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Abstract
Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoreme-
diation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated 
in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was inves-
tigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined 
levels, as well as the pollution factor with three levels of  HgCl2 as two factorial experiments. Results showed that Plant 
Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside 
from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumula-
tion in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its 
concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the 
biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated 
that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria 
and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different 
roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, 
biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to 
stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be 
introduced as the best approach.
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Introduction

A significant environmental concern is the introduction of 
heavy metals into the soil through various human activities 
(Chamba et al. 2017; Natasha et al. 2020; Mousavi et al. 
2022). Key sources of this contamination include industrial 
and domestic wastewater, metal smelting, mining operations, 
fuel production, and the use of agricultural chemicals (Li 
et al. 2022). Industrial activities often release heavy met-
als as byproducts, which can subsequently enter the soil via 
atmospheric deposition or direct discharge. Furthermore, 
agricultural practices exacerbate the problem when syn-
thetic fertilizers, pesticides, and herbicides containing heavy 
metals leach into the soil (Maftouh et al. 2024). Improper 
management and disposal of industrial and municipal waste 
also contribute to the accumulation of heavy metals (Ali 
et al. 2013). Additionally, emissions from vehicles further 
contaminate the soil, as metals from exhaust and tire wear 

Responsible Editor: Elena Maestri

 * Latifeh Pourakbar 
 la.pourakbar@urmia.ac.ir

1 Department of Biology, Faculty of Science, Urmia 
University, Urmia 5756151818, Iran

2 Department of Plant Production and Genetics, Faculty 
of Agriculture, Urmia University, Urmia, Iran

3 Department of Analytical Chemistry and Food Science, 
Faculty of Food Science and Technology, University of Vigo, 
Vigo, Spain

4 Department of Plant Protection, Mahabad Branch, Islamic 
Azad University, Mahabad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-024-34910-6&domain=pdf


55550 Environmental Science and Pollution Research (2024) 31:55549–55561

settle on the ground (Wang et al. 2018). These activities lead 
to the accumulation of heavy metals in the soil, which poses 
risks to both plant and animal health and may enter the food 
chain, ultimately impacting human health.

Mercury (Hg) is a highly toxic substance that plays no 
role in biological processes (Tangahu et al. 2011; Moham-
madi et al. 2021). Human exposure to Hg has been linked 
to several harmful effects on the immune, digestive, and 
neurological systems, in addition on the kidneys, lungs, and 
skin (WHO 2019). In some circumstances, they can be fatal 
and cause mental retardation, seizures, loss of eyesight and 
hearing, delayed development, and cognitive impairments 
(Chamba et al. 2017). As one of the top ten chemicals of 
major public health concern, it is crucial to manage Hg in 
soil–plant-human systems effectively (Natasha et al. 2020).

To address specific environmental issues and prevent fur-
ther pollution, it is crucial to develop more efficient, eco-
friendly, rapid, and sustainable methods for remediating 
heavy metals from contaminated soils (Harindintwali et al. 
2020). Evolutionary plants are unique for cleaning up the 
contamination and improving the environmental health since 
the earliest stages of life on Earth. Additionally, microorgan-
isms play a key role in supporting these vital remediation 
efforts.

Phytoremediation offers a promising alternative to chemi-
cal and physical remediation methods, being more efficient, 
cost-effective, and environmentally friendly (Mucha et al. 
2011; Rocha et al. 2016; Mousavi et al. 2021). The primary 
phytoremediation methods include phytoextraction, where 
contaminants are absorbed by plant roots and accumulate in 
aerial parts; phytostabilization, which immobilizes contami-
nants in the soil; phytodegradation, involving the breakdown 
of pollutants by plants; rhizofiltration, the purification of 
water through plant roots; and phytovolatilization, where 
contaminants are released into the atmosphere via transpira-
tion (Ashraf et al. 2019; Edenborn et al. 2015).

For the Hg removal, phytoextraction and phytostabiliza-
tion are the most relevant methods (Natasha et al. 2020). 
Enhancing Hg bioavailability through chemicals like EDTA 
can aid in plant absorption and stabilization of Hg in plant 
tissues (Liu et al. 2020a). Increased plant biomass is a cru-
cial requirement for phytoremediation, with a large amount 
of Hg accumulating within tissues without hindering plant 
growth (Natasha et al. 2020; Liu et al. 2020b). Hg severely 
affects the growth, seedlings and roots, as well as the effi-
ciency of photosynthesis and metabolic equilibrium, which 
results in a loss of plant mass (Tiodar et al. 2021). In this 
situation, using plant growth-promoting microorganisms 
(PGPMs) to clean up a mercury-contaminated site is a desir-
able solution.

Studies have shown that fungi and plant growth-pro-
moting rhizobacteria (PGPR) can improve plant develop-
ment and resistance to heavy metal stress (Harindintwali 

et al. 2020; Tiodar et al. 2021; Maheshwari et al. 2019; 
Maddahi et al. 2022). These microorganisms contribute 
to plant adaptation and stress mitigation through various 
mechanisms (Tiodar et al. 2021; Alizadeh et al. 2021). In 
addition to increasing metal tolerance, bacteria also produce 
plant growth promoters (PGP) and have antibacterial activity 
against phytopathogens (Rajkumar et al. 2009; Ullah et al. 
2015; Rocha et al. 2016; Ganeshan and Kumar 2005). Bac-
teria from the genus Pseudomonas are found in diverse envi-
ronments and have shown beneficial effects when associated 
with plants (Maheshwari et al. 2019; Karimi et al. 2022). 
However, research on their role in bioremediation is limited 
(Rocha et al. 2016).

Mycorrhizal fungi, which form symbiotic relationships 
with Over 80% of plant species, enhance nutrient uptake, 
alter nutrient bioavailability, and shields roots from nema-
todes and parasitic fungi (Smith et al. 2011). They also show 
resistance to heavy metal stress (Debeljak et al. 2018).

Plants employ a range of strategies to cope with heavy 
metal stress, which can be categorized into avoidance and 
tolerance mechanisms. Avoidance strategies include the 
exclusion of metals by restricting their entry through root 
barriers and immobilizing them in the rhizosphere (Fashola 
et al. 2024; Ali et al. 2013). Tolerance mechanisms involve 
chelation and sequestration, where plants produce metal-
binding compounds such as phytochelatins and metallothio-
neins to neutralize toxicity, and transport these complexes 
into vacuoles. Antioxidative defense mechanisms, both 
enzymatic (e.g., superoxide dismutase, catalase) and non-
enzymatic (e.g., glutathione, ascorbate), combat oxidative 
stress induced by heavy metals (Mustafa and Komatsu 
2016). Plants also modify their metabolic pathways, pro-
duce stress proteins, and use specific transport proteins to 
compartmentalize metals into less sensitive parts of the cell 
(Ullah et al. 2015; Mahar et al. 2016; Tangahu et al. 2011).

Research has demonstrated that biochar enhances micro-
bial degradation of contaminants and supports climate 
change mitigation by sequestering carbon in the soil (Hug-
gins et al. 2014; Ahmad et al. 2014; Abbasi et al. 2023). 
Adding biochar to agricultural soils increases soil organic 
matter availability, microbial activity, water retention, soil 
remediation, and crop production while mitigating anthro-
pogenic climate change (Harindintwali et al. 2020). This 
multifaceted approach underscores biochar's effectiveness 
in addressing various environmental challenges and enhanc-
ing sustainable agricultural practices. Biochar, a stable 
carbon-rich material produced by pyrolysis of organic mat-
ter, is highly effective for soil remediation, particularly in 
immobilizing heavy metals and treating gasoline contami-
nation (Sashidhar et al. 2020; Brassard et al. 2019; Harind-
intwali et al. 2020). Biochar's porous structure and nega-
tively charged surfaces enable it to adsorb and immobilize 
metal ions like lead, cadmium, and arsenic, reducing their 
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bioavailability and mobility in the environment. Addition-
ally, the functional groups on biochar can complex with 
heavy metals, precipitating them as less soluble forms. This 
process significantly lowers the risk of these contaminants 
entering the food chain or leaching into groundwater (Pre-
malatha et al. 2023). Furthermore, biochar's large surface 
area allows it to adsorb harmful hydrocarbons such as ben-
zene, toluene, ethylbenzene, and xylene (BTEX), thereby 
reducing their concentration in the soil. Biochar can enhance 
microbial activity, particularly that of hydrocarbon-degrad-
ing bacteria, further breaking down these pollutants into 
less harmful substances. This dual action of adsorption and 
microbial enhancement makes biochar an eco-friendly and 
sustainable solution for remediating soils contaminated. 
(Premalatha et al. 2023; Wei et al. 2024).

Vigna radiata L was chosen for this study due to its 
exceptional attributes that make it an excellent candidate 
for phytoremediation. Its nitrogen-fixing capability, rapid 
growth, high biomass production, deep root system, and 
heavy metal tolerance allow it to flourish in contaminated 
soils while improving soil health (Baza et al. 2022). Addi-
tionally, V. radiata, a legume of significant economic impor-
tance in various regions, is relevant for research aimed at 
enhancing agricultural practices and environmental health 
(Zulfiqar et al. 2022; Parveen et al. 2024; Baza et al. 2022). 
Its dual function as a phytoremediator and a valuable food 
source underscores its potential to remediate contaminated 
soils and ensure the safety of its edible parts.

Although, V. radiata has demonstrated resistance to sev-
eral heavy metals (Rahdarian et al. 2022), plants are not 
universally resistant to all heavy metals, they often exhibit 
resistance to specific metals based on their physiological and 
biochemical characteristics (Singh et al. 2016). Plants have 
evolved mechanisms to tolerate, accumulate, or detoxify 
specific metals, making them suitable for targeted phytore-
mediation. Many plants show selective tolerance and uptake 
capabilities, with resistance to metals such as Hg but not to 
others like lead (Pb) or arsenic (As) (Tangahu et al. 2011). 
The mechanisms of metal tolerance and detoxification are 
often metal-specific, involving the production of chelating 
agents or antioxidants tailored to particular metals (Ashraf 
et al. 2019). Therefore, selecting plant species for phytore-
mediation depends on their effectiveness in managing the 
specific contaminants present in the soil (Ali et al. 2013).

In this experiment the Hg phytoremediation potential of 
V. radiata plant association with bacterial (Pseudomonas) 
and fungal (Trichoderma and mycorrhiza) treatments, single 
and in combined, was investigated. Moreover, biochar and 
EDTA (ethylenediaminetetraacetic acid) was added, biochar 
as organic carbon capture material and soil amendment, and 
EDTA to better view in comparison of PGPM and chemical 
treatment. The study analyzed the biomass and Hg accumu-
lation in various plant parts, including roots, stems, leaves, 

and seeds. Photosynthetic pigments were examined as key 
indicators of photosynthesis, a critical life process. Addition-
ally, the concentration of Hg in seeds was assessed to evalu-
ate the food safety of V. radiata grown in Hg-contaminated 
soils. This study hypothesizes that combining microbial 
biostimulators with V. radiata will enhance phytoreme-
diation efficiency in mercury-contaminated soils, making 
it a competitive alternative to chemical treatments such as 
EDTA. Specifically, it is expected that biochar will improve 
the survival and activity of microorganisms by serving as a 
carrier. This combined approach is anticipated to produce 
greater biomass compared to using biochar or microorgan-
isms alone.

Material and methods

Soil collection and preparation

The soil was collected from an agricultural area on the 
Urmia University campus with the properties listed in 
Table 1. The soil was mixed with river sand in a ratio of 
2:1, soil crop and sand respectively. Each plastic pot, 19 cm 
in height and diameter, was filled with 6 kg of the soil-sand 
mixture. Biochar was added at a concentration of 5% to the 
respective pots.

Plant cultivation and microbial inoculation

After soaking the seeds for 8 h, microbial inoculation 
liquates were prepared for different levels and then applied 
to V radiata seeds carefully. Three seeds were planted per 
pot and grown under greenhouse conditions. During the 
third leaf stage, Hg contamination was introduced via  HgCl2 
irrigation at three levels (0, 20, 40 mg/L) twice a week. After 

Table 1  Soil properties
EC 0.48 ds/m
pH 7.72
Lime 11.4%
Organic mater 0.46%
Clay 35%
Silt 29%
Sand 36%
Tex C.L
N 0.05%
P 11.6 mg/Kg
K 305 mg/Kg
Fe 10.2 mg/Kg
Zn 0.38 mg/Kg
Mn 15.38 mg/Kg
Cu 1.77 mg/Kg
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14 weeks and 6 times of Hg application, the plants were 
harvested.

The experiment involved seven levels of treatments: 
EDTA (E), Bacteria (Ba), Trichoderma (T), Tricho-
derma + Mycorrhiza (TM), Bacteria + Trichoderma + Myc-
orrhiza (BTM), Biochar (Bi), Bacteria + Tricho-
derma + Mycorrhiza + Biochar (MiBi) and three Hg 
concentration (0, 20 and 40 mg/liter) as two factor factorial 
experiments in completely randomized design. The PGPMs 
including Bacteria (Pseudomonas putida strain P13, Pseu-
domonas koreansis strain S14, Pseudomonas vancouverensis 
strain S19, Pseudomonas japonica fz.21–1, Pantoea agglo-
merans Q4) and Mycorrhiza (Glomus entunicatom, Glomus 
mosseae, Glomus intraradices) and Trichoderma haziantum 
prepared from Green Biotech Incorporation.

The preparation of biochar and EDTA application

Dehydrated wood was pyrolyzed in anaerobic conditions for 
14 h at 550°C. After pyrolysis, it was ground and sieved 
through a 2-mm mesh. A 1:20 (w/v) biochar-to-distilled 
water suspension was prepared and shaken for two hours 
to measure pH and electrical conductivity (EC). pH was 
measured with a pH meter (Corning, 7, UK), and EC was 
measured with a conductivity meter (Hanna, HI 8819, Por-
tugal). Biochar was heated in a muffle furnace at 550°C and 
450°C to determine ash and volatile matter concentrations, 
respectively. Organic matter concentration was assessed 
using the loss on ignition method at 550°C (Wu et al. 2012; 
Abbasi et al. 2023). Nutrient content was determined by 
digesting biochar with  HNO3 and  HClO4 at a 3:1 ratio. 
The characteristics of apple wood biochar were: EC = 0.79 
dS/m, pH = 8.35, N = 0.9%, P = 0.23%, K = 0.41%, organic 
content = 53%, and C/N ratio = 58.8.

EDTA treatment was applied via irrigation at a concentra-
tion of 0.5 mM, four times throughout the growth period, in 
conjunction with HgCl2 levels.

Plant sampling

For biomass measurement, one representative plant per pot 
was selected, and its root and aerial parts were weighed sep-
arately. Leaf samples for photosynthetic pigment analysis 
were stored at -80°C.

Measurement of Hg and translocation factor

The plant organs (root, stem, leaf, seed) were washed three 
times with ultrapure water and dried for 72 h at 65°C and 
turned into powder. A combination of three replicates of 
each treatment was analyzed as one sample for Hg concen-
tration using ICP-MS (Elan 9000 DRCe, Perkin Elmer) in 

Zarazma Laboratory, Tehran, Iran. The detection limit was 
100 ppb.

The translocation factors were calculated as follows 
(Mohammadi et al. 2021):

Root to stem = C in stem/C in root
Stem to leaf = C in leaf/C in stem
Root to shoot = C in shoot/C in root

where C represents Hg concentration (mg/kg).
Total Hg content per plant was calculated as:

Total Hg per plant = Concentration of Hg in plant (mg/
kg) × Biomass (kg)

The percentage of Hg fixed in the roots relative to the 
total Hg in the plant was determined as:

(Root Hg / Total Hg) × 100

The measurement of photosynthetic 
pigments

Photosynthetic pigments were measured using the method 
described by Lichtenthaler and Wellburn (1983). Leaf sam-
ples were extracted with pure acetone, centrifuged at 2500 
rpm for 10 min, and the absorbance of the supernatant was 
measured at 662 nm, 645 nm, and 470 nm using a UV/Vis 
spectrophotometer (Halo DB 20 Double beam). Pigments 
concentrations were calculated as follows:

Chl a = 11.75  A662—2.350  A645
Chl b = 18.61  A645—3.960  A662
CX+ C = (1000  A470—2.270 Chl a -81.4 Chl b) /227

Statistical analysis

The study will involve analyzing samples from the roots 
and aerial parts of 72 pots, which constitute the statistical 
population. A completely randomized design with 21 treat-
ments will be utilized in a factorial experiment, with each 
treatment replicated three times. The primary parameters 
measured will include the translocation factor (TF), Hg 
concentration in various plant tissues, and photosynthetic 
pigments. Data will be subjected to analysis using SAS 
software, with ANOVA employed to determine significant 
differences among treatments. Tukey's test will be applied 
for post-hoc analysis, with a significance threshold set at 
P ≤ 0.05. Graphical representations of the results were cre-
ated using Microsoft Excel to facilitate the interpretation and 
presentation of the data.
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Results

Biomass

The comparison between controls (Cs of three Hg levels) 
showed that Hg pollution decreased both shoot and root bio-
mass, however, the decline in the root was more pronounced 
(Fig. 1). Under non-polluted level, the fungal treatment of 
TM produced less biomass than bacteria, but TM produced 
the most biomass under stress conditions, particularly in the 
root. The maximum dry weight recorded in MiBi, in com-
bination biochar, in all three levels of Hg contamination.

Under the high pollution level of Hg40, both bacterial and 
fungal treatments individually and in combination, increased 
root and shoot biomass significantly. EDTA decreased the 
biomass under Hg40, so EDTA recorded the lowest amount 
in both root and shoot.

Hg concentration

Hg concentrations in different plant parts treated with 
various stimulators are shown in Fig. 2. PGPMs notably 
increased Hg concentration in the stems compared to con-
trols, with the maximum increases observed at Hg20 and 
Hg40, where bacteria and fungi elevated stem Hg levels by 
114.5% and 102%, respectively. Conversely, these micro-
organisms decreased Hg content in the leaves, particu-
larly under Hg20. The lowest leaf Hg concentrations were 
recorded with bacterial and TM treatments, which reduced 
Hg levels by 34% and 25%, respectively, compared to the 
control of Hg20 level. Additionally, under Hg40, the com-
bined treatments of BTM and MiBi further reduced leaf Hg 
by 21% and 46%, respectively.

EDTA treatment resulted in the highest Hg concentration 
in plants at Hg20 compared to other treatments, while at 
Hg40, the highest concentration was observed with BTM. 
Phytostabilization in the roots was most effective with BTM 
treatment, where 90% of the total Hg was concentrated in the 
roots under Hg40. Microbial combinations were more effec-
tive in accumulating Hg in the roots than single treatments. 
Biochar, whether used alone or in combination with micro-
organisms, reduced Hg levels in plants, particularly in the 
roots. Overall, all amendments, except for biochar, increased 
the total Hg concentration in plants exposed to mercury.

Total Hg concentrations in plants at Hg20 were ranked 
as follows: E > BTM > TM > Ba > T > MiBi > Bi with con-
centrations of 81, 69, 59, 55, 54, 43, and 27 mg/Kg DW 
respectively. At Hg40, the rankings were BTM > E > TM > 
Ba > T > MiBi > Bi, with concentrations of 240, 193, 167, 
159, 154, 79, and 72 mg/kg DW respectively.

Mycorrhiza combined with bacteria improved the plant’s 
remediation capability more than either alone.

Hg remediation per plant and transfer factor

In addition to concentration, the amount of total Hg in each 
plant was examined. This calculation highlights the critical 
role of biomass in a plant's potential for Hg remediation. 
The analysis revealed that while the concentration in the 
plants decreased following MiBi treatment, the overall total 
Hg content increased, indicating an enhanced remediation 
capacity (Fig. 3).

At moderate contamination level, Hg accumulation per 
plant was highest in BTM (3.02 mg), followed by TM (2.98 
mg), E (2.9 mg), MiBi (2.51 mg), Ba (2.39 mg), T (2.04 mg), 
C (1.59 mg), and Bi (1.06 mg). Similarly, at high contamina-
tion level, BTM again exhibited the highest accumulation 
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radiata) under three levels of Hg pollution; Hg0 (without Hg), 
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(8.8 mg), followed by TM (7.14 mg), Ba (6.36 mg), E (5 
mg), MiBi (4.02 mg), C (3.75 mg), and Bi (2.63 mg).

A significant shift in the translocation of pollutants 
within the plants occurs when the pollution level in the 

soil is increased. All treatments at Hg40 exhibited a lower 
root-to-shoot TF compared to Hg20, except for EDTA 
(Fig. 4). Among the treatments, BTM strongly reduced 
TF at high contamination level.

0

50

100

150

200

250

)
W

D
gk/g

m(
toor

ni
g

H

Hg0 Hg20 Hg40

C E Ba T TM BTM Bi MiBi

0

5

10

15

20

25

30

)gk/g
m(

mets
ni

g
H

Hg0 Hg20     Hg40

C E Ba T TM BTM Bi MiBi

0

4

8

12

16

20

)
W

D
gk/g

m(
fael

ni
g

H

Hg0 Hg20 Hg40

C E Ba T TM BTM Bi MiBi

0

10

20

30

40

50

60

70

80

90

100

toor
ni

g
Hfo

%

Hg20    Hg40

C E Ba T TM BTM Bi MiBi

Fig. 2  Hg concentration in different organs of munge bean plant 
(V. radiata) under three levels of Hg pollution; Hg0 (without Hg), 
Hg20  (Hg20mg/L), Hg40  (Hg40mg/L), and seven levels of stimu-
lator; E = EDTA; Ba = bacteria; T = Trichoderma; M = mycor-

rhiza; BTM = bacteria + Trichoderma + mycorrhiza; Bi = biochar; 
MiBi = bacteria + Trichoderma + mycorrhiza + biochar; and C = con-
trol

0

50

100

150

200

250

300

)
W

D
g

K/g
m(.no

C
g

HlatoT

Hg0                      Hg20                          Hg40

C E Ba T TM BTM Bi MiBi

0

1

2

3

4

5

6

7

8

9

10

)tnalP/g
m(ssa

moiBlatoT
ni

g
H

Hg 0                          Hg20                          Hg40

C E Ba T TM BTM Bi MiBi

Fig. 3  Total Hg concentration in plant and total Hg accumulation 
per plant in munge bean (V. radiata) under three levels of Hg pollu-
tion; Hg0 (without Hg), Hg20  (Hg20mg/L), Hg40  (Hg40mg/L), and seven 
levels of stimulator; E = EDTA; Ba = bacteria; T = Trichoderma; 

M = mycorrhiza; BTM = bacteria + Trichoderma + mycorrhiza; 
Bi = biochar; MiBi = bacteria + Trichoderma + mycorrhiza + biochar; 
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Photosynthetic pigments

At Hg20, chlorophyll a (Chl a) decreased more than 
chlorophyll b (Chl b) compared to controls (Fig. 5). All 
biostimulant treatments increased both Chl a and Chl b 
under Hg20 and Hg40, particularly in bacterial treatments 
and BTM combinations. TM fungi enhanced Chl a, Chl 
b, and carotenoid content with increasing pollution. At 
Hg40, all microbial treatments and EDTA increased Chl 
b content compared to controls. BTM showed decreased 
Chl b content at High pollution level compared to moder-
ate. EDTA, bacteria, and BTM enhanced pigment content 
under Hg20 compared to Hg0, but decreased under Hg40 
compared to Hg20.

Carotenoid content increased with Hg pollution, with 
Hg40 > Hg20 > Hg0. Bacteria reduced carotenoid content 
at Hg0 but increased it at Hg20. EDTA, Trichoderma, TM 
fungi, and BTM showed no significant differences at Hg0. 
However, at Hg20, bacteria, T, BTM, and Biochar increased 
carotenoid content compared to controls. TM fungi and 
BTM exhibited the highest carotenoid content at Hg40, with 
carotenoid content increasing in TM fungi and MiBi in par-
allel with Hg pollution.

Discussion

Phytoremediation relies on plant species capable of tol-
erating and removing pollutants over extended periods. 
This study evaluates the effectiveness of various treat-
ments, including biochar, microbial inoculants, and chemi-
cal amendment EDTA, in enhancing the mercury-removal 
capacity of V. radiata. Given that no plant species is rec-
ognized as a hyperaccumulator of Hg (Tiodar et al. 2021), 
leveraging the synergistic effects of plants and microorgan-
isms offers a viable approach.

Biomass

Our study observed that plant biomass decreased with 
increasing Hg concentration in the soil. Hg is readily 
absorbed by plants through mechanisms similar to those for 
essential micronutrients (Zhang et al. 2017). In non-inocu-
lated (control, and EDTA) plants exposed to the pollution, 
biomass decreased, which impacted the overall phytoreme-
diation efficiency.

Marrugo-Negrete et al. (2016) examined the impact of 
Hg on Jatropha curcas plants grown in hydroponic cultures 
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supplemented with various amounts of 5, 10, 20, 40, and 
80 g/mL of Hg. The findings revealed a decrease in bio-
mass, reduced development, and photosynthetic inhibition 
(Natasha et al. 2020). When Brassica juncea was exposed 
to 25 and 50 mM Hg, the dry biomass fell by 25% and 37%, 
respectively (Ansari et al. 2009).

However, in our study, bacterial treatments led to an 
increase in plant biomass even in exposure Hg concentra-
tions. The plant survival and growth under toxic metal stress 
is facilitated by interactions with PGPB, beside increasing 
the uptake of heavy metals (Harindintwali et al. 2020; Tiodar 
et al. 2021). PGPB are a varied collection of prokaryotes that 
live in a variety ecological niche. These microbes may be 
free-living in the rhizosphere (rhizobacteria), occupying root 
nodules (rhizobia), or residing inside the tissues of plants 
(endophytes) (Tiodar et al. 2021). PGPB increased plant 
health in different ways including: provide valuable nutrients 
(e.g., fixed N, Fe, P, Zn), signals for induction of systemic 
resistance, e.g., volatile organic compounds, hormones (e.g., 
abscisic acid, ethylene, jasmonate, cytokinins, gibberellins, 
indole-3-acetic acid), enzymes (e.g., 1-aminocyclopropane- 
1-carboxylate deaminase, chitinases, cellulases, proteases, 

lipases), antibiotics or siderophores (Glick 2012; Ma et al. 
2016; Naik et al. 2019; Tiodar et al. 2021; Moradzadeh et al. 
2021).

The previous publishers have fully documented the grow-
ing effects of AM on plant biomass. In this study, AM was 
treated along with Trichoderma to look at the association 
effects of these two fungi. Our results show that plants 
treated with TM fungi increased root to shoot biomass ratios 
strongly. Increasing root biomass and pollution accumula-
tion enhanced phytostabilization capacity in the plant. This 
aligns with previous research highlighting the role of mycor-
rhization in improving plant biomass and metal stabilization 
(Smith et al. 2011; Moradzadeh et al. 2021).

Hg content and translocation

The combination of bacteria and fungi plays a significant 
role in Hg dynamics within plants. While this microbial 
synergy increased the total Hg content in plants, it notably 
reduced Hg accumulation in leaves, which are crucial for 
photosynthesis. This reduction in leaf suggests an adaptive 

egf

ij

j

egf
gf

ih

b
b

egfgh
egf

cd

ed
cd

cb

a
a

edf
cb cb

egf

a

e-f
edf

0

2

4

6

8

10

12

14

16

llyhporolh
C

a 
)gk/g

m(

Hg0 Hg20 Hg40

C E Ba T M BTM Bi BiMi

hfg
hgi

j

h-e

dc

hi

ba a

dc

hfg
d-e

bc

hgi

d-e

aa
a

dce
d-e

hi

ji

a

dce dc

0

1

2

3

4

5

6

7

8

llyhporolh
C

b
)gk/g

m(

Hg0 Hg20 Hg40

C E Ba T M BTM Bi BiMi

h-g
efg

bcd

efg
efd

bcd

k

ba

bc

hfg

bc
ecd

hfg

bc

ecd

hfg

ba ba

kij

cd

efg

kj

hijg

bcd

0

0.5

1

1.5

2

2.5

3

3.5

)gk/g
m(

dionetora
C

Hg0 Hg20 Hg40

C E Ba T M BTM Bi BiMi

Fig. 5  Photosynthetic pigmen in munge bean plant (V. radiata) under 
three levels of Hg pollution; Hg0 (without Hg), Hg20  (Hg20mg/L), 
Hg40  (Hg40mg/L), and seven levels of stimulator; E = EDTA; Ba = bac-
teria; T = Trichoderma; M = mycorrhiza; BTM = bacteria + Tricho-

derma + mycorrhiza; Bi = biochar; MiBi = bacteria + Tricho-
derma + mycorrhiza + biochar; and C = control. Different letters show 
a significant difference at the P < 0.05 level based on Tukey’s test



55557Environmental Science and Pollution Research (2024) 31:55549–55561 

mechanism to minimize toxicity in the most sensitive parts 
of the plant.

PGPMs enhance metal ion bioavailability by altering 
soil pH and producing chelators (Kumar Yadav et al. 2018; 
Franchi et al. 2017; Liu et al. 2020a). Additionally, the 
mycelia of filamentous fungi facilitate bacterial spread in 
the soil, enhancing ecological processes like biodegrada-
tion and nutrient cycling (Banitz et al. 2013). Fungal exu-
dates provide carbon sources that promote bacterial growth 
and can also act as signaling molecules, inducing bacterial 
phosphatase gene expression and further strengthening the 
interaction between these microorganisms (Zhang et al. 
2018; Jiang et al. 2021). This microbial synergy signifi-
cantly enhances the plant’s ability to manage and stabilize 
the pollution. The PGPM, particularly the BTM amendment, 
proved most effective in Hg remediation and distribution. 
Under high Hg contamination, 90%, and under moderate 
contamination, 72% of the total Hg was sequestered in the 
roots, resulting in the root-to-shoot translocation factor (TF) 
decreasing from 0.38 under Hg20 to 0.11 under Hg40 with 
BTM treatment. Indicating a strategic reduction in Hg move-
ment from roots to shoots as contamination levels increased. 
plant adaption is improved in association with PGPMs 
strategy to limit the Hg translocation and protecting aerial 
parts. This mechanism is crucial for mitigating toxicity and 
is supported by the role of heavy metal-resistant microbes 
in converting toxic heavy metals into less hazardous forms 
(Harindintwali et al. 2020; Azubuike et al. 2016). Interest-
ingly, EDTA was found to be more effective in increasing 
Hg concentration in plants at moderate pollution than at 
higher contamination level. However, PGPM was effective 
in both stress levels due to increasing plant resistance with 
PGP production.

Plants can be classified based on their interaction with 
heavy metals into several categories. Hyperaccumulators 
are capable of absorbing and concentrating extremely high 
levels of metals, such as Thlaspi caerulescens for zinc and 
cadmium (Cosio et al. 2004), and Pteris vittata for arsenic 
(Zhao et al. 2023a, b). Excluders limit metal uptake and 
maintain lower metal concentrations in their tissues. Accu-
mulating plants take up moderate amounts of heavy metals 
(Ali et al. 2013), such as our selected plant V radiata. These 
classifications aid in selecting appropriate plants for targeted 
phytoremediation strategies.

Comparative efficacy of EDTA and PGPM

In phytoremediation, both EDTA and PGPM are employed 
to enhance the removal of heavy metals from contaminated 
soils. Each offers distinct advantages, but also presents dif-
ferent trade-offs. EDTA, a chemical chelator, enhances Hg 
uptake by forming strong complexes with Hg ions, which 
increases their solubility and mobility in the soil. These 

Hg-EDTA complexes are more bioavailable for plant uptake 
and can be translocated to various plant tissues, thereby 
improving Hg absorption (Liu et al. 2020b; Abbasi et al. 
2023; Mousavi et al. 2022). However, this study found that 
while EDTA was effective at lower contamination level, it 
also led to the lowest biomass among all treatments with 
increasing the toxicity. previous reports indicating that 
EDTA, despite its efficacy in enhancing heavy metal uptake, 
can be detrimental to plant health and may pose environmen-
tal risks, such as secondary contamination and disruption 
of soil microbial communities. (Rodríguez et al. 2016). On 
the other hand, PGPM offers a more sustainable and eco-
friendly approach to phytoremediation. Though it may be 
slower and less predictable in its efficacy, PGPMs improve 
plant and soil health with minimal environmental impact 
(Beltyukova et al. 2023).

Combining EDTA with PGPM, or selecting the appropri-
ate treatment based on specific site conditions and reme-
diation goals, can optimize phytoremediation outcomes. 
However, the use of EDTA should be carefully managed 
due to its environmental risks, and its application should 
be tailored to the specific plants and mercury-contaminated 
soils involved (Tiodar et al. 2021; Lebrun et al. 2023). This 
study suggests that PGPM may offer a more effective and 
sustainable solution for phytoremediation, particularly in 
severe contaminated areas.

Impact of biochar on phytoremediation

Biochar, both alone and in combination with microorgan-
isms, showed distinct effects compared to other amend-
ments. Specifically, biochar reduced the Hg concentration 
in plants, acting as a stabilizer. This eco-friendly amendment 
was associated with the highest biomass production across 
all contamination levels, supporting the role of biochar in 
enhancing plant growth while minimizing metal uptake 
(Liu et al. 2020a; Harindintwali et al. 2020). Biochar does 
not reduce the total amount of heavy metals in the soil, it 
does decrease their bioavailability and phytotoxicity, thereby 
enhancing phytostabilization when combined with metal-
immobilizing plants (Edenborn et al. 2015). Additionally, 
biochar has proven to be an effective carrier for microbial 
agents, providing a suitable habitat that protects introduced 
microorganisms from desiccation and predation (Edenborn 
et al. 2015; Harindintwali et al. 2020). Abbasi et al. 2023 
used biochar to investigate Zea mays L.'s capacity to absorb 
metals, that resulted in an increase in plant length and dry 
weight relative to non-amended treatment, suggesting that 
biochar amendment could lessen Hg phytotoxicity.

Understanding the interactions between biochar, PGPM, 
and plants is crucial for managing heavy metal-contaminated 
environments in an ecologically and economically sustain-
able way. This knowledge also opens up the potential for 
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developing novel green technologies for environmental 
remediation.

Photosynthetic pigments

Exposure to Hg in higher plants disrupts several biochemi-
cal and physiological processes, including photosynthesis 
and chlorophyll synthesis (Jain and Gadre 2004). In our 
study, the highest content of Chl a and Chl b were observed 
in plants treated with BTM and mycorrhiza. Nevertheless, 
Mondal et al. (2015) reported a reduction in all photosyn-
thetic pigments, including carotenoids, in V. radiata under 
Hg toxicity. Debeljak et al. (2018). found that mycorrhiza-
tion of plants in mercury-contaminated soil enhanced chlo-
rophyll concentrations, suggesting a protective role of myc-
orrhiza against the toxicity. Remarkably, our study observed 
an increase in carotenoid content under pollution conditions.

Photosynthesis depends on Chl a and b, which are 
extremely vulnerable to environmental stresses such heavy 
metals (Ekmekçi et al. 2008). In our study, PGPM applica-
tion enhanced photosynthetic pigment content that are sport-
ing to energy and growth improvement. High Hg exposure 
altered chlorophyll content and reduced net photosynthesis 
rates (Teixeira et al. 2018). Lower levels of photosynthetic 
pigments were observed in the control plants exposed to 
Hg40, which correlated with reduced plant biomass. The 
decline in chlorophyll content under Hg stress could be 
attributed to decreased uptake of essential elements like Mn 
and K, oxidative stress, and the substitution of metal ions by 
Hg in photosynthetic pigments (Cho and Park 2000).

Root properties

Our study found that V. radiata accumulated significant 
amounts of pollution in the roots, with minimal translo-
cation to the shoots. Studies by Moreno et al. (2005) on 
Phaseolus vulgaris, Brassica juncea, and Vicia villosa also 
reported that Hg is primarily retained in the roots to prevent 
its translocation to the shoots. Xu et al. (2021), demonstrated 
that root properties play a crucial role in Hg accumulation 
and stabilization. However Different plant species vary in 
their ability to store contamination in their tissues. The root 
architecture, including increased root biomass and surface 
area, enhances the plant's ability to immobilize Hg in the 
rhizosphere.

Fungal interactions with plants showed varied responses 
under different stress levels, offering protection to plant roots 
from the toxicity. Specifically, V. radiata roots retained 69% 
of pollution under Hg20 and 79% under Hg40. PGPM sig-
nificantly improved this plant property, effectively limiting 
Hg transfer within the plant. Although research on Hg locali-
zation within plant organs is limited, it is likely bound to 
cell wall components or sequestered in root cell vacuoles. 

(Debeljak et al. 2018). The uptake, transport, and sequestra-
tion of Hg by roots are influenced by factors such as plant 
phenophase, soil characteristics, and contamination levels 
(Debeljak et al. 2018). Further research is needed to identify 
the transporters involved in its uptake from the soil.

The role of root exudates in phytostabilization cannot 
be overlooked. These exudates, composed of organic acids, 
sugars, and other compounds, can alter the soil pH, che-
late metal ions, and foster beneficial microbial communities 
(Zhao et al. 2023a, b; Montiel-Rozas et al. 2016), which col-
lectively contribute to reducing heavy metal bioavailability. 
The soil–plant transfer factor provides insight into how Hg 
behaves within the soil–plant system which is influenced 
by soil properties and Hg speciation. (Clayden et al. 2013; 
Natasha et al. 2020; Mohammadi et al. 2021).

Risk of Hg being transferred to the food chain

One of the primary concerns when using edible crops for 
phytoremediation is the potential for contaminants to enter 
the food chain (Ha et al. 2017). This study carefully evalu-
ated the risk of Hg transfer to the food chain. The results 
indicated that while V. radiata plant could absorb and accu-
mulate Hg in their tissues, the concentration in the seeds 
remained below 0.1 PPM as measured by ICP-MS. This 
suggests that V. radiata possess mechanisms to limit the 
contamination translocation to the seeds, thereby reducing 
the risk of entering the food chain.

To ensure food safety, it is crucial to monitor and manage 
toxicity levels in organs of plants used for phytoremediation. 
Implementing measures such as crop rotation, soil amend-
ments, and post-harvest processing can further mitigate the 
risk of Hg contamination in the edible parts of the plant 
(Khanam et al. 2020; Xu et al. 2021). Detailed studies on the 
mechanisms of its uptake, translocation, and sequestration 
in V. radiata and similar crops are essential for developing 
effective strategies for safe phytoremediation practices.

Conclusion

This study demonstrates two effective approaches for man-
aging soil Hg contamination using V. radiata (Fabaceae 
Family) in conjugation with the various amendments: phy-
toextraction, which removes Hg from the soil, and phyto-
stabilization, which limits its mobility. The use of PGPMs 
and EDTA significantly enhanced Hg uptake, while biochar 
reduced internal levels and stabilized the contaminant within 
the soil. Microorganisms played a crucial role in boosting 
the plant's phytoremediation capacity, showcasing an envi-
ronmentally sustainable strategy. However, the application 
of EDTA, while effective at the low concentrations, must be 
carefully managed due to its potential environmental risks. 
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V. radiata has shown the potential to reduce the accumu-
lation in above-ground parts, prevent its accumulation in 
seeds, and thereby contribute to food security.

This study highlights the promise of V. radiata for safe 
phytoremediation, but it also emphasizes the need for ongo-
ing monitoring and further research to better understand Hg 
uptake and sequestration mechanisms. In order to improve 
the quality of biochar as a soil amendment and microbial 
carrier, as well as various aspects of the plant–microbe-
microbe interactions, can be given more attention in future 
research.
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