary zinc absorption.
Mutations in Zip4 are associated with the human zinc
deficiency disease, such as acrodermatitis enteropathica,
which displays a severe reduction in zinc uptake (Kury
et al. 2002). Zip5 is believed to play a role in zinc
homeostasis through regulated endogenous secretion,
by mediating the transport of zinc from the serosa into
the enterocyte. This view is supported by the expression
of Zip5 at the basolateral membrane in the zinc-replete,
but not zinc-deficient, mouse small intestine (Dufner-
Beattie et al. 2004; Wang and Zhou 2010). Although the
specific localization in enterocyte (basolateral or apical
membrane) is still unclear, another zinc transporter
Zip14, expressed in duodenum and jejunum and
mediated by IL-6, plays a relevant role because involved
in zinc and iron uptake with a task in regulating com-
pensatory mechanisms in order to avoid iron overload
that can be toxic in ageing. Suppression of endogenous
Zip14 expression by using Zip14 siRNA reduces the
uptake of both iron and zinc, suggesting the peculiar role
played by Zip14 in the uptake of both minerals (Liuzzi
et al. 2006). However, it is currently unclear how ageing
affects the function and the gene expression of zinc
transporters in enterocytes. It may be supposed that it
might depend by a less efficient membrane localization
of these proteins or related to an impaired activity of the
zinc transporters with advancing aging due to the pres-
ence of chronic inflammation. Such an assumption may
be supported by the findings in experimental models
of chronic inflammation (airway inflammation) show-
ing a positive correlation between altered mRNA zinc
transporters (Zip1, Zip14, Zip4 and ZnT4) and high
gene expression of macrophage, monocyte, eosinophil
inflammatory-related proteins (cc16, cc18, cc19 and
cc111) (Lang et al. 2007). Alternatively, DNA methyl-
ation, known as an epigenetic event and modified by
age, might alter the gene expressions. Age-related
modifications in the promoter methylation status of
specific Zn transporters, as supposed for ZnT5, may
contribute to diminished Zn absorption with age. Since
there is a CpG island in the ZnT5 gene promoter region,
the expression of ZnT5 may potentially be regulated by
its promoter methylation status. Preliminary studies in
three adult cohorts from northern England show corre-
lations between methylation of specific CpG sites in the
ZnT5 promoter and age, supporting the hypothesis that
the age-related reduction in ZnT5 expression in the
intestine may contribute to the decline in Zn status

observed with ageing (Coneyworth et al. 2009). The
expression of other Zn transporters involved in dietary
Zn absorption may also be potentially regulated by
DNA methylation. Indeed, a CpG island is present
within the promoter region of ZnT1 (Balesaria and
Hogstrand 2006). Thus, it is reasonable to speculate that
ZnT1 expression may be modified as a consequence of
age-related changes in DNAmethylation status. Despite
of these studies, no definitive deduction may be still
made either on the effect of ageing on zinc transporter
functions in enterocytes or on gene regulatory responses
to zinc. In this last context, however, a double-blind,
randomised, crossover trial in adult-old humans
(examining zinc transporter responses in the small in-
testine to zinc supplement (25 mg day−1 14 days−1 as
zinc sulphate)), reveals a possible effect of age with a
normalization of zinc transporters in old individuals. A
down-regulation of ZnT1, ZnT5 and Zip4 in intestinal
mucosa was observed (Cragg et al. 2005). These find-
ings are consistent with the homeostatic response to the
zinc supplement in order to prevent the absorption of
surplus of zinc, as also shown in Caco-2 cells adding
high zinc concentrations (200 μM) (Cragg et al. 2005).

The role of MT in the regulation of zinc absorption,
particularly in conjunction with the zinc transporters,
has been also studied. Hepatic and intestinal MT syn-
thesis is stimulated by dietary zinc supplementation,
by intraperitoneal zinc injection and by the acute
phase response. Dietary restriction also results in di-
minished MT synthesis. Experiments in MT knockout
mice show that the rise in serum zinc after a single
dose of zinc was much greater than in the control
animals. In contrast, the serum zinc response of the
MT transgenic animals was blunted when compared
with control animals. The expression of ZnT-1 was
also found to be directly related to serum zinc levels
but unaffected by MT levels (Davis et al. 1998). Thus,
MT may work in cellular responses to limit free zinc
concentrations within quite narrow ranges (Cousins
1996) and to act as a zinc pool (Mocchegiani et al.
2008d). On the other hand, recent data have shown
that in vitro zinc supply in lymphocytes from old
donors restores the gene expression of MT (Mazzatti
et al. 2007), suggesting a role of MT in normalizing
intracellular zinc homeostasis and, at the same time, in
maintaining its redox properties for antioxidant func-
tion. Another transporter potentially involved in zinc
and other metal uptakes is DMT1: a transmembrane
polypeptide found in the duodenum in the crypts and
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lower villi and responsible for the uptake of several metal
ions (McMahon and Cousins 1998). As these transport
proteins are identified and characterised, further inves-
tigations in the whole animal as well as in humans under
conditions of a range of dietary intake, are however
necessary in order to elucidate the amount of absorbed
zinc to the amount of excreted zinc together with these
subcellular processes. Figure 1 reports the main proteins
involved in zinc absorption (influx), intracellular zinc
homeostasis and zinc efflux in enterocytes.

Zinc status of the elderly

Although the upper limit of the dietary zinc intake has
not to exceed 25–40 mg/day (Food and Nutritional
Board 2001; SCF 2002), the RDA for zinc in young-
adult individuals and older is 11 mg/day for men and
8 mg/day for women (Maret and Sandstead 2006). An
uptake below the RDA can only be seen as an indicator
of potential zinc deficiency, because many other factors

also play a role in decreased zinc intake. Hence, it
is necessary to analyse the zinc status of each
individual. The parameter of choice is often serum
or plasma zinc. However, this is not the ideal
parameter to determine the zinc status taking into
account that many old individuals, despite in-
creased pro-inflammatory cytokines known as fac-
tors for zinc depletion (Shankar and Prasad 1998),
display circulating plasma zinc levels within the
normal range (about 85–90 μg/dl) (Mocchegiani et
al. 2003). Other parameters may be useful to test
the zinc status, such as for example the intracellular zinc
ion bioavailability with specific zinc probes (Haase et al.
2006a) and the testing the capacity of zinc release by
MT using NO-donors (Mocchegiani et al. 2006). Re-
cently, the determination of the zinc score has been
validated in ZINCAGE project (based on the determi-
nation of the zinc content in the foods and the individual
quantity of the food intake). This score may represent a
valid test for determining the zinc status being well
correlated with the age-dependent plasma zinc levels
(Kanoni et al. 2010). However, a plethora of studies
have reported that, in general, plasma zinc levels de-
crease with advancing age (Haase et al. 2006b) as well
as in some cell types, such as erythrocytes and lympho-
cytes (Prasad et al. 1993; Andriollo-Sanchez et al.
2005). These findings have been confirmed by data
from the second NHANES, in which serum zinc levels
increased into the third decade of life and declined from
that age (Hotz et al. 2003). Such a decrement may
depend on dietary habits and life style conditions
(Mocchegiani et al. 2008a), and it varies from country
to country where zinc deficiency can be more or less
severe or marginal. The European Nutrition and Health
Report summarise data regarding the nutritional zinc
uptake in elderly from Austria, Denmark, Germany,
Hungary and the UK, where the zinc uptake is particu-
larly low in UK elderly (Fabian and Elmadfa 2008).
Recently, it has been reported that in Italy and France
the zinc dietary intake by different foods may be suffi-
cient in maintaining a satisfactory zinc status with how-
ever marginal zinc deficiency in old people. By contrast,
it is insufficient in Greece elderly coupled with severe
zinc deficiency and enhanced inflammatory status in
comparison with elderly people living in France, Italy
and Germany (Mocchegiani et al. 2008a). Other studies
in a large number of middle-aged (age range, 55–
70 years) individuals from Italy, France (Andriollo-San-
chez et al. 2005) and old ones (age range, 70–85 years)

Fig. 1 Zinc transporter pathways, zinc carrier (DMT1) and MT
in a polarised enterocyte. Zip4 and Zip5 are involved in zinc
influx and efflux, respectively. ZnT5 in both influx and efflux.
ZnT1 in zinc efflux. ZnT6 is involved in various tasks: zinc
efflux and zinc storage in specific vesicles named “zincosomes”
and in Golgi apparatus. ZnT2 and ZnT4 in zinc storage in
zincosomes. ZnT7 in zinc storage in Golgi apparatus. DMT1
is involved in zinc uptake. MT are involved in intracellular zinc
homeostasis for zinc signalling. Zip4, ZnT5, and DMT1 are
present in apical membrane, whereas ZnT1 and Zip5 in baso-
lateral membrane. The specific localization of Zip14, involved
in zinc and iron uptake in enterocyte, is still unclear and remains
to be established as well as the specific function of Zip7, Zip9
and Zip13 expressed in the Golgi apparatus of enterocyte (ques-
tion marks)
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from Germany (Volkert et al. 2004) have reported a
marginal zinc deficiency and the zinc dietary intake
quite similar to that one recommended by RDA (10–
12 mg/day) both in male and female. Also in the USA,
one study in a large number of old individuals (age
range, 60–90 years) showed that the marginal zinc defi-
ciency appeared in more than 90% of old subjects
despite the zinc dietary intake is quite similar to RDA
(11.5 mg/day) both for men and women (Ma and Betts
2000). Instead, a study performed in old institutionalised
individuals (age range, 65–98 years) in León (Spain),
showed severe zinc deficiency coupled with lower zinc
dietary intake (9.1 mg/day) than that one recommended
by RDA (Villarino Rodríguez et al. 2003).

Although the majority of these studies reports that
the zinc dietary intake may be satisfactory in many
Countries because meeting the dose recommended by
RDA, old people of both sexes display marginal zinc
deficiency. Since the “Mediterranean diet” is variegated
and contains foods (especially fish) rich of zinc (Sofi et
al. 2010) usually consumed in Italy and France and
some foods rich of zinc (read meat and legumes) are
consumed in Northern European countries and in the
USA, might in part justify the quite sufficient zinc
dietary intake and the relative marginal zinc deficiency
in elderly. But, it does not explain the reason of a
remarkable subgroup in all countries of elderly subjects
who achieve “successful ageing” (centenarian subjects)
without suffering from age-related diseases despite of
the presence low zinc dietary intake and zinc deficiency
(Mocchegiani et al. 2003). Taking into account that
severe zinc deficiency is strictly related to the chronic
inflammation (Mocchegiani et al. 2006; Prasad 2009),
the reason may be related to a lower inflammatory status
in centenarians with subsequent still capacity in zinc
release by MT, suggesting that the available quota of
free zinc ions, despite reduced, is still sufficient to
maintain good performances in immune response and
antioxidant activity (Mocchegiani et al. 2003), furtherly
confirming the relevance of zinc for immunosenescence
and in keeping under control the inflammation.

Zinc and immunosenescence

Ageing is a continuous multidimensional process of
physical, psychological and social changes that com-
promises the normal functioning of various organs and
systems, including several immunological alterations

named immunosenescence, which is characterised by
increased susceptibility to infections, autoimmune dis-
eases and cancer (Pawelec et al. 2010). The immune
efficiency decreases with advancing aging, starting
around 60–65 years. Alterations of the immune system
during ageing and zinc deprivation show many simi-
larities, indicating the existence of a strict relationship
between immunosenescence and zinc deficiency
(Mocchegiani et al. 1998; Bogden 2004). The similar-
ity is in adaptive and innate immunity as well as in
neutrophil functions (chemotaxis, phagocytosis, oxi-
dative burst). Although the total number of neutrophils
is not different between old and young-adult subjects,
phagocytosis, oxidative burst, and intracellular killing
are impaired in ageing and neutrophils from the elder-
ly show reduced chemotaxis and a lower resistance to
apoptosis, as shown by impaired anti-apoptotic effects
after specific stimuli (lipopolysaccharide (LPS), G-
CSF and GM-CSF) (Schroder and Rink 2003). In this
context, zinc may play a key role because a satisfac-
tory intracellular zinc ion bioavailability preserves the
oxidative burst by neutrophils, via reduction of IL-6
signalling, as observed in centenarians, who in turn
display satisfactory intracellular zinc content and low
grade of inflammation (Moroni et al. 2005).

Adaptive immunity

With regard to adaptive immunity, the plasma concen-
trations of IL-6, IL-8, MCP-1, MIP-1α and TNF-α were
positively correlated with age with a progressive eleva-
tion in very old age (Mariani et al. 2006). Th1 (IFN-γ and
IL-2) cytokines decrease whereas Th2 (IL-4 and IL-10)
cytokines increase (Cakman et al. 1996). The same trend
was also observed after LPS stimulation (Gabriel et al.
2002; Cakman et al. 1997). These alterations in Thl and
Th2 cytokine productions lead to an imbalance of Th1/
Th2 paradigm with a shift towards Th2 production
and subsequent chronic low grade of inflammation,
named “inflammaging” (Franceschi 2007). Alterations
in the balance of Th1/Th2 cytokines also occurs in zinc
deficiency (Uciechowski et al. 2008) that is character-
ised by decreased IFN-γ, IL-2 and TNF-α production
(Th1 cells) and increased IL-6 production by Th2 cells
and macrophages (Mocchegiani et al. 1998). However,
in very old age, the high levels of IL-6 are not so
detrimental because of the low gene expression of IL-6
subunit receptor (gp130) that allows the presence of an
inactive quota of IL-6 with subsequent reduced
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inflammation and good intracellular zinc content
(Moroni et al. 2005).

T cell functions

A similarity between ageing and zinc deficiency exists
also in T cell pathway. The more characteristic T cell
pathway abnormalities in ageing are: (a) reduced T cell
proliferation in response to T cell receptor or CD3 or
mitogen stimulations (Pawelec et al. 1998); (b) altered
CD4/CD8 ratio (Pawelec et al. 1998); (c) higher ex-
pression of CD95 (Fas) and lower expression of BCL-
2 and p53 leading to increased apoptosis (McLeod
2000); (d) lower number of naïve (CD45RA+) and a
higher number of activated memory (CD45RO+) T
cells (Gregg et al. 2005); and (e) thymic involution
producing reduced number of naïve T cells and also
immature because of the lack of thymic hormone
activity required for T cell maturation and differentia-
tion (Arnold et al. 2011). The same age-related T cell
pathway alterations also occur in zinc deficiency
(Mocchegiani et al. 1998; Dardenne 2002) as well as
thymic involution, regardless of age, due to increased
thymocyte apoptosis provoked by elevating glucocor-
ticoid production and by the negative regulatory func-
tion of zinc in immune cell apoptosis (Taub and Longo
2005). Zinc supplementation in old mice increases the
thickness of the thymic gland (especially cortical part)
(Sbarbati et al. 1998) and restores the number of viable
thymocytes and serum thymic hormone (thymulin)
activity (Dardenne et al. 1993; Mocchegiani et al.
1995). Thus, the zinc deficiency in the elderly may
also contribute to the thymic involution by augmenting
apoptosis during Tcell maturation and differentiation, as
observed in old (Provinciali et al. 1998a) and in young
zinc-diet deprived mice (King et al. 2002). On the other
hand, the thymic output (measured using T cell receptor
rearrangement excision circles) is strongly reduced dur-
ing ageing and in zinc deficiency leading to a reduced
number of naïve mature T cells in the circulation with
subsequent inability to substitute activated memory T
cells that undergo to apoptosis after exposure to “for-
eign” antigens (Mitchell et al. 2006). By contrast, in
centenarian subjects with a satisfactory zinc pool
(Mocchegiani et al. 2003), the thymic output is still
sufficiently maintained by IL-7 (Nasi et al. 2006), and
IL-7 and its receptor act via zinc finger protein Miz-1
and SOCS1 (Saba et al. 2011), which the latter is in turn
regulated by another zinc finger protein TRIM8/GERP

(Toniato et al. 2002). Therefore, zinc is relevant in
ageing for thymic output signalling with possible new
T cell maturation and differentiation.

Innate immunity

Of particular interest is the involvement of zinc in
innate immunity, such as NK cells, NKT cells and
their cytotoxicity in ageing. The total number of NK
cells and their percentage among circulating cells is
increased in old people, but this effect is compensated
by a reduced cytotoxic activity and reduced prolifera-
tion in response to IL-2 (Solana and Mariani 2000;
Mocchegiani et al. 2009). Because the main functions
of NK cells are the elimination of cancer- or virus-
infected cells, the higher incidence of viral infections
and cancer in the elderly may well be related to im-
pairment of NK cell function. In this context, the role
played by zinc may be pivotal. First of all, zinc may
affect the new production of NK cells by stem cells.
Zinc in vitro (10 μM) improves the development of
CD34+ cell progenitors towards NK cells both in
young (expressing CD56+ CD16− phenotype) and old
age (expressing CD56− CD16+ or CD56+ CD16+
phenotypes), via increased expression of GATA-3
transcription factor (Muzzioli et al. 2009). More-
over, several studies in old animals and humans
describe decreased NK cell cytotoxicity related to
zinc deficiency (Mocchegiani et al. 2009) through
different mechanisms involving NF-kB or Ap-1 tran-
scriptional factors or A20 protein (Prasad 2007; Bao et
al. 2010). In vitro (1 μM) and in vivo zinc treatments
(12 mg Zn++/day) for a short period (1 month) induce
complete recovery of NK cell cytotoxicity both in old
mice and humans (Mocchegiani et al. 1995; Mariani et
al. 2008). In addition, a physiological zinc treatment (15
Zn++/day)for 1 month in old infected patients, other than
an increased NK cell cytotoxicity, recovers the IFN-γ
production leading to 50% reduction of infection relap-
ses (Mocchegiani et al. 2003). Findings in centenarians
and in very old mice confirm the relevance of zinc in
restoring NK cell function in elderly. Indeed, they have a
well preserved NK cell cytotoxicity, a good zinc ion
bioavailability and satisfactory IFN-γ production
(Mocchegiani et al. 2003; Miyaji et al. 2000). A very
intriguing aspect is the NKT cells bearing TCRαβ or
TCRγδ that are the first defence of the organisms
against virus and bacteria from early in life. NKT cells
produce Th1 (IFN-γ) and Th2 (IL-4) cytokines and are

AGE (2013) 35:839–860 849



functionally linked to NK cells, via IFN-γ (Biron and
Brossay 2001). A dysregulation in IL-4 production by
NKT cells leads to pathology, as it occurs during a
chronic inflammation and autoimmune diseases (Araujo
et al. 2004). However, the main task of NKT cells is to
produce IFN-γ with thus a pivotal role in anti-tumour
cytotoxic response (Cui et al. 1997). NKT cells have
been found in the thymus, liver, spleen and bone mor-
row. Despite the existence of a thymus-independent
differentiation pathway located in the liver for NKT cell
lineage, as demonstrated in athymic nude mice, the
thymus is also a site for NKT development, and the
liver for NKT homing (Emoto and Kaufmann 2003).
During ageing, the thymus is atrophic. Therefore, the
liver extrathymic function becomes prominent in order
to compensate the thymic failure during ageing (Abo et
al. 2000). Therefore, liver NKT cell function becomes
relevant in ageing for host defence. Zinc also improves
the liver NKTcell (mainly bearing TCRγδ) cytotoxicity
in old and in very old mice, suggesting that good zinc
ion bioavailability and the function of these types of
NKTcells are fundamental to achieve successful ageing
(Mocchegiani et al. 2004).

Humoral immunity

With regard to humoral immunity, changes during
aging are also found with a reduction in B cell number.
Such a reduction seems to be not affected by zinc
deficiency, via apoptosis mechanisms (King et al.
2005). However, increased immunoglobulin produc-
tions (IgA and IgG subclasses) have been observed
(Paganelli et al. 1992) and the response to vaccination
with several antigens is instead diminished due to an
impaired interaction with T helper cells (Weksler and
Szabo 2000). In this context, zinc might be relevant in
affecting humoral immunity through its influence in
cytokine production by T cell repertoire, (IL-6, IFN-γ),
suppressing the release of IL-6 (von Bulow et al. 2005)
and promoting IFN-γ release by PBMCs (Driessen et al.
1994). Although the role of zinc in humoral immunity is
still unclear, it does not exclude the relevance of zinc for
a correct inflammatory/immune response against exter-
nal noxae. In particular, the zinc–gene (IL-6) interaction
is pivotal in keeping the inflammatory/immune response
under control with subsequent longevity, indicating this
gene as “robust” for “healthy ageing” (Mocchegiani et
al. 2006).

Zinc–interleukin-6 (IL-6) gene interaction

IL-6 −174G/C locus variability has been suggested: (1)
to be capable of modulating on one hand the individual
susceptibility to common causes of morbidity and mor-
tality among elderly and (2) to play a crucial role in
longevity (Franceschi et al. 2005). Therefore, the genetic
variations of this locus of IL-6 gene are fundamental in
elderly population in order to better understand the in-
trinsic causes of the longevity. The association of these
genetic variations to the possible different immune
responses is an attractive focus in elucidating the molec-
ular mechanisms involved in immunosenescence.

The genetic variations of the IL-6 −174G/C locus
have been extensively studied by different groups with,
however, contradictory data. Bonafe et al. (2001) studied
IL-6 promoter genetic variability at the −174C/G locus
and its effect on IL-6 levels in Italian 700 people aged 60
to 110 years, including n. 323 centenarians. Individuals
who are genetically predisposed to produce high levels
of IL-6 during ageing, i.e. C−men (GG genotype) at IL-
6 −174C/G locus, are disadvantaged for longevity. On
the other hand, the capability of C+ individuals (CC and
CG genotypes) to produce low levels of IL-6 throughout
life span appears to be beneficial for longevity, at
least in men. The women have, conversely, high
IL-6 serum levels later in life with respect to men
independently from −174C/G locus polymorphism
(Bonafe et al. 2001). The inhibitory tone of estrogens on
IL-6 gene expression could explain the gender difference
(Bruunsgaard et al. 1999), assuming that its long-term
effects last until the extreme limits of human life-span.

The major production of IL-6 in C− subjects for the
whole life, including centenarians, has been also con-
firmed by other in vivo longitudinal studies (Rea et al.
2003). A more recent study in old and nonagenarian
subjects has confirmed that IL-6 production is higher
in C− carriers and that these subjects are prone to
contract one of the more usual age-related inflamma-
tory pathologies, such as atherosclerosis (Giacconi et
al. 2004). Interestingly, in this last study C− old and
nonagenarian subjects display also impaired innate
immune response (NK cell cytotoxicity), increased
MT, zinc deficiency and low zinc ion availability in
comparison to C+ carriers (Giacconi et al. 2004).
These findings clearly suggest that the genetic varia-
tions of the IL-6 −174G/C locus play a key role for the
longevity at immune functional level. Moreover, they
suggest that the determination of the genetic variations
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of the IL-6 −174G/C locus associated to a comprehen-
sive evaluation of the zinc status are an useful strategy
to identify old subjects who can benefit of zinc sup-
plementation without health risks (see below “Effect
of zinc supplementation in immunosenescence on the
basis of IL-6 genetic background”).

Potential usefulness of Zn supplementation
in elderly subjects

Since zinc deficiency may alter age-associated health
changes, zinc supplementation is of critical relevance
because helping to prevent certain age-related diseases
due to the effect of zinc upon the immune functions,
metabolic harmony and antioxidant effect with an
extension of also the maximum life span, at least in
mice (Mocchegiani et al. 2007). In this respect, the
National Eye Institute has reported that zinc signifi-
cantly reduces the odds of developing advanced age-
related diseases, reducing oxidative stress in elderly
subjects (Clemons et al. 2004). Various mechanisms of
action of zinc upon the immune system have been well
elucidated. Both direct and indirect mechanisms of zinc
are involved in affecting the immune response in ageing

from inducing DNA proliferation, to maintaining mem-
brane stability, to restoring Th1/Th2 paradigm up to
preventing apoptosis, via activation of nuclear factors
NF-kB and AP-1, caspase-3 inhibition or induction of
A20 protein with subsequent reduction of pro-
inflammatory cytokines (Table 2) (Shankar and
Prasad 1998; Mocchegiani et al. 2000; Prasad 2007;
Bao et al. 2010; Prasad et al. 2011). The most intriguing
mechanism of zinc upon the immune system is however
the existing interrelationship among pro-inflammatory
cytokines (IL-6)-Metallothioneins (MT)-Nitric Oxide
(NO)-PARP-1 taking into account that IL-6 promotes
MTmRNA induction, NO is involved in zinc release by
MTand PARP-1 (a nuclear enzyme codified by two zinc
finger motifs) prevents apoptosis with subsequent
cellular genomic stability (Mocchegiani et al.
2000). Alterations or changes in the various steps
of these mechanisms owing to zinc deficiency, as
it occurs in ageing, leads to the appearance of
some degenerative age-related diseases, including
infection and cancer (Mocchegiani et al. 2006).
Therefore, zinc supplementation may be of benefit
in prevention or in reducing the risk or in delaying
the appearance of diseases and the subsequent
disability.

Table 2 Main biochemical pathways of zinc relevant to immunosenescence

Direct effects Indirect effects

DNA-RNA polymerases activation

Thymidine–kinase activation

Terminal deoxyribonucleotidyl transferase activation

Ornithine decarboxylase activation

Ecto-5 nucleotidase activation

Protein kinase-C activation Endocrine cell activation (pineal gland, thyroidgland,
adenohypophysis and Beta-cells of pancreas)

Membrane stability (competing with thiols) Hormone receptor superfamily activation (melatonin, growth hormone,
nerve growth factor, insulin, IGF-I and thyroid hormones)

Transcriptional factor activation (NF-kB and AP-1) Metallothioneins-nitric oxide-PARP homeostasis

Activation of A20 protein

IL-2 receptor activation

Apoptosis prevention

Thymulin activation (ZnFTS)

Balance of Th1:Th2:Th3 paradigm
(with subsequent cytokine production)

MHC class II restricted activation

p56lck autophosphorylation

For specific references see: Shankar and Prasad (1998), Fraker and Telford (1997), Mocchegiani et al. (1998), Mocchegiani et al.
(2000), Prasad et al. (2006), Prasad (2007), Haase and Rink (2009a, b), Bao et al. (2010) and Prasad et al. 2011)
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Evidences of the usefulness of zinc supplementa-
tion for immunity in the elderly began to emerge three
decades ago with however inconsistent data on its
beneficial effect upon the immune efficiency due to
different doses and duration of zinc treatment as well
as the form of zinc to be supplemented (Mocchegiani
et al. 2008d). Although zinc was used at the doses
recommended by RDA (from 10 up to 40 mg/day)
(U.S. Department of Agriculture 1996) improvements
of both innate and adaptive immune responses are not
so exciting and also contradictory. However, the best
results were obtained when zinc is supplemented at the
doses recommended by RDA as zinc gluconate or
aspartate or acetate, less when zinc was used as zinc
sulphate (Haase and Rink 2009b). No effects on cell-
mediated and humoral immunity were observed when
zinc was used at high doses and as zinc sulphate
(90 mg/day for 3–6 months) (Provinciali et al.
1998b; Stewart-Knox et al. 2005). Anyway, improve-
ments upon the immune system in general occur with
however many limitations. An exhaustive picture of the
zinc supplementation in elderly by different studies has
been recently reported by Haase and Rink (2009b).

From all the studies, physiological doses of zinc
applied for a long period or high doses of zinc for
short periods might induce limited effects on the im-
mune response perhaps due to a zinc accumulation in
various organs and tissues with subsequent toxic effect
of zinc upon the immune functions (Sandstead 1995).
In this context, it is also useful to remind that high
doses of zinc trigger apoptosis of the immune cells in
presence of high oxidative stress and inflammation
(Fraker and Telford 1997). Therefore, caution is ad-
vised for the management of zinc supplementation
with the suggestion to perform the trial for short peri-
ods and on alternate cycles only. Following this con-
cept, zinc treatment (even if as zinc sulphate form) at
the dose of 15 mg Zn++/day for 1 month at alternating
cycles in Down’s syndrome subjects, in elderly and in
old infected patients restores thymic endocrine activity,
lymphocyte mitogen proliferative response, CD4(+) cell
number, NK cell cytotoxicity, pro-inflammatory cyto-
kine production (Mocchegiani et al. 2003; Franceschi et
al. 1988; Kahmann et al. 2006; Kahmann et al. 2008)
and DNA repair (Chiricolo et al. 1993). Clinically, sig-
nificant reductions of relapsing infections occur in
Down’s syndrome subjects (Licastro et al. 1994), in
elderly and in old infected patients (Mocchegiani et al.
2003; Prasad et al. 2007).

An intriguing point of the zinc supplementation is
the augmented gene expression of some zinc trans-
porters. Elderly women treated with zinc gluconate
(22 mg−1 day/27 days−1) display significant increases
of ZnT1 gene expression in peripheral leukocytes
(Andree et al. 2004), even if the gene expression of
the zinc transporters is sensitive in relation to the
immune cells considered (Whitney et al. 2003). Such
increases of ZnT1 have been also observed in human
lymphoblastoid cells adding in vitro 50 or 100 μmol/L
of zinc (Andree et al. 2004), furtherly suggesting the
relevance of zinc supplementation in affecting the
gene expression of zinc transporters and, consequent-
ly, the correct maintenance of intracellular zinc ho-
meostasis. For example, zinc supplementation might
be important to restore ZnT8 gene expression in pan-
creatic vesicles being involved in the aetiology of type
2 diabetes (Sladek et al. 2007): a pathology related to
ageing, zinc deficiency and altered immune response
(Mocchegiani et al. 2008c).

Since zinc affects also the cytotoxicity of liver NKT
cells bearing TCRγδ (extrathymic T cell pathway) with
higher production of IFN-γ in old mice (Mocchegiani et
al. 2004), the presence of satisfactory zinc ion bioavail-
ability, coupled with increased NKT cell cytotoxicity
and enhanced IFN-γ production in centenarians with
respect to elderly (Mocchegiani et al. 2003; Miyaji et
al. 2000), strengthens the pivotal role of zinc supple-
mentation in maintaining or improving the global im-
mune response (thymic and extrathymic T cell
pathways) and in fighting oxidative stress and inflam-
mation. Some authors have also shown that zinc sup-
plementation in combination with other micronutrients
may enhance immunity without interfering on vitamin
metabolism. Zinc supplementation (15 or 30 mg/day as
zinc gluconate for 6 months) has no deleterious effects
on folate or vitamin B12 (Ducros et al. 2009) or vitamin
E status increasing instead vitamin A (Intorre et al.
2008) in healthy free-living old subjects (age range,
55–85 years). In this context, however, it is useful to
remind that vitamin and mineral supplements (including
zinc) in older women are associated with increased total
mortality risk compared with non-users (Mursu et al.
2011; Bjelakovic and Gluud 2011). This phenomenon
may be related to more enhanced copper than zinc
(Mursu et al. 2011) leading to a possible imbalance of
Cu/Zn ratio, which is in turn a high mortality risk factor
especially in older women (Mocchegiani et al. 2011).
Therefore, the doses of minerals to use for supplements
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has to be at physiological doses (for zinc010–12mg/day)
in order to maintain a correct balance among minerals
because of their close interactions (see “Dietary compo-
nents (zinc and other mineral and vitamin interac-
tions)”). Otherwise, an imbalance may occur with an
excessive accumulation of some minerals, such as zinc,
that is toxic because it may lead to an abnormal activa-
tion of some zinc-dependent enzymes, such as PARP-1,
or favouring the entering of excessive calcium into the
cells, with subsequent cell death in both cases (Mocche-
giani et al. 2000; Frazzini et al. 2006).

Moreover, it is also important to highlight that zinc
also affects MT gene expression (Maret 2003). There-
fore, the question arises whether zinc supplementation
in old age may further increase MT, with more limited
zinc release by MT, as it usually occurs in old age
(Mocchegiani et al. 2006). This fact may be avoided
because zinc lowers the inflammation (Haase and
Rink 2007) and, as such, MT can be still able to
release zinc with subsequent good immune perform-
ances (Cipriano et al. 2006). Therefore, the potential
limited zinc release by MT may be excluded during
physiological zinc supplementation in ageing.

Effect of zinc supplementation
in immunosenescence on the basis
of IL-6 genetic background

One possible cause of the discrepancy existing in liter-
ature on the effect of zinc supplementation upon the
immune response in elderly may be the choice of old
subjects who effectively need zinc supplementation in
strict relationship with dietary habits and inflammatory
status (Mocchegiani et al. 2007). This fact is supported
by the discovery that old subjects carrying GG geno-
types (named C− carriers) in IL-6 −174G/C locus

display increased IL-6 production, low intracellular zinc
ion availability and impaired innate immune response
(Mocchegiani et al. 2008b). By contrast, old subjects
carrying GC and CC genotypes (named C+ carriers) in
the same IL-6 −174 locus display satisfactory intracel-
lular zinc as well as innate immune response. However,
the most intriguing finding is that male carriers of C+
allele are more prone to reach centenarian age than C−
carriers. Therefore, old C− subjects are more prone
for zinc supplementation than old C+ carriers. Zinc
supplementation in old C− subjects restores NK cell
cytotoxicity to values present in old C+ carriers and
considerably improves zinc status (Mocchegiani et al.
2008b; Mariani et al. 2008). The benefit of the zinc
supplementation in old people selected on the basis of
IL-6 polymorphism is also observed for some other
immune parameters (Table 3). The inflammation is best
kept under control in C− carries after zinc supplemen-
tation because especially reducing the gene expression
of genes related to the inflammation, such as IL-1 and its
receptor (Mazzatti et al. 2008) and improving, in

Table 3 Effect of zinc supplementation on immunosenescence in elderly according to IL-6 polymorphism

Parameter Effect Reference

Plasma cytokines/chemokines IL-6, IL-8, TNF-α and MIP-1α –↑ Mariani et al. (2008) and Mocchegiani et al. (2008b)

MCP-1 and RANTES – Mariani et al. (2008)

Immune functions NK cell cytotoxicity ↑↑ Mocchegiani et al. (2008b) and Mariani et al. (2008)

Cytokines (IL-1ra) gene expression ↓ Mazzatti et al. (2008)

The dose of zinc used was 10 mg/day of zinc aspartate (Unizink 50, KOHLER PHARMA Corp., Alsbach-Hahnlein, Germany) for
45 days

“↑↑” strongly increased, “↑” increased, “–” not modified, “–↑” slightly increased at least in some sub-groups, “↓” decreased

Fig. 2 Potential effect of Zn supplementation in preventing risk
(minus sign) of degenerative age-related diseases in the elderly
in comparison to zinc deficiency and risk of degenerative dis-
eases (plus sign)
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general, the balance between Th1 (IFN-γ) and Th2 (IL-
10) cytokine production (Kahmann et al. 2008). As
such, the organism is more prompt to respond to exter-
nal noxae with a satisfactory inflammatory/immune re-
sponse, via a better JAK/STAT signalling (Varin et al.
2008). Although further studies according to IL-6 poly-
morphism are needed, these results open the hypothesis
that the daily requirement of zinc might be different in
elderly harbouring a different genetic background with
thus a specific and personalised dietary zinc intake.

Conclusions and future perspectives

Zinc deficiency in elderly, resulting mainly from the
reduced zinc dietary intake together with some age-
related factors (intestinal absorption, mastication, psy-
chosocial factors, drugs interactions and subcellular pro-
cesses), could compromise immune functions leading to
the appearance of some degenerative diseases. Since zinc
deficiency is a common event in the elderly, several
researchers have documented the impact of zinc supple-
mentation in old people in order to restore the zinc status
and, as such, to prevent the disability caused by the
diseases. Clinical evidences have also suggested that
zinc-rich foods, as occurring in the Mediterranean diet,
may be useful in the prevention of zinc deficiencies in old
people, as shown in some European countries (Italy and
France).

However, controversial findings exist on the “real”
necessity of zinc supplementation because the major
problem for zinc supplementation in old people is
related to the choice of old subjects who effectively
need zinc supplementation. The sole determination of
plasma zinc is not sufficient because zinc is bound to
many proteins. The intracellular zinc ion availability
measured with specific zinc probes as well as the ratio
Cu/Zn can be used as complementary methods to test
zinc and inflammatory states. These methods may be
used in daily clinical practice. The polymorphisms of
IL-6 may be the added value to screen effective old
subjects for zinc supplementation in restoring the im-
mune response and to avoid zinc toxic effects. As a
consequence, the healthy ageing and longevity may be
achieved. Thus, zinc supplementation can have a great
impact on healthy ageing especially in subjects carry-
ing specific IL-6 polymorphisms and, as such, at high
risk of zinc deficiency. Taking into account the low
cost of zinc supplementation, a higher consideration

by the international health organisations is therefore
required with specific zinc fortification programmes.
On the other hand, the physiological dose of zinc (10–
12 mg/day), the length of the treatment (short period0
1 month in alternate cycles) and the form of zinc (zinc
aspartate) are strongly recommended, as well as the
genetic screening of IL-6 polymorphism by RT-PCR
method, for the successful of the zinc supplementa-
tion. Otherwise zinc is toxic to high doses and for long
continue treatment because inducing cell death. How-
ever, some points require further investigations. First
of all, the precise biochemical mechanisms involved,
in particular addressing NO-related intracellular path-
ways. Moreover, some aspects of the zinc absorption
have to be better studied because it is dependent by the
interactions with other nutrients. Anyway, zinc sup-
plementation or more correct diet with foods contain-
ing zinc may have significant clinical therapeutic
benefits in elderly by preventing the risk of degenerative
age-related diseases, such as cancer and infection
(Fig. 2).
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