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Abstract The cognitive decline associated with nor-
mal aging was long believed to be due primarily to
decreased synaptic density and neuron loss. Recent
studies in both humans and non-human primates have
challenged this idea, pointing instead to disturbances
in white matter (WM) including myelin damage. Here,
we review both cross-sectional and longitudinal stud-
ies in humans and non-human primates that collective-
ly support the hypothesis that WM disturbances
increase with age starting at middle age in humans,
that these disturbances contribute to age-related cog-
nitive decline, and that age-related WM changes may
occur as a result of free radical damage, degenerative
changes in cells in the oligodendrocyte lineage, and
changes in microenvironments within WM.
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Abbreviations
AD Alzheimer’s Disease
ADC Apparent diffusion coefficient
AxD Axial diffusivity
CC Corpus callosum
CSF Cerebrospinal fluid
DTI Diffusion tensor imaging
FA Fractional anisotropy
GM Gray matter
HA Hyaluronan
HAS Hyaluronan synthase
MCI Mild cognitive impairment
MD Mean diffusivity
MRI Magnetic resonance imaging
OPC Oligodendrocyte progenitor cells
OL Oligodendrocyte
R2 Transverse relaxation rate
RD Radial diffusivity
WM White matter
WMH White matter hyperintensities

Introduction

Like other organs, the brain undergoes significant
structural and functional changes with increasing
age. The nature of these changes and their underlying
mechanisms are slowly being identified. It is now
clear that the overt pathological changes associated
with neurodegenerative diseases, like Alzheimer’s
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Disease (AD), differ substantially from those that occur
during normative human brain aging (Terry et al. 1987).
Until recently conventional wisdom maintained that
normal brain aging is accompanied by gross changes
such as decreased weight, ventriculomegaly, and histo-
logical evidence of neuronal loss (Jernigan et al. 1991).
However, a number of recent studies have suggested
that cognitive decline in healthy elderly individuals is
not due to neuronal dropout, but a reduction of synaptic
and dendritic elements along with changes in white
matter (WM; Fjell and Walhovd 2010; Pannese 2011).
WM changes with age include a loss in volume, de-
creased myelin staining, and increased pallor (Kemper
1994). Histological studies have reported a 10–15% loss
of myelinated fibers with age (Meier-Ruge et al. 1992;
Tang et al. 1997; Marner et al. 2003) and a decline in
WM volume (Tang et al. 1997; Marner et al. 2003;
Piguet et al. 2009). While important, these studies have
limitations that include variable tissue quality, small
sample number, a lack of functional correlates, and a
cross-sectional design that makes it difficult to discern
progression and trajectory of change.

Some of the limitations of histological studies have
been overcome with the use of in vivo imaging. In
particular, magnetic resonance imaging (MRI) has
greatly aided the visualization and quantification of gray
matter (GM), WM, and cerebrospinal fluid (CSF) in the
brain during aging and disease. Despite low resolution,
MRI studies have clear advantages over histological
studies including the ability to perform longitudinal
assessments, to test subjects for health and neurological
status contemporaneously, and the potential for high
through-put capacity. Recent advances have expanded
the repertoire of measurements that can be made during
MRI protocols (Gunning-Dixon et al. 2009). Here, we
review recent studies aimed at evaluating the WM
changes that accompany ventricular enlargement and
atrophy that occur during the course of normative aging.
We examine these data in the light of histopathological
studies in the monkey that provide insights into the
types of disturbances that occur in WM with advanced
age. Finally, we speculate on the possible mechanisms
that contribute to these changes inWM from a variety of
studies in human, non-human primates, and rodents.

Cross-sectional imaging studies in humans

MRI studies of age effects on WM have reported
signal abnormalities that are manifested as an increase

in hyperintensities (WMH), which are considered to
be a result of vascular dysfunction (Yoshita et al.
2005; Debette and Markus 2010), as well as WM
volumetric loss and structural changes measured by
diffusivity (Sullivan and Pfefferbaum 2006). Studies
of age effects on WM volume historically show some
disparity of results, such as an age-related loss that is
restricted to women (Good et al. 2001; Kruggel 2006),
or an increase in WM volume with age (Mortamet et
al. 2005). However, other reports, which can vary by
technique, number of subjects, screening criterion, age
range, or proportion of older participants, have described
global decreases of WM volume with age in both sexes
(Guttmann et al. 1998; Courchesne et al. 2000; Ge et al.
2002; Allen et al. 2005). Cross-sectional studies also
show a loss of WM volume with age in specific regions
of the brain, which occurs in both men and women (Raz
et al. 1997; Bartzokis et al. 2001; Jernigan et al. 2001;
Raz et al. 2004; Allen et al. 2005;Walhovd et al. 2005). A
loss of WM volume, which is paralleled by GM loss, is
even detectable across a two decade range in otherwise
healthy elderly (Lemaitre et al. 2005).

A decline of WM volume or the increase of WMH
with age has also been correlated with functional deficits.
A loss in frontal lobeWMvolume (Brickman et al. 2006)
or atrophy of the anterior corpus callosum (CC) of older
adults (Jokinen et al. 2007; Gratton et al. 2009) was
associated with decreased executive function. Converse-
ly, semantic and short-term memory, stable functions in
the healthy elderly, did not correlate with age effects on
global or regionalWM volumes (Taki et al. 2011).WMH
tends to increase with age in the periventricular and
deep WM (Piguet et al. 2003) and an increase in the
prefrontal cortex is associated with perseverative errors
(Gunning-Dixon and Raz 2003). Increased periventricu-
lar WMH with age also predicts frontal lobe dysfunction
(Soderlund et al. 2006), although the qualitative decline in
medial temporal volume may also play a role (Oosterman
et al. 2008).Moreover, although the severity ofWMH in
the elderly varies anatomically, those with the most
severe lesions performed more poorly on cognitive tests
(Ota et al. 2009). Thus, changes of WMH or WM
volume with age, especially in frontal regions of the
brain, can have a negative effect on brain function.

Longitudinal imaging studies in humans

Repeated MRI measurements over time can overcome
limitations of cross-sectional studies, such as subject
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variation, and provide information on the progression
of WM changes. Longitudinal analysis of global WM
volume over 3.5 years found that WM volume reached
a maximum in the 30s in both sexes, but that this was
followed by declines that accelerated in the elderly
(Liu et al. 2003). Another study found a similar aging
pattern that was observed over a 5-year period (Raz et
al. 2005). Moreover, WM loss in the prefrontal area of
healthy old individuals was found to occur after only
30 months (Raz et al. 2010), suggesting enhanced
regional sensitivity to aging. The Baltimore Longitu-
dinal Study reported age-related changes in MRI-
derived signal intensity, which was believed to reflect
demyelination and changes in water, protein, and min-
eral content in the old (Davatzikos and Resnick 2002).
Results from the same study also reported that while
WM volume was stable after 1 year in old subjects
(Resnick et al. 2000), it decreased regionally and
globally after 4 years (Resnick et al. 2003), suggestive
that a critical age threshold was achieved. Functional-
ly, longitudinal studies have shown WM atrophy in the
CC of elderly men is associated with cognitive dys-
function (Sullivan et al. 2002). With older subjects
1 year was sufficient to reveal a reduction of frontal
WM volume, which correlated with impaired execu-
tive function (Cardenas et al. 2011), suggesting an age
and or regional susceptibility. These longitudinal stud-
ies confirm the cross-sectional results showing WM
volumetric loss in the elderly is associated with func-
tional decline.

Longitudinal studies of WMH reveal functional con-
sequences as well. WMH levels in 13 non-demented
elderly increased modestly, but significantly, in the ce-
rebrum over 5 years and correlated with psychomotor
deficits (Wahlund et al. 1996). In the Austrian Stroke
Prevention Study, WMH levels increased steadily over
6 years, and while cognition was stable at 3 years
(Schmidt et al. 1999), it was significantly impaired after
6 years (Schmidt et al. 2005; also see Prins et al. 2005).
The longitudinal increase ofWMH can negatively affect
several cognitive domains (Longstreth et al. 2005), in-
cluding executive function, with an increase of subcor-
tical WMH (Kramer et al. 2007) and mental processing
speed, when accompanied by an increase in periventric-
ularWMH (van den Heuvel et al. 2006). A high baseline
level of WMH in deep and periventricular WM was
most predictive of a longitudinal progression of WMH
in the elderly (Sachdev et al. 2007). These results are
consistent with cross-sectional studies, in that age-

related increases in WMH are progressive and associat-
ed with a decline in brain function. There also appears to
be a threshold level of detection, as well as functional
decline, perhaps a reflection of critical levels of WM
damage as a function of aging.

Diffusion tensor imaging in humans

Because WM volumetric studies only assess gross
atrophy, they are not able to identify early subtle,
regional WM damage or provide insight into relation-
ships of connectivity and function (Gunning-Dixon et
al. 2009). Therefore, diffusion tensor imaging (DTI)
has been employed to analyze WM tracts by measur-
ing the degree to which water diffusion is restricted
(fractional anisotropy, FA). High levels of FA reflect
restricted water molecule movement along WM tracts,
with the myelin sheaths of axons, axon membranes,
and neurofilaments all providing directionality that
restricts diffusion (Madden et al. 2009). WM FA tends
to decrease with aging in men and women (reviewed
in Moseley 2002). Similar to the volumetric data, FA
peaks in early middle age when myelination peaks
(Kemper 1994) and then declines in the elderly at a
rate that parallels or precedes WM volumetric loss
(Hasan et al. 2007; Hasan et al. 2008; Hasan et al.
2010; Lebel et al. 2010; Westlye et al. 2010). Region-
ally, age-related deficits of FA have been described in
the genu of the CC centrum semiovale, frontal, and
parietal pericallosal WM of men (Pfefferbaum et al.
2000), with a similar pattern found in both sexes
(Sullivan et al. 2001). When corrected for partial vol-
uming, FA still decreased in the CC and centrum
semiovale with age (Pfefferbaum and Sullivan 2003).
In the CC, FA decreases regionally with age in the
genu (Abe et al. 2002), but conversely, also in the
caudal splenium (Nusbaum et al. 2001), which may
reflect technical challenges in the DTI technique
(Sullivan et al. 2006). However, additional studies
have verified the global decline of FA with age (Hsu
et al. 2010), with an antero-posterior gradient of sus-
ceptibility (Salat et al. 2005; Minati et al. 2007).
Moreover, DTI studies that examined the effects of
WMH, ventriculomegaly, and brain atrophy found
these to contribute to a decline of FA with age (Bastin
et al. 2010). Although WM lesions with age are exac-
erbated by hypertension, these appear in more poste-
rior regions, a pattern distinct from normal aging
(Kennedy and Raz 2009a).
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DTI tractography studies allow the quantification of
WM microstructure along the extent of specific fiber
tracts by the measurement of the level of diffusion along
the length of WM (axial) or in the perpendicular (radial)
direction. In one study FA declined with age regionally,
with increased radial diffusivity (RD), which was attrib-
uted to myelin loss (Fjell et al. 2008; for review see
Thomason and Thompson 2011). Since FA also declined
with age in the genu and the ventromedial prefrontal
WM with an increase of mean diffusivity (MD), axial
diffusivity (AxD), and RD, this data supports the idea
that the frontal cortex is particularly vulnerable to age-
related myelin loss (i.e., is age-sensitive; Michielse et al.
2010). A number of studies, using similar techniques,
have proposed that the timing and combination of age-
related changes in FA, MD, AxD, and RD may reflect a
progression of mild to severe WM changes, including
demyelination, axonal loss/damage, inflammation, and
gliosis (Bennett et al. 2010; Burzynska et al. 2010; Sala
et al. 2010; Zhang et al. 2010).

The increase in WM diffusivity has been associated
with age-related cognitive decline, especially in the
anterior WM (O’Sullivan et al. 2001; Sullivan et al.
2006). However, one study of slightly younger sub-
jects (average age of 65 years) found no loss of FA in
anterior and caudal fiber tracts (Madden et al. 2004).
But, in a study with a larger subject pool, FA declined
with age in the frontal, parietal, and temporal cortices
and correlated with deficits in executive function
(Grieve et al. 2007). WM deficits were also found to
occur to a greater extent in the anterior segments of
fiber tracts in the frontal and parietal cortices and
increased RD in the anterior tracts corresponded with
worse executive performance (Davis et al. 2009).
Impairments in working memory, problem solving,
and motor function were also correlated with an age-
related decrease of FA in anterior and superior fiber
tracts, which was interpreted to reflect myelin damage
and fluid accumulation in regions around the axon
(Zahr et al. 2009). Similar to WM volumetric studies,
both sexes are susceptible to the effect of age on WM
FA and longitudinal and transverse diffusivity, al-
though with some variation is observed regionally
(Sullivan et al. 2010).

Breakdown of myelin and decreased fiber density
with age likely affect other functions, such as process-
ing speed. Higher FA and lower RD levels predicted
better processing speed in the healthy aged, but not
general intelligence or memory, and age-related

impairment of cortical connectivity was cited as a
global event (Penke et al. 2010). A cross-sectional
DTI study found that modifications of FA and ADC
with age in the anterior WM correlated with a decline
in processing speed and working memory, whereas a
decline in episodic memory was linked to changes in
central WM (Kennedy and Raz 2009b). Age had the
strongest effect on increased diffusivity, particularly in
older adults with higher AxD, which correlated with
lower processing speed, but not cognitive performance
(Burgmans et al. 2011). In sum, DTI measures of
microstructural breakdown in myelin and axons with
normal aging have been correlated with a decline in
complex behaviors and may be reflected in regional
sensitivity to aging.

WM and Alzheimer’s Disease

Although a thorough overview on MRI studies that
examine WM changes with Alzheimer’s Disease (AD)
is beyond the scope of this review, it is of interest to
contrast AD effects on WM versus normal-aged sub-
jects. In an early study that examined the effects of
aging and AD on frontal lobe WM, the transverse
relaxation rate (R2), which has high values when mye-
lination is also high, was found to decline in a curvi-
linear fashion with age and was further exacerbated
with AD (Bartzokis et al. 2003). A subsequent report
found aging decreased R2 in the genu, but not the
splenium, while AD caused a further decrease in R2

values in both regions (Bartzokis et al. 2004). A study
comparing FA in young, normal old, and mildly de-
mented old adults found that FA declined as a function
of age with a rostro-caudal gradient of sensitivity,
while mildly demented elderly experienced a distinct
WM deterioration in posterior regions (Head et al.
2004). Mildly impaired AD subjects also showed
small decrements in FA in the posterior callosum and
subcortical WM compared with normal age-matched
adults, which correlated with specific functional
impairments (Kavcic et al. 2008). A similar result
showed that normal aged and mildly cognitively im-
paired (MCI) subjects differed from AD, in that the
latter had a differential decrease of FA in the left
anterior temporal lobe, consistent with disease pro-
gression (Damoiseaux et al. 2009). Interestingly, lower
FA was associated significantly with coincident AD
and vascular brain injury (Back et al. 2011). Given that
AD and vascular brain injury are commonly co-

1096 AGE (2012) 34:1093–1110



morbid (Sonnen et al. 2009), it is possible that earlier
findings of lower FA in AD patients reflected vascular
disturbances as opposed to a specific effect of AD
pathology.

Salat et al. (2009) described an AD-specific decline
in WM volume in the parahippocampal and entorhinal
cortices, regions that traditionally suffer from atrophy
with AD. Longitudinal scans that contrasted subjects
with stable MCI and those that converted to AD
showed increased WM atrophy in the temporal lobe
(Davatzikos et al. 2011). WMH assessed in aged and
early AD cases found the burden of periventricular
and deep WM was similar, but there was an exacer-
bation of global cognitive decline with early AD
(Burns et al. 2005). Consistent with these earlier stud-
ies is the report of the progressive increase of hyper-
intensities in the posterior periventricular WM and the
splenium when comparing normal, mild cognitively
impaired, and AD subjects (Yoshita et al. 2006).

Thus, age-related WM changes can be distin-
guished from pathological conditions, with an exacer-
bated WMH, atrophy, and differential anatomical
presentation. However, it is important to note that
modification of WM with normative aging has func-
tional consequences and may reflect interactions with
coincident brain atrophy.

The non-human primate as a model of normative
aging

While the devastating effects of age-related neurode-
generative diseases like AD on the brain constitute an
extremely important biomedical problem, it is impor-
tant to consider the interaction of neurodegenerative
disease with two important aspects of normative ag-
ing. First, normative aging provides the substrate on
which these neurodegenerative diseases are expressed
and hence may be a critical permissive factor in their
incidence and in their expression. Second, even if
neurodegenerative diseases are eliminated, normative
aging changes will compromise brain function, albeit
at a lesser rate and to a lesser degree.

Given the difficulties in assessing normative aging in
humans, a number of investigations have turned to the
rhesus macaque to facilitate the study of normative
aging changes independent of neurodegenerative
changes and postmortem artifacts. In this regard, the
first question is to assess the life span of the rhesus

monkey to establish some estimates of what might be
thought of as equivalencies to humans in terms of the
boundaries for young adults, middle-aged, and elderly
subjects. Two studies are most pertinent here—one from
the Yerkes National Primate Research Center (Tigges et
al. 1988) and the other from the Wisconsin National
Primate Research Center (Dyke et al. 1986).While these
studies used different methods and assessed different
cohorts, they generally agree on the following: rhesus
monkeys can be considered young adults at between 4
and 5 years of age when they reach sexual maturity. At
the other end of the spectrum, Tigges et al. (1988)
reported the maximal life span in captivity to be about
35 years of age while Dyke et al. (1986) reported the
maximum to be as much as 40 years of age. Taken
together, the maximum ages of 35 or 40 likely corre-
spond to the human maximum of 100 to 120 and overall
suggest a relationship of approximately 1 to 3 for mon-
key to human years. From that perspective, monkeys
20 years and over correspond to humans 60 and over
while monkeys 30 years and over correspond to humans
in their 90s or above.Most of the data on agingmonkeys
is thus derived from animals between 20 and 30 years of
age.

Within this range of elderly monkeys, the most im-
portant observation is that the rhesus monkey does not
develop AD or other frank neurodegenerative changes.
For example, while the rhesus monkey does show ac-
cumulation of amyloid in the cortex and some amyloid
plaques, the amyloid that does accumulate is mainly the
less toxic amyloid-beta (A-beta) 1-40 rather than A-beta
1-42 (Gearing et al. 1996). In addition, the amyloid
plaques that do accumulate do not show the distribution
typical of AD or evidence of a predilection for the
hippocampus and entorhinal cortex (Heilbroner and
Kemper 1990). Additionally, there is no relationship
between the accumulation of amyloid plaques and cog-
nitive impairments (Sloane et al. 1997). Finally, neuro-
fibrillary tangles are a second critical and diagnostic
feature of AD that is particularly related to the death of
neurons but there is no clear evidence that neurofibril-
lary tangles are ever present in the rhesus monkey brain
(Kimura et al. 2003; and Finch and Austad, this publi-
cation). And while there are a few recent studies that
report A-beta and phosphorylated tau in the monkey
brain and assert that this makes the rhesus a good model
for AD pathology (e.g., Oikawa et al. 2010), none of
these papers provide evidence that this pathology leads
to the death or loss of neurons.
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Nevertheless, a host of studies confirm that rhesus
monkeys show age-related cognitive impairments in
multiple domains including working memory, recog-
nition memory, and executive function (e.g., Bartus et
al. 1978; Rapp and Amaral 1989; Moss et al. 1988;
Herndon et al. 1997; Moore et al. 2006). Thus a
critical question is to determine what brain changes
occur and whether they are diffusely distributed or
localized to particular anatomical substrates or loci.
Here, we will focus on evidence that neurons in gen-
eral and cortical gray matter in particular are largely
spared in the normal aging monkey brain while mye-
linated axons in forebrain white matter are particularly
vulnerable to pathological changes during normative
aging.

Changes in rhesus macaque gray matter and white
matter during normative aging

It is clear that the loss of neurons in GM is accompa-
nied by loss of axons and associated loss of myelin in
WM. However, even if neurons are preserved, it is
possible to have damage to axons or to myelin as an
independent process. Differentiating between these
two scenarios is particularly difficult in studies of
elderly humans where neuron death that characterizes
neurodegenerative diseases in general and AD in par-
ticular is ubiquitous. This problem is exemplified by
the observation that neuron loss can approach 30%
before cognitive symptoms can be detected (Gomez-
Isla et al. 1996) and more recently structural MRI
studies have also provided evidence that brain pathol-
ogy in AD may precede symptoms by up to a decade
(Tondelli et al. 2011). Hence, humans that are charac-
terized as “neurologically normal” may actually be in
the prodromal stages of neurodegenerative disease and
have significant neuron loss. Because of this, it is
particularly difficult to determine if there is a loss of
axons and/or myelin independent of neuron loss dur-
ing normative human aging.

Hence, despite the benign expression of amyloid
and the apparent absence of tangles, the first ques-
tion to be addressed is whether neurons are lost in
rhesus macaque GM. Early studies by Brizzee and
colleagues (Brizzee et al. 1980) utilized density
measures to evaluate the brain of aged monkeys
and reported a reduction of neuron density in the
CA1 field of the hippocampus and in area 46 of
the prefrontal cortex, two areas critical to cognitive

function. Despite the limited sampling, this study
appeared to corroborate studies of the aging human
brain such as Brody (1955) and Ball (1977) that
reported similar findings for human brains using
similar sampling methods. However, with the ad-
vent of stereological methods in the 1980s, simple
sampling of density was replaced with systematic
random sampling of entire regions and counting of
cells using methods that were free of bias due to
changes in size or density (Sterio 1984; West et al.
1991). When applied to rhesus monkey brain tis-
sues, these methods consistently documented an
absence of age-related neuron loss in motor cortex
(Tigges et al. 1990), primary visual cortex (Peters
et al. 1997; Hof et al. 2000), prefrontal area 46
(Peters et al. 1994; Smith et al. 2004), as well as
the hippocampus (Keuker et al. 2003) and entorhi-
nal cortex (Merrill et al. 2000). The one exception
to this is the report by Smith et al. (2004) of cell
loss in prefrontal area 8A in the same subjects
where these authors report no loss of neurons in
adjacent area 46. While it is always impossible to
prove the null hypothesis that neurons are not lost
and to exclude the possibility raised by Coleman
and Flood (1987) that neuron loss may be limited
to very specific areas as the observation of Smith
et al. (2004) suggests, it seems quite unlikely that
cell loss in the cortex is a major factor in norma-
tive aging. This assertion is supported by increas-
ing numbers of studies that have confirmed the
stability of neuron numbers in normal aging in
rodents where cell loss had also been claimed
(Rapp and Gallagher 1996, 2002) and in human
brain from subjects given careful neuropsycholog-
ical examination to exclude even the earliest stages
of AD (Gomez-Isla et al. 1996). Based on these
observations, factors beyond neuron loss have been
examined in order to explain age-related cognitive
impairments.

Ultrastructural observations of non-human primate
cortex with aging

Because of the unavoidable problems of fixation and
preservation of human brain that result from post
mortem delay, high quality electron microscopic eval-
uation of ultrastructure in aging human brain is ex-
tremely difficult. In contrast, because of the ability to
perfusion fix the central nervous system in laboratory
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animals, electron microscopic evaluation of neural
ultrastructure is feasible. Among the first studies to
demonstrate age-related pathology in WM rather than
GM were those of Peters and colleagues (Peters et al.
2000). Using electron microscopic analysis of the
cerebral cortex of well-fixed rhesus monkey brain, it
was observed that while neurons showed normal ul-
trastructure even in the most elderly monkeys, both
intracortical and subcortical WM showed a variety of
myelin pathologies. These pathologies did not involve
complete demyelination but instead involved splitting
of the myelin sheath at either the intraperiod or major
dense lines. At these splits, large inclusions of fluid-
filled balloons or of dense inclusions were observed.
These forms of myelin pathology were observed in
subcortical WM of the primary visual cortex (Peters et
al. 2000), prefrontal cortex, and the corpus callosum
(Peters and Sethares 2002), as well as the anterior com-
missure (Sandell and Peters 2003) and in the optic nerve
(Sandell and Peters 2001). Additionally, there was sig-
nificant evidence of remyelination, as reflected by the
presence of redundant myelin and of increased frequen-
cy of paranodes that could reflect a shortening of inter-
nodal myelin lengths as damaged myelin was replaced
by new myelin (Peters et al. 2001). The significance of
this myelin pathology was suggested by the correlation
of many of these pathologies with age-related cognitive
impairments, suggesting that these actually affect con-
duction (e.g., Peters et al. 2000).

Recently, both the fluid filled and dense inclusions
were quantified in the genu of the corpus callosum and in
the cingulum bundle (Bowley et al. 2010). Analyzing
randomly selected fields in the electron microscope, it
was shown that both forms of pathology increase steadi-
ly with age beginning in middle-aged monkeys by
15 years of age (equivalent to a 45-year-old human)
where about 2% of fibers shows one or the other form
of pathology. This frequency then increases steadily over
the life span to almost 8% inmonkeys around 30 years of
age (equivalent to a 90-year-old human). It was also
found that in these same areas, careful examination
revealed the presence of degenerating axons inside of
sheaths that had also degenerated, suggesting that in
many cases, remyelination had failed.While the frequen-
cy of degenerating fibers was much less than that of
damaged myelin, it followed the same time course, in-
creasing from about 0.2% in middle-aged monkeys to
about 0.8% in aged monkeys. One interpretation of this
is that with the increasing presence of myelin pathology

that axon conduction is impaired, and myelinated fibers
may begin to die back.

Neuroimaging of white matter integrity during aging
in the non-human primate

Initial studies of monkey brain using MRI focused on
straightforward morphometry using T1-weighted
images which look much like fresh sections of mon-
key brain. As illustrated in Fig. 1, these images
revealed evidence of brain atrophy with the age-
related enlargement of ventricles and of some sulci.
In order to determine whether this atrophy involved
mainly gray matter, white matter, or was global and
involved both, a simple point counting approach was
used by randomly placing a grid over a series of
equally spaced images and using the Cavalieri estima-
tor to obtain measures of total volume of the brain as
well as measures of specific components. As shown in
Fig. 2, this simple analysis revealed no age-related
change in total brain volume, a finding in agreement
with the report of Herndon et al. (1998) showing
stability of brain weights at necropsy of nearly 400
monkeys at the Yerkes National Primate Research
Center. Since brain weights at necropsy include the
weight of CSF in the ventricles and the deep sulci,
atrophy in those areas would go undetected. However,
subsequent segmentation of the point counting
revealed that there was no loss of volume for total
forebrain gray matter or for cortical gray matter, obser-
vations congruent with the perseveration of cortical
neurons described above. In contrast there was a sig-
nificant loss of WM volume with age and a comple-
mentary and significant increase (not shown) in the
volume of the ventricles.

These initial observations were derived from a co-
hort of 14 monkeys stratified into old and young,
which was later expanded to include middle-aged
monkeys. Using template-driven segmentation to ana-
lyze this cohort also revealed a significant loss of WM
with stability of GM (Wisco et al. 2008). The loss of
WM volume likely reflects the age-related axon de-
generation detected by Bowley et al. (2010), but
would not reflect the ubiquitous myelin pathology.
To address this, DTI scans were acquired on a differ-
ent cohort of aged monkeys. Analysis of FA changes
revealed a significant age-related loss of FA in sub-
cortical WM, including the areas like the corpus cal-
losum, and cingulum bundle known to exhibit
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ultrastructual evidence of myelin damage (Makris et
al. 2007). This loss of FA likely reflects the increased
frequency of fluid and cytoplasm filled inclusions in
WM as well as a generalized loss of myelinated fibers
confirming the vulnerability of forebrain WM to age-
related pathology, independent of loss of GM.

Nevertheless, changes in GM would be predicted
even with the stability of neuron numbers for several
reasons. First, as myelinated fibers are lost, perhaps
due to dying back of fibers with dysfunctional con-
duction, some atrophy in the deep layers of the cere-
bral cortex might be expected. Second, as functional
inputs to cortical neurons are lost due to either loss of
axons or impaired conduction, both loss and dysfunc-
tion of synapses might be expected and would likely
lead to dendritic atrophy. Indeed there is evidence of
both processes. For example, at the microscopic level,
some studies have reported a reduction of synapses in

the non-human primate neocortex and other areas
(Peters et al. 1998; Peters et al. 2008; Hara et al.
2011) while others have reported loss of spines and
atrophy of dendrites (Dumitriu et al. 2010; Dickstein
et al. 2007). At a more global level, several studies
using MRI methods have reported age-related reduc-
tions in the thickness or volume of the cerebral cortex
or hippocampus (Alexander et al. 2008; Koo et al.
2012; Shamy et al. 2011), a finding compatible with

Fig. 1 Matched levels of T1 MRI scans are shown for a 6-year-
old young female monkey (a) and a 24-year-old female monkey
(b) where there is obvious enlargement of the atrium of the
lateral ventricle. The algorithm used to exclude the brainstem
is illustrated by the outline of an MRI scan shown in c; the

approach of overlaying a point counting grid onto the MRI
image and scoring each grid intersection according to the tissue
component it overlies is shown in d. All scoring was done with
the operator blind to the age and sex of the subject

Fig. 2 An illustration of the relationship of different tissue
components to age derived from point counting analysis of
two rhesus monkeys. While total brain volume (gray, white,
and ventricles) approaches significance (a), there is no change
in total gray matter (b) or in cortical gray matter (c). Instead
there is a significant age-related loss of white matter (d) that is
mirrored by an increase in ventricular volume (e), leading to an
age-related increase in the ratio of gray matter to white matter
with age as white matter is lost (f)

�
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atrophy of dendrites and loss of intracortical white
matter independent of neuron loss.

Mechanisms of WM changes during normative
aging

While the initial cause of myelin pathology is still un-
known, Fig. 3 illustrates a possible sequence of process-
es that may result from the age-related accumulation of
myelin pathology and account for many of the observed
features, including changes in GM. Thus the splitting of
sheaths and increased frequency of fluid and cytoplas-
mic inclusions likely leads to impaired conduction. As
pathology increases and conduction becomes evenmore
impaired, it is plausible that trophic feedback from the
target cells back to the neuron of origin would be re-
duced leading eventually to dying back of the affected
axon while shorter collaterals might still be functional.
Loss of axon conduction and dying back of axons would
be expected to lead to loss of synapses and dendritic
atrophy in target neurons. In the extreme, both impaired
conduction, axon loss and atrophy of dendrites and

synapses constitute a disconnection that could contrib-
ute to age-related cognitive impairments. Hence,
according to this scenario, a critical question for normal
aging is to identify causal mechanisms underlying the
myelin pathology as well as to identify possible inter-
ventions that could prevent or even reverse these myelin
defects.

The mechanisms underlying age-related WM dam-
age remain poorly defined. Chronic hypoperfusion
due to damaged small blood vessels has been im-
plicated in age-related WM damage (reviewed by
Iadecola 2010). A variety of conditions that reduce
cerebral blood flow, including reduced angiogene-
sis, tortuous arterioles, and hypoxia-induced loss of
capillaries, may each result in WM damage in the
elderly (Fernando et al. 2004; Brown and Thore 2011).
The finding that myelin- and axon-associated free
radical injury, as assessed by measurements of
distinct isoprostanes, inversely correlated with FA
in vascular brain injury independent of AD (Back
et al. 2011) support a model whereby vascular
changes cause age-related WM damage through
oxidative stress.

Fig. 3 A model of the possible sequence of events resulting
from myelin damage. Once that myelin damage is initiated, (1)
the type of damage observed may cause failure of action poten-
tial conduction as external resistance of compact myelin is lost.
Subsequently the loss of normal activation (2) may lead to
altered trophic feedback that in the extreme could lead to dying
back of the individual long axons (3) while short local

collaterals and the neuronal soma remain intact. (4) In addition,
the loss of normal activation by action potential failure would be
exacerbated by dying back of the axon itself leading to loss of
synapses and spines as well as dendritic atrophy on affected
neurons. Together (5) these changes would effectively “discon-
nect” parts of the aging brain and lead to cognitive impairments
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There is growing evidence that remyelination fail-
ure is also a significant contributing mechanism of
age-related WM disturbances. Remyelination efficien-
cy decreases with age (Gilson and Blakemore 1993;
Shields et al. 1999; Sim et al. 2000). This decline in
remyelination efficiency has been linked to impair-
ments in oligodendrocyte progenitor cell (OPC)
recruitment and differentiation into myelinating oligo-
dendrocytes (OLs; Sim et al. 2002; Peters and Sethares
2002; Franklin et al. 2002; Ando et al. 2003; Chari et
al. 2003; Woodruff et al. 2004; Rist and Franklin
2008). Changes in the transcriptional control of genes
that regulate OL differentiation are likely involved in
age-related changes in remyelination (Doucette et al.
2010). Indeed, the expression of factors that promote
OL differentiation are temporally delayed in older
animals (Hinks and Franklin 2000; Franklin et al.
2002). Epigenetic modifications with age to genes
involved in the maturation and recruitment of OPCs
may contribute to the decline of OPC maturation in
older individuals (reviewed by Copray et al. 2009).
For example, Shen and co-workers (2008) found de-
creased histone deacetylation and repressive methyla-
tion in OLs in aged mice.

Broader cell-intrinsic changes to OPCs may un-
derlie remyelination failure and the accumulation of
WM damage with aging. In particular, telomere
function progressively declines with age in mice,
leading to activation of p53 associated with DNA
damage (Ferrón et al. 2004; Sahin and Depinho
2010). As a result, cellular pathways that promote
apoptosis and cellular senescence become activated
contributing to compromised progenitor cell func-
tions within tissues, tissue atrophy, and physiolog-
ical impairment in a wide variety of organ systems.
Indeed, studies in humans support the hypothesis
that shortening telomere length is associated with
age-associated disease (Cawthon et al. 2003).

A striking recent study by Jaskelioff et al. (2011)
utilized a transgenic mouse model in which mice with
shortened dysfunctional telomeres can be induced to
reactivate telomeres, resulting in reduced DNA damage
signaling. Telomerase reactivation in late generation
mice that had demonstrated degenerative phenotypes
in multiple organ systems resulted in reversal of degen-
eration. In particular, somatic telomerase reactivation
reversed neurodegeneration, including recovery of
OPCs, evidence of improved myelination, and function-
al recovery in a number of behavioral tests. These data

strongly support the hypothesis that cell-intrinsic
changes in OPCs contribute to age-related WM distur-
bances, and suggest the exciting possibility that reversal
of these changes can promote WM regeneration.

Alterations within theWMmicroenvironment of aged
individuals may also contribute to WM damage and
remyelination failure. In particular, reactive astrogliosis
is linked to the inhibition of OPC maturation and remye-
lination failure in a number of conditions (Keirstead et al.
2005; Skripuletz et al. 2010). Both Notch signaling and
bone morphogenetic proteins induced during reactive
astrogliosis have been implicated in blocking OPC dif-
ferentiation and remyelination (e.g., John et al. 2002;
Wang et al. 2011). Astrogliosis is a reliable marker of
mammalian brain aging in both GM andWM (Brizzee et
al. 1968; Sturrock 1980; Hughes and Lantos 1987;
Sloane et al. 2000; Cargill et al. 2011). Thus, the signals
associated with astrogliosis may promote remyelination
failure during normative aging.

Astrogliosis may also influence OPC maturation in
the elderly CNS through alterations to extracellular
matrix. In particular, the glycosaminoglycan hyalur-
onan (HA) may restrict OPC differentiation and limit
remyelination (reviewed by Sherman and Back 2008)
with advanced aging. HA is synthesized at the inner
face of cell membranes by one of three transmembrane
HA synthases (HAS1-3), then extruded into the extra-
cellular matrix. It is a non-sulfated, linear molecule
comprised of repeating units of (β,1→4)-D-glucuronic
acid-(β,1→3)-N-acetyl-D-glucosamine that reach sizes
in excess of 106 Da. HA is localized around myelin-
ated fibers in WM, while it is a component of peri-
neuronal nets surrounding neuron cell bodies in GM
(Asher et al. 1991; Bignami and Asher 1992; Bignami
et al. 1992; Eggli et al. 1992).

HA synthesis and the expression of the HA recep-
tor, the CD44 transmembrane glycoprotein, are signif-
icantly elevated by reactive astrocytes following
traumatic spinal cord injury (Struve et al. 2005) and
in inflammatory demyelinating lesions including those
in patients with multiple sclerosis (Back et al. 2005).
Transcripts for an HA synthase and CD44 are also
elevated immediately following ischemic lesions in
the brain (Wang et al. 2001). HA can induce contact
inhibition of growth (Morrison et al. 2001) and ele-
vated HA in glial scars has been implicated in the
maintenance of glial cell proliferation and maturation
(Struve et al. 2005). However, HA can cause remyeli-
nation failure by inhibiting OPC maturation in
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demyelinated CNS lesions (Back et al., 2005; Sloane
et al. 2010). These findings suggest that HA can
regulate astrogliosis but also blocks OPCs from ma-
turing into cells that can replace damaged myelin.

The role of HA in the aging nervous system has not
been extensively examined. One study utilizing electro-
phoretic separation of glycosaminoglycans indicated a
moderate increase in HA concentration in 30 month-old
rat brain tissue compared to tissues from younger ani-
mals (Jenkins and Bachelard 1988a). HA is similarly
elevated in brains from patients with Alzheimer’s dis-
ease (Suzuki et al., 1965; Jenkins and Bachelard 1988b;
Back et al. 2011) and in aged individuals with vascular
brain injury (Back et al. 2011). We recently found that
both HA and CD44 are elevated during normative aging
in the prefrontal cortex of rhesus and Japanese maca-
ques (Cargill et al. 2011). The most significant increases
in HA occurred in the GM, although there was a trend
towards increased HA inWM in oldest-old animals. It is
possible, therefore, that HA becomes elevated in the
aging brain either as a consequence of age-related cell
intrinsic changes (e.g., epigenetic alterations) or as a
result of age-related vascular brain injury and other
events that can trigger HA synthesis or HA degradation.

All together, these studies support a mechanistic
model (Fig. 4) in which WM disturbances occur with
aging through a combination of vascular changes, cell-
intrinsic changes to OPCs and OLs, and age-related

changes in the microenvironment of aging WM. It is
unclear to what degree cell intrinsic changes, such as
telomere shortening, influence either the vascular
damage or the response of OLs and OPCs to the
resulting oxidative stress that occurs with vascular
disease. However, vascular insults likely influence
astrogliosis and therefore may contribute to the accu-
mulation of HA, thus indirectly contributing to the
failure of OPCs to differentiate into myelinating OLs.

Summary

Investigations of age-related changes in WM have been
rapidly evolving from histological examinations to the
expanded use of in vivo MRI scans. Results from cross-
sectional and longitudinal as well as DTI studies have
confirmed WM changes, such as demyelination in spe-
cific subregions of the brain, which correlate with cog-
nitive deficits. However, many of these interesting
findings in humans have not been directly confirmed
by anatomical techniques, hence the value of the non-
human primate model. Mechanistic studies in primates
and in rodents are starting to reveal some of the potential
mechanisms underlying age-related WM disturbances.
MRI-based biomarkers are also proving valuable for
acute assessment of AD, and differentiate pathology
from normal aging patterns. The potential of this field

Fig. 4 A model of the pos-
sible factors that contribute
to myelin damage in aging
white matter. (1) Vascular
brain injury leads to oxida-
tive damage (2) that expands
the pool of oligodendrocyte
progenitor cells. These cells
may have cell-intrinsic defi-
cits (e.g., telomere shorten-
ing and epigenetic
alterations) that prevent their
maturation. (3) In addition,
the injury microenvironment
causes gliosis, leading to a
non-permissive environment
for oligodendrocyte progen-
itor cell maturation into
myelinating cells. The result
(4) is age-related remyelina-
tion failure, contributing to
increasing degrees of white
matter damage
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of study remains great, with the opportunity of providing
readily accessible biomarkers of aging, as well as the
baseline values for pathological changes in the brain.
Validation ofMRI metrics in conjunction with molecular
markers will be crucial for hypothesis and intervention
testing in future investigations.
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