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Abstract White adipose tissue is a promising source
of mesenchymal stem cells. Currently, little is known
about the effect of age and caloric restriction (CR) on
adipose-derived stem cells (ASC). This is important
for three reasons: firstly, age and CR cause extensive
remodeling of WAT; it is currently unknown how this
remodeling affects the resident stem cell population.
Secondly, stem cell senescence has been theorized as
one of the causes of aging and could reduce the utility
of a stem cell as a reagent. Thirdly, the mechanism by
which CR extends lifespan is currently not known,
one theory postulates that CR maintains the resident
stem cell population in youthful “fit” state. For the
purpose of this study, we define ASC as lineage
negative (lin−)/CD34+(low)/CD31−. We show that
aging increases the abundance of ASC and the
expression of Cdkn2a 9.8-fold and Isl1 60.6-fold.

This would suggest that aging causes an accumulation
of non-replicative ASC. CR reduced the percentage of
ASC in the lin− SVF while also reducing colony
forming ability. Therefore, CR appears to have anti-
proliferative effects on ASC that may be advanta-
geous from the perspective of cancer, but our data
raises the possibility that it may be disadvantageous
for regenerative medicine applications.
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Introduction

Adult or “resident” stem cells are found in most
organs/tissues (Alison et al. 2006; Alison and Islam
2009). Their abundance and wide tissue distribution
suggests an important role in normal tissue function-
ing as well as in pathophysiological processes (Pardal
et al. 2003; Reya et al. 2001; Sharpless and DePinho
2007). For example, dysfunction of adult stem cells
has been implicated in the pathophysiology of
specific types of cancers as well as in heart failure
and adult onset diabetes (Butler et al. 2003; Chimenti
et al. 2003; Krishnamurthy et al. 2006; Pardal et al.
2003; Reya et al. 2001; Rota et al. 2006; Sharpless
and DePinho 2007; Torella et al. 2004). Given the
link between alterations in adult stem cells and
diseases with high morbidity, surprisingly little is
known about how these cells are affected by
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conditions such as aging and diet that often strongly
correlate with disease. The presence of adult stem
cells in a large variety of tissues also raises the
question of which tissue sources of stem cells are best
suited for applications in each of the many diseases
where regenerative therapy may be possible. For
example, damaged myocardium has been repaired
with varying levels of success using satellite cells,
bone marrow-derived and adipose-derived mesenchy-
mal stem cells (MSC) (Beitnes et al. 2009; Dill et al.
2009; Hagege et al. 2003; Madonna et al. 2009;
Menasche et al. 2001). Adipose-derived MSC have
several characteristics which make them well suited
for regenerative medicine, they are: (1) abundant, (2)
easily harvested, (3) have been shown to be multi-
potent, (4) possesses a degree of immunoprivilege,
and (5) are amenable to good manufacturing practices
(Gimble et al. 2007; McIntosh et al. 2006; Zuk et al.
2002).

The present study focuses on a stem/progenitor cell
population located within the stromal vascular fraction
(SVF) of white adipose tissue (WAT) There have been
multiple cell fractions described within the SVF
displaying varying degrees of potency; for example,
(1) lin−/CD29+/CD34+/Sca-1+/CD24+ cells are reported
to reconstitute a normal WAT depot in A-Zip lip-
odystrophic mice (Rodeheffer et al. 2008), (2) Flk-1+

endothelial progenitor cells cultured from processed
lipoaspirate in three-dimensional cell clusters (Martinez-
Estrada et al. 2005), (3) Nestin+/ABCG2+/SCF+/
Thy-1+(CD90)/Isl-1+ cells differentiate into a pancreat-
ic endocrine phenotype (Timper et al. 2006).

In addition to the above-mentioned fractions, one
of particular interest is the CD34+ (low)/CD31− cell
fraction. These cells have been reported to be multi-
potent having adipogenic, osteogenic, chondrogenic,
neurogenic, and angiogenic (endothelial) capabilities
(Boquest et al. 2005; Gronthos et al. 2001; Miranville
et al. 2004; Planat-Benard et al. 2004; Sengenes et al.
2005; Yoshimura et al. 2006). In the present study, to
ensure the cell population is of mesenchymal origin,
and not blood derived, a lineage sort to remove any
blood-derived cells was carried out. Thus, for the
purpose of this study, lin−/CD34+ (low)/CD31− cells
will be referred to as adipose-derived stem cells
(ASC).

Adipose tissue is not simply a storage depot for
excess energy but instead is a labile endocrine organ
that when “dysfunctional” plays a causative role in

the pathophysiology of multiple diseases including
diabetes and heart failure (Butler et al. 2003;
Chimenti et al. 2003; Krishnamurthy et al. 2006;
Rota et al. 2006; Torella et al. 2004; Trayhurn and
Beattie 2001). Based on this, one might suspect that
the number and functioning of the stem cell popula-
tion within adipose tissue might be altered in
situations where fat mass changes dramatically.
Supporting this prediction is the observation that
aging causes substantial changes in the size and
cellular composition of WAT (Cartwright et al. 2010;
Kirkland et al. 1990, 1994; Kuk et al. 2009). To date,
the effects of aging on adipose stem/progenitor cells
have only been studied in the non-specific heteroge-
neous SVF (Cartwright et al. 2010; Kirkland et al.
1990, 1994) and has yet to be described in a more
specific ASC population. Of additional interest is a
diet that greatly reduces the amount of WAT, a diet
chronically restricted in calories (caloric restriction
(CR)), extends mean and maximal life span of
mammals via its anti-aging effects (Anderson et al.
2009; Mair and Dillin 2008; Weindruch 1996;
Weindruch et al. 1986). To date, the effects of CR
on ASC are currently not known.

Therefore, the purpose of the present study was to
test the hypotheses that: (1) normal aging alters the
number and/or “fitness” of ASC, and (2) a CR diet
maintains ASC in a youthful “fit” state. To test these
hypotheses, epididymal adipose tissue from adult and
aged mice (half of each age group receiving a CR
diet) were studied. The effects of advanced age and a
CR diet on fundamental properties of these cells, such
as their abundance, single cell clonality, expression of
stem cell associated genes, and enzymatic activities,
were then assessed.

Methods

Animals Mice (C57BL/6 males) age 4 months or 21–
29 months were purchased from a colony maintained
by the National Institute on Aging (NIA) and housed
singly in an AAALAC accredited University of
Wisconsin Animal Care Facility. Mice were fed either
an ad libitum (ad lib) (n=24) diet or subjected to
approximately 40% caloric restriction since 16 weeks
of age (n=24). Mice in the adult ad lib group
consumed an average of 0.55 kcal/day/g body weight
while the aged ad lib group consumed an average of
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0.70 kcals/day/g body weight of NIH-41 5F diet
(3.4 kcals/g). All CR mice were maintained on the
NIA feeding schedule of 0.39 kcals/day/g body
weight of NIH-41-fortified diet (3.33 kcals/g) to
ensure that they received adequate micronutrients.
Mice were fed daily and body weights measured
weekly. Mice were studied at an average of
9 months for adult ad lib and CR groups. Aged
ad lib and CR groups were studied at 27 and
28 months, respectively.

Isolation of lineage negative SVF Mice were sacrificed
via cervical dislocation. Epididymal fat pads were
excised bilaterally and submerged in ice cold phosphate
buffered saline (PBS). Fat pads were minced, added to
freshly made digestion solution (2 mg/ml collagenase 1A
(Sigma, St. Louis, MO, USA) in PBS with 2% FBS) and
incubated for 35 min at 37°C with continuous agitation.
Digest was then sieved through a 40 μm cell strainer and
centrifuged at 1,000×g at 4°C for 10 min. The resultant
pellet was subjected to lineage depletion using the
Lineage Cell Depletion Kit (Miltenyi, Auburn, CA,
USA, no. 130-090-858); cells were incubated with a
panel of biotin-conjugated antibodies against blood
lineage markers (CD5, CD45R (B220), CD11b, Anti-
Gr-1 (Ly-6G/C), 7-4, and Ter-119) followed by incuba-
tion with anti-biotin-coated magnetic beads. Cells were
then passed over a MACS MS column and the lineage-
depleted flow-through collected.

Isolation of ASC and Colony forming assay Lineage
negative ASC were stained for cell surface markers
CD34 and CD31. Cells were analyzed and sorted on a
FACSVantage SE instrument with FACSDiVa digital
electronics (BD Biosciences, San Jose, CA, USA) at
the University of Wisconsin Comprehensive Cancer
Center Flow Cytometry Facility. CD34+(low)/CD31-

ASC were either sorted singly into 96-well plates
containing culture medium (DMEM/F12 with 10 mM
HEPES, 10% FBS, and 1% Penicillin/Streptomycin)
or collected for real-time polymerase chain reaction
(PCR) array analysis. Cells sorted singly into 96-well
plates were cultured for 21 days with media replace-
ment every 2–3 days. After 21 days the cells were
fixed with 10% formalin and stained with Eosin Y.
Wells were then examined for colonies (wells con-
taining more than five cells). Cells sorted for real-time
PCR array analysis were washed in PBS and frozen at
−80°C.

Telomerase activity Lin− SVF was isolated and
washed with PBS; 1×105−1×106 cells were sus-
pended in 50 μl lysis buffer and incubated on ice for
30 min. The sample was centrifuged at 12,000×g for
30 min at 4°C. Supernatant was removed and protein
concentration determined by Bradford assay. Quanti-
tative Telomerase Detection Assay (Allied biotech
Inc, Vallejo, CA, USA, no. MT3011) was used
according to the manufacturer's instructions. Assay
was performed with an ABI Prism 7000 (Applied
Biosystems, Foster City, CA, USA) quantitative real-
time PCR machine.

Senescence associated β-galactosidase assay Each
well of a 24-well plate was seeded with 2×103 lin−

SVF in growth media (DMEM/F12 with10 mM
HEPES, 10% FBS, and 1% penicillin/streptomycin)
and cultured for 21 days under standard culture
conditions (37°C, 5% CO2). Senescence Cells Histo-
chemical Staining Kit (Sigma, St. Louis, MO, USA,
no. CS00030) was used to stain the cells for
senescence associated β-galactosidase activity
according to the manufacturer's instructions. Cells
were then washed with PBS and counterstained with
Eosin Y for each well; 24 mm2 (12% of the well) of
each well was analyzed for both total and senescent
cells using an overlaid grid.

Quantitative real-time PCR array RNAwas extracted
from flow cytometry-sorted lin−/CD34+(low)/CD31−

cells with the PicoPure RNA Isolation kit (Arcturus,
Sunnyvale, CA, USA, no. KIT0204) according to
manufacturer's instructions. RNA concentrations were
determined using a NanoDrop ND-1000 spectroph-
ometer (NanoDrop, Wilmington, DE, USA). RNA
integrity number for each sample was determined with a
RNA6000 PicoChip (Agilent Santa Clara, CA, USA,
no. 5067-1513) run on an Agilent 2100 BioAnalyzer.
Custom RT2 Proflier PCR Arrays (SABiosciences,
Frederick, MD, USA, no. CAPM09265) containing
42 genes of interest, four housekeeping genes, and two
PCR controls (Table 1), were used according to
manufacturer's instructions.

Statistics To assess the effects of diet and age, group
comparisons were made using a two-way ANOVAwith
Bonferroni post-tests when indicated. A p value <0.05
was considered statistically significant. All data are
expressed as mean ± SEM.
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Results

Aging and CR decrease the size of epididymal fat
pads, but increase the number of SVF cells per
milligram WAT

Aging may alter the utility of ASC use in regenerative
medicine therapies by altering abundance and/or
proliferation capacity of the cells. To what end an
anti-aging diet, CR, could reverse the effects of aging
on ASC is not known. To investigate this possibility,
the SVF and ASC populations were studied. Aging
and CR have been reported to have large effects on
epididymal fat pad mass and the SVF (Cartwright et
al. 2010; Kirkland et al. 1990, 1994; Kuk et al. 2009).
Consistent with Kirkland et al.'s (1994) findings in
17- and 27-month-old rats, we found that epididymal
fat pad weight was significantly reduced with age (p≤
0.0003) and also CR (p≤0.0001) (Fig. 1a). Despite
differences in the epididymal fat pad mass, body
weights of the aged and adult cohorts did not differ
significantly, while CR significantly reduced body
weights equally in both age groups (p≤0.001)
(Fig. 1b). Lin− SVF abundance was not altered with
aging, while CR significantly reduced this cell
population (p≤0.0001) (Fig. 2a). However, if the
number of lin− SVF cells is expressed as cellular
density (lin− SVF cells per mg epididymal adipose
tissue), CR (p≤0.02) and age (p≤0.002) both signif-
icantly increased cellular density (Fig. 2b) of the
epididymal fat pads. Therefore, aging and CR alter
not only the mass of the epididymal fat pads, but also
the abundance of the lin− SVF.

CR but not aging reduces the percentage of ASC
(lin−/CD34+ (Low)/CD31−) in WAT

To determine the effects of aging and CR on the
abundance of ASC, flow cytometry was used to

Table 1 RT-PCR array gene table

Gene Description

Stem/progenitor

Abcb1a ATP-binding cassette B1A/Mdr1

Abcg2 ATP-binding cassette G2

Aldh1a1
Aldehyde dehydrogenese 1A1

lst1 lslet1

Pou5f1 POU domain 5, factor 1/Oct4

Rexo1 RNA exonuclease 1 homolog

Kdr Kinase insert domain protein reception/Flk1

Cell cycle

Cona2 Cyclin A2

Cond1 Cyclin D2

Cdkn2a Cyclin-dependent kinase inhibitor
2A/p161NK4a

Mki67 Ki67

Rb1 Retinoblastoma1

Tert Telomerase reverse transcriptase

Trp53 Transformation-related protein 53/p53

Cell fate determination

Hdec1 Histone deacetylase 1

Jag1 Jagged 1

Notch 1 Notch gene homolog 1

Numb Numb gene homolog

Pard6a Partitioning defective 6 homolog alpha/Par-6

Axin1 Axin1

Wnt1 Wingless-related MMTV integration site 1

Gja1 Gap junction protein alpha 1/Connexin 43

Differentiation

Acan Aggrecan (chondrocyte)

Acta2 Aorta actin alpha 2 (smooth muscle)

Actc1 Cardiac actin alpha 1 (cardiac muscle)

Cd4 CD4 antigen (T cell)

Cdh5 Cadherin 5/(vascular endothelium)

Col1a1 Collagen type 1 alpha 1 (bone)

Cnn1 Calponin 1 (smooth muscle)

Gata4 GATA-binding protein 4 (cardiac muscle)

Myod1 Myogenic differentiation 1 (skeletal muscle)

Nes Nestin (neuron)

Nkx2-5 Nk2 trascription factor related locus 5
(cardiac muscle)

Pah Phenylalarine hydroxylase (liver)

Pparg Peroxisome proliterator-activated receptor
gamma (adipose)

Growth factors

Bmp2 Bone morphogenic protein 2

Table 1 (continued)

Gene Description

Cxcl12 Chemolone C-X-C motif ligand 12

Hgf1 Hepalocyte growth factor

Igf1 Insulin-like growth factor 1

Aging

Csprs Component of Sp100-rs
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measure the expression of cell surface markers CD34
and CD31 in lineage negative SVF (Fig. 3a, b). CR
significantly reduced the percentage of ASC in the
lin− SVF from 22% to 4% (p≤0.0009) whereas age
had no significant affect. The number of ASC per mg
WAT was then calculated (percentage × lin− SVF per
mg tissue) (Fig. 4). Although not significant by two-
way ANOVA, there is a trend toward an increase in
the abundance of ASC with age that is attenuated with
CR.

Aging and CR reduce colony formation in ASC

It has been previously reported that aging reduced the
proliferative capacity of plastic adherent non-
adipocytes (Kirkland et al. 1990). To what extent the
resident ASC population is effected is currently not
known. To determine how age and CR affect colony
formation of freshly isolated ASC, fluorescence-
activated cell sorting was used to deposit one freshly
isolated ASC per well in 96-well plates (Fig. 5).
Colony formation rates were as follows: adult ad lib

11.5% (113 colonies/1152 total wells), aged ad lib
7.7% (89 colonies/1,152 total wells), adult CR 2.7%
(15 colonies/559 total wells), aged CR 0.8% (five
colonies/621 total wells). CR (p≤0.0001) and age (p≤
0.04) significantly reduced the rate of spontaneous
colony formation. CR reduced colony formation by
81% in the adult groups and 89% in the aged groups.
Aging reduced colony formation by 33% in the ad lib
and 62% in the CR groups. Therefore aging reduces
the single cell clonality (proliferation) of ASC, which
is further reduced by CR.

CR has mixed effects on enzymatic activities
associated with aging in lin− SVF

Senescence associated β-galactosidase (SA β-gal) has
long been used to identify senescence cells in culture
(Dimri et al. 1995; Serrano et al. 1997; van der Loo et
al. 1998). To determine how age and CR affect
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expression of SA β-gal in lin− SVF, a SA β-gal assay
was performed (Fig. 6a–c). Age significantly increased
the percentage of cells expressing SA β-gal (p≤0.01),
while CR did not have an effect.

Telomerase activity, an indicator of replicative
capacity, was assessed with real-time quantitative
PCR in the lin− SVF. Compared with the adult ad
lib group (Fig. 7), aged ad lib (128-fold), adult CR
(10.6-fold), and aged CR (2.6-fold) groups had
decreased telomerase activity. In the aged cohort,
CR increased telomerase activity by 48.5-fold relative
to the ad lib group. These results are consistent with
reports that aging decreases the proliferative potential
of plastic adherent non-adipocytes from WAT. Addi-

tionally, these findings indicate that within the lin−

SVF of the aged cohort, CR is preserving the
replicative capacity of some cell population(s).

ASC gene expression does not change greatly
with aging or CR

To determine how age and CR affect gene expression
associated with key stem cell characteristics such as
potency, proliferation and differentiation, custom real-
time RT-PCR arrays containing 42 genes were used
(Fig. 8a). A volcano plot comparing adult ad lib to
aged groups revealed that age (Fig. 8b) caused a 9.77-
fold increase in Cdkn2a and a 60.55-fold increase in
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Isl1, Wnt1 was expressed in the aged ad lib but not
the adult ad lib group. A volcano plot comparing aged
ad lib with aged CR groups revealed that CR (Fig. 8c)
did not cause a significant change in gene expression
compared to the aged ad lib group. Mki67 and Ccnd1
expression was observed in the aged ad lib group but
not in the aged CR group. These results are consistent
with findings in plastic adherent non-adipocytes that
only a small percentage of genes change with aging
(Cartwright et al. 2010).

Discussion

Adipose tissue is a promising source of MSC for use
in autologous and allogeneic regenerative therapy
(McIntosh et al. 2006; Nakagami et al. 2006).
Reasons for this include the observations that MSC
derived from adipose tissue are abundant, easily,
harvested, are multipotent, possess a degree and
immunoprivilege, and are amenable to good manu-
facturing practices (Gimble et al. 2007; McIntosh et
al. 2006; Zuk et al. 2002). However, as is the case
with any tissue from which MSC are extracted, the
effects of factors that “remodel” the tissue need to be
evaluated. This is particularly true for MSC derived
from adipose tissue since changes in the anatomy,
histology, cellular composition, and endocrine output
occur with routine biological events such aging and
changes in diet (Anderson et al. 2009; Kuk et al.

2009; Torella et al. 2004; Zhu et al. 2007). Accord-
ingly, our goal was to determine if aging alters
fundamental characteristics of ASC that would be
expected to impact their clinical utility, and if so,
could the age-associated effects of aging be attenuated
by an anti-aging diet.

Aging

Consistent with previous reports in plastic adherent
non-adipocytes (Kirkland et al. 1994; Wu et al. 2007),
our data demonstrate an age-associated increase in the
density of the lin− SVF (number of cells/g epididymal
fat) within white adipose tissue. However, our study
extends these results to a specific ASC population.
Although not significant by two-way ANOVA, our
results indicate that aging causes a trend toward an
increase in ASC density. The biological significance
of a higher density of ASC, i.e., whether it is adaptive
or maladaptive, can only be inferred by examining the
cells in more detail. To this end, we found that single
cell (ASC) clonality was decreased 33% with aging.
The finding of a decrease in proliferation with aging
is consistent with reports in plastic adherent non-
adipocytes as well as several other progenitor cell
populations (Djian et al. 1983; Kirkland et al. 1990).

Recent reports by de Girolamo et al. and Zhu et al.
investigating the effects of age on human ASC (hASC)
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(plastic adherent non-adipocytes) have yielded consis-
tent data with ours regarding an increase in ASC cell
density (de Girolamo et al. 2009). Additionally, these
studies demonstrate a reduction in the multipotential of
hASC with age. Specifically, hASC have a reduced
capacity for osteogenic lineage differentiation, while
maintaining adipogenic potential (de Girolamo et al.
2009; Zhu et al. 2009). The mechanism for the
reduction in osteogenic lineage differentiation is
unknown, but appears not to be a reduction in the
number of osteoprogenitors.

Gene expression analysis on 42 genes related to
potency, proliferation and differentiation indicated
that only a small percentage of genes (two genes)
reached our criteria of a change greater than 2-fold
and a p value <0.05 to be considered significantly
altered with aging. This result was consistent with a
report by Cartwright et al. investigating gene
expression in preadipocytes (plastic adherent non-
adipocytes) (Cartwright et al. 2010). Cdkn2a, which
induces cell cycle arrest and Isl1, a mesenchymal
stem cell marker, were increased 9.8- and 60.6-fold,
respectively, with age. The up regulation of Cdkn2a

is consistent with the decrease in clonality, while the
increase in Isl1, which is a transcription factor shown
to confer multipotential to mesenchymal stem cells
(Bu et al. 2009; Eberhardt et al. 2006; Lin et al.
2006), is difficulat to interpret. We speculate that the
up regulation of Isl1 could correlate with the increase
in lin− SVF and ASC, or it could indicate increased
multipotential or differentiation of the ASC popula-
tion. Taken together with our data from the lin− SVF
which demonstrated an increase in the biochemical
marker of senescence, SA-β galactosidase, and a
decrease in telomerase activity (a marker of cellular
youth and proliferative capacity), it would seem
more likely that aging causes an accumulation of
what are likely non-replicative ASC in the epididy-
mal fat pad.

Caloric restriction

Currently, the only known non-genetic manipulation
capable of extending maximal lifespan across a large
range of species is CR, restriction of caloric intake
without malnutrition (Weindruch 1996; Weindruch et
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Arrows denote positive
staining for SA-β-
galactosidase. Mean ± SEM
for n=5–8 mice per group.
Number sign, significant
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al. 1986). While the exact mechanism(s) by which
this lifespan extension occurs remain unclear, it has
been established that CR causes not only a potent
anti-cancer effect, but also a specific anti-aging effect
that can be seen on both cellular and transcriptional
levels. These mechanism(s) may involve resident
stem cell populations. For example, CR could
preserve the resident adult stem cell population in a
“youthful state” allowing them to maintain proper
tissue homeostasis for a longer period of time and
thus extend lifespan. Alternatively, the effects of CR
may reduce stem cell proliferation, effectively keep-
ing them in a prolonged quiescent state, thus
contributing to the potent anti-cancer effect of CR.
Given the dramatic remodeling of white adipose
tissue induced by CR from the anatomical to
molecular levels we hypothesized that a CR diet
would maintain the stem cells in a youthful “fit”,
state. In fact the effects of CR on ASC were more
complex than anticipated. Specifically, CR increased
the density of lin− SVF while attenuating the trend of
an age-associated increase in ADCS abundance. This
attenuation coincided with a decrease in clonality to
10% and 7% of levels in adult and aged ad lib groups
respectively. These results would appear to be
consistent with the stem cell population being main-
tained in a quiescent state. We speculate that this is
further supported by gene expression analysis indi-
cating that genes involved in cell cycle regulation,
specifically, Mki67 and Ccnd1 were not expressed at
detectable levels in the aged CR mice. Mki67 is

expressed during all phases of cell proliferation while
Ccnd1 is responsible for the transition from G1 to S
phase of the cell cycle (Blagosklonny and Pardee
2002). This could indicate that the cells are main-
tained in a quiescent state. Coupled with our finding
in lin− SVF showing that telomerase activity, a marker
of cellular youth, is at near adult ad lib levels in the
aged CR group, it would seem most likely that CR
maintains the ASC population in a quiescent state.
This effect would be consistent with studies demon-
strating that CR decreases the proliferation rates of
dividing non-stem cells such as keratinocytes, mam-
mary epithelial cells and T cells (Hsieh et al. 2005).

The idea that CR maintains stem cell population in
a quiescent state is consistent with the idea that CR
reduces the rate of cellular turnover. By reducing stem
cell cycling (cell division), CR reduces the possibility
of acquiring errors during replication, thus contribut-
ing to the potent anti-cancer effects. Additionally, this
data raises the possibility that CR may be disadvan-
tageous for regenerative medicine applications.

There are limitations of this study that merit
mention. Specifically, when adequate numbers of
ASC could be obtained, these cells were studied; at
other times lin− SVF was studied when larger cell
numbers were needed. Additionally, studies were
conducted in freshly isolated or rapidly frozen
primary cells except the colony forming assay and
the SA-β-galactosidase assays which required 21 days
in standardized culture (non-native milieu) conditions
following primary isolation (frozen cells were never

-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

Aged ad lib
relative to
Adult ad lib

Aged CR
relative to
Adult ad lib

Aged CR
relative to
Aged ad lib

F
o

ld
 C

h
an

g
e 

in
 T

el
o

m
er

as
e 

A
ct

iv
it

y
In

d
u

ct
io

n
R

ed
u

ct
io

n

Fig. 7 Effect of age and CR
on telomerase activity.
Telomerase activity in the
lin− SVF was detected using
real-time quantitative PCR.
Aging caused a 128-fold
reduction in telomerase ac-
tivity in mice fed ad lib. CR
almost completely eliminat-
ed this effect of age. CR
caused a 48.5-fold induction
of telomerase activity in the
aged CR relative to the aged
ad lib group

AGE (2011) 33:107–118 115



used for culture). Therefore the possibility exists that
some of the aging or CR phenotype could have been
lost when cells were cultured for extended periods of
time. One additional limitation of note should be
mentioned here. It has been shown that there are
differences between visceral and subcutaneous adi-
pose tissue deposits (Cartwright et al. 2010; Kirkland
et al. 1990, 1994). Although subcutaneous adipose
tissue may be the most likely source of ASC in
clinical uses, CR reduces subcutaneous fat mass to
levels that are technically challenging to study. Thus

we chose to study the visceral epididymal fat pad,
which although significantly remodeled yielded ade-
quate cells to conduct our experiments.

Conclusions/Summary

While white adipose tissue is a promising source of
MSC the effects of white adipose tissue remodeling
factors such as aging and diet on these cells are
unknown. We found that aging causes accumulation
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lines represent a 2-fold change in gene expression

116 AGE (2011) 33:107–118



of non-replicative ASC. CR attenuated the age-
associated increase in ASC abundance, but decreased
clonality to 10% and 7% of levels in adult and aged
ad lib groups respectively. Therefore, CR appears to
have anti-proliferative effects on ASC that may be
advantageous from the perspective of cancer, but our
data raises the possibility that it may be disadvanta-
geous for regenerative medicine applications.
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