
Vol.:(0123456789)

Environmental Science and Pollution Research 
https://doi.org/10.1007/s11356-024-34895-2

REVIEW ARTICLE

Opportunities, challenges and modification methods of coal gangue 
as a sustainable soil conditioner—a review

Tian Tang1 · Zheng Wang1 · Liuzhou Chen1 · Shu Wu1 · Yangsheng Liu1 

Received: 11 December 2023 / Accepted: 29 August 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The persistent reliance on coal has resulted in the accumulation of substantial coal gangue, a globally recognized problematic 
solid waste with environmental risks. Given the coal gangue properties and global land degradation severity, the resourceful 
utilization of coal gangue as soil conditioners is believed to be a universally applicable, cost-effective, high-demand and 
environment-friendly model with broad application prospect. The direct application of raw coal gangue faces challenges of 
low active beneficial ingredients, inadequate water and fertilizer retention, presence of potentially toxic elements, resulting 
in limited efficacy and environmental contamination. This paper provided a comprehensive review of various modification 
methods (including mechanical, chemical, microbiological, thermal, hydrothermal and composite modifications) employed 
to enhance the soil improvement performance and reduce the environmental pollution of coal gangue. Furthermore, an 
analysis was conducted on the potential application of modified coal gangue as a muti-function soil conditioner based on its 
altered properties. The modified coal gangue is anticipated to effectively enhance soil quality, exhibiting significant potential 
in mitigating carbon emissions and facilitating soil carbon sequestration. This paper provided innovative ideas for future 
research on the comprehensive treatment of coal gangue and restoration of degraded soil in order to achieve the dual goals 
of zero-coal gangue waste and sustainable agriculture.
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Introduction

Coal is the largest source of global energy, accounting 
for over 26% of the world’s primary energy with a total 
consumption of 161.47 EJ in 2022 (IEA 2023). Despite 
renewable energy sources (e.g., wind, sun, biomass) gain 
the increasing global focus and are generally proposed as 
potential substitutes for fossil fuels in recent years (Brock-
way et al. 2019; Devlin et al. 2023; Smith et al. 2022), fos-
sil fuels particularly coal, still dominate the world energy 
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consumption as illustrated in Fig. 1a. The global coal con-
sumption witnessed a growth of over 7% in 2022, with China 
and India accounting for more than 70% (Debiagi et al. 
2022). Consequently, the dominant role of coal in global 
energy supply is anticipated to remain unchanged for the 
foreseeable future.

However, a substantial amount of coal gangue was gen-
erated and discharged during the coal mining, washing and 
processing processes. Coal gangue, a black-gray rock with 
lower carbon content and heat value compared to coal, 
accounts for about 15%-20% of coal production (Li et al. 
2006). The production of coal gangue was conservatively 
estimated based on the published coal production data from 
the Energy Institute (Energy Institute 2023), as shown in 
Fig. 1b. As the world’s largest coal producer, China pro-
duced nearly half of coal gangue. The amount of accumu-
lated coal gangue in China has exceeded 7 billion tons as of 
2022 (Wang et al. 2023), and is still rising at an alarming rate 
of more than 300 million tons per year (Li and Wang 2019). 
The utilization rate of coal gangue in China only reached 
73.1% as of 2023 with a consistent flat trend as depicted in 
Fig. 1c (Li and Wang 2019; Wu et al. 2023a). Therefore, the 
utilization amount of coal gangue still falls short in compari-
son to its vast production and reserves, making it one of the 
largest industrial solid wastes (Wu et al. 2017).

The accumulation of enormous coal gangue not only 
occupies a significant amount of land resource, but also 
causes severe safety and environmental issues (Fig. 1c), 
including soil deterioration, spontaneous combustion, the 
release of toxic gases, heavy metal contamination and geo-
logical hazards (Ma et al. 2019a; Sun et al. 2021; Wu et al. 
2023b). Hence, numerous countries have been actively 
exploring various utilization ways to eliminate the threats 
triggered by coal gangue accumulation. At present, consid-
erable research has been conducted on the resourceful utili-
zation of coal gangue as value-added products. The global 
comprehensive utilization of coal gangue encompasses vari-
ous sectors, including construction materials (e.g., cement 
and concrete) (Qin et al. 2021), energy generation (e.g., 
power generation) (Peng and Li 2018), filling applications 
(e.g., underground backfill) (Li et al. 2020c) and emerging 
industries (e.g. chemical products) (Cao et al. 2021). The 
applications mentioned above are extensively employed in 
economically developed and densely populated areas, yield-
ing remarkable economic and social benefits. Conversely, 
in underdeveloped areas with a substantial stock of coal 
gangue, they fail to achieve the anticipated outcomes due to 
the low local demand and exorbitant export costs.

Moreover, the excessive cultivation and prolonged use 
of chemical fertilizer have resulted in the gradual depletion 

Fig. 1  a The global energy consumption by source in exajoules (EJ) 
from 1965 to 2022; b The coal gangue generation links and estimated 
production of coal gangue in various countries in 2022; c Produc-

tion, comprehensive utilization, and utilization rate of coal gangue in 
China from 1991 to 2023; d The harm caused by the accumulation of 
enormous coal gangue
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of organic matter and humus in soil, leading to increas-
ingly serious soil degradation (Babla et al. 2022). Severe 
soil degradation has occurred in one-third of the world as a 
result of soil erosion, desertification, salinization, compac-
tion, and pollution (Hou et al. 2020), thereby diminishing 
soil productivity and often necessitating soil conditioners 
to replenish the soil (for the lost nutrients). However, the 
utilization of commercial soil conditioners incurs substan-
tial costs, constituting 10 to 90% of the overall expenses 
associated with farm treatment (Yunusa et al. 2012). Pre-
vious studies have indicated that scientific and reasonable 
addition of coal gangue holds the potential to improve soil 
quality, which will effectively overcome the negative effects 
caused by traditional fertilizers on soils (Tang et al. 2014). 
Hence, the utilization of coal gangue as soil conditioners is 
presumed to be a universally applicable, affordable, high 
consumption and efficient sustainable approach, which can 
tackle the issues of coal gangue management and soil deg-
radation simultaneously.

Currently, an increasing work has been reported on the 
resourceful utilization of coal gangue as soil conditioners, 
however there is a lack of comprehensive summary in this 
field. To fill this vacancy, the properties of coal gangue with 
a specific focus on the analysis of its overlooked agricul-
tural value were summarized in this paper. Then, this review 
identified the opportunities and challenges related to using 
raw coal gangue as soil conditioners from previous studies. 
Furthermore, the mechanisms, effects, and limitations of 
several modification methods for coal gangue were compre-
hensively integrated and evaluated in order to enhance soil 
improvement performance and ensure environmental safety. 
The potential application and environmental implication of 
modified coal gangue were also discussed. This review aims 
to provide valuable insights and references for utilizing coal 
gangue in soil practices and sustainable agriculture.

Properties of coal gangue

Coal gangue is a complex industrial solid waste mixed with 
organic compounds, inorganic compounds and minerals 
(Fabiańska et al. 2013). Its major chemical compositions 
are  SiO2,  Al2O3 and  Fe2O3, with traces of CaO,  P2O5, MgO 
and  MnO2. The chemical composition of coal gangue from 
various sources and its comparison with soil reference val-
ues were tabulated in Table 1. It can be concluded that the 
chemical composition of coal gangue and soil exhibits simi-
larities, suggesting compatibility between them, which may 
be attributed to the fact that they are both formed in strata 
(Wang et al. 2016b). It is worth noting that the majority of 
coal gangue samples present a high loss on ignition (LOI), 
indicating a higher proportion of organic carbon (Zhao et al. 
2022b), which is conducive to the soil utilization of coal 

gangue. Besides, coal gangue predominantly consists of 
quartz and clay minerals (kaolinite, illite, etc.) (Cao et al. 
2016). The abundance of clay minerals provides conveni-
ent for the enhancement of soil structure and fertility (Grim 
1962).

There is a growing stockpiles of the industrial byproducts 
including coal gangue, fly ash, red mud and flue gas desul-
furization gypsum which may potentially give rise to envi-
ronmental concerns (Koshy et al. 2019). The comparison 
with other industrial solid wastes (Table 2) reveals that coal 
gangue exhibits higher levels of nitrogen (N), phosphorus 
(P), potassium (K) and sulfur (S), contributing to improve 
soil fertility. Although sulfur is considered detrimental in 
certain coal processing and utilization projects, it can effec-
tively stimulate crop growth and productivity in moderate 
quantities (Mu et al. 2021; Yuan et al. 2021). Coal gangue 
possesses developed pores and specific surface area, thereby 
aiding soil aeration and preventing compaction (Zhang et al. 
2022a). The organic carbon content in coal gangue is typi-
cally 2 to 10 times higher than that found in soils, making it 
possible to produce multi-functional soil conditioners using 
coal gangue as a raw material.

In addition, coal gangue contains various trace elements 
such as Mn, Mo, B, Zn, Cu, Cr, Cd, Pb, Ni, As, Hg, Se, 
and Co (Table S1), both as essential micronutrients and 
environmental pollutants (He et al. 2005). Compared with 
other industrial solid wastes, the potential hazardous trace 
elements of coal gangue are generally within acceptable 
limits, as displayed in Fig. 2. This means that coal gangue 
contains adequate and safe levels of trace elements to ame-
liorate the soil and support plant growth more securely and 
effectively. Currently, the research on trace elements in coal 
gangue primarily focuses on their adverse aspects, including 
the distribution, leaching, diffusion and environmental risk 
assessment of heavy metals such as zinc (Zn), copper (Cu), 
chromium (Cr), cadmium (Cd), nickel (Ni), arsenic (As), 
mercury (Hg), among others (Ashfaq et al. 2020; Gao et al. 
2021a), the migration and release of potentially deleterious 
trace elements during combustion (George et al. 2020; Wang 
et al. 2021b). However, there is a lack of attention to the 
nutritional value and benefits associated with trace elements 
like molybdenum (Mo), boron (B), selenium (Se) contained 
within coal gangue.

Utilization of coal gangue as soil 
conditioners

Owing to excessive reclamation and intensive use of fer-
tilizers, the organic matter and humus in soil are gradu-
ally depleted, soil degradation has become a global issue. 
Because of the remarkable effect of soil conditioner in 
improving soil quality, it has received extensive attention in 
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recent years (Amoah-Antwi et al. 2020; Rakshit et al. 2019). 
Current research mainly focuses on artificial synthetic 

polymer soil conditioners, natural soil conditioners and 
microbial soil conditioners (Saha et al. 2020; Song et al. 

Table 2  Comparison of 
physicochemical properties in 
several typical industrial solid 
wastes

a (Ashfaq et al. 2020; Du et al. 2020; Jabłońska et al. 2017; Li et al. 2020a; Li et al. 2022a; Tong et al. 
2008; Zhou et al. 2015; Zhou et al. 2012)
b (Bhattacharya et al. 2012; Chen et al. 2010; He et al. 2017; Jankowski et al. 2006; Sarbak et al. 2004; 
Singh et al. 2010; Yunusa et al. 2012)
c (Anam et al. 2019; Berta et al. 2021; Garau et al. 2011; Gräfe and Klauber 2011; Hua et al. 2017; Liu 
et al. 2014; Liu et al. 2021b)
d (Aakriti et al. 2023; DeSutter et al. 2014; Li et al. 2022b; Liu et al. 2021a; Sun et al. 2014; Wang et al. 
2017)

Physicochemical properties Coal gangue a Coal fly ash b Red mud c Flue gas 
desulfurization 
gypsum d

pH (1:5) 6.90–8.93 3.1–12.8 9.0–13.1 6.5–8.46
EC (ms  cm−1) 0.26–2.2 3.2–7.6 10.0–60.8 0.84–2.6
Specific surface areas  (m2/g) 0.52–7.24 2.5–14.8 5.31–64.09 0.38–6.68
Organic carbon (%) 3.5–21.2 0.45–1.7 0.60–1.28 0.16–2.4
Total nitrogen (%) 0.19–0.87 0.01–0.12  < 0.02  < 0.01
Total phosphorus (%) 0.23–0.47 0.01–1.08 0.01–0.08 0.01–0.42
Total potassium (%) 0.86–2.71 0.01–0.28 0.10–1.82 0.05–1.35
Total sulfur (%) 0.55–4.90 0.01–0.58 0.10–0.60 8.2–20.9

Fig. 2  The summary and comparison of trace element contents in coal gangue (CG), fly ash (CFA), red mud (RM), and flue gas desulfurization 
gypsum (FGDG) based on the existing literature
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2018; Zhou et al. 2019). Coal gangue, the main object of 
this review, is a kind of natural soil conditioner. As a kind 
of industrial solid waste, it is abundant, cheap and eas-
ily obtainable, and its composition closely resembles that 
of known soil (Tong et al. 2008). Consequently, the coal 
gangue-derived soil conditioner exhibits superior compati-
bility with soil compared to artificial synthetic and microbial 
soil conditioner (Han et al. 2021), enabling its extensive and 
prolonged utilization while achieving mass-scale production 
at low cost. If the substantial accumulated coal gangue can 
be utilized to ameliorate and remediate extensive areas of 
potentially available degraded soil worldwide, it will give 
a promising solution for addressing both coal gangue man-
agement and soil degradation problems simultaneously. It 
represents an effective and feasible way for local resourceful 
utilization of coal gangue as soil conditioners.

Soil improvement application of raw coal gangue

As mentioned above, coal gangue is primarily composed 
of clay minerals, quartz and carbon. Its organic matter con-
tent ranges from 15 to 25%, and it contains nutrients such 
as nitrogen, phosphorus, potassium, calcium, magnesium, 
silicon and trace elements required for plant growth (Tong 
et al. 2008). The coal gangue-derived soil conditioner has 
the combined effects of natural organic and mineral condi-
tioners, which can be used not only for light soils with poor 
organic matter and nutrients (NPK), but also as a fertilizer 
(supply mainly Si, Ca, Mg and trace elements) or to restore 
degraded soil (Garbowski et al. 2023; Long et al. 2019). Pre-
vious studies have documented the excellent efficacy of coal 
gangue in optimizing soil structure, enhancing soil water 
retention, augmenting soil fertility and stimulating plant 
growth (Babla et al. 2022), as detailed in Table 3.

Furthermore, numerous scholars have explored the 
impact of the amount and particle size of raw coal gangue 
on soil properties, nutrient content and plant growth char-
acteristics. The research findings of Zhou et al. (2010) 
demonstrated that as the addition of coal gangue increases, 
both the infiltration rate and saturated water conductivity 
decrease while the water retention performance of sand 
improves. Nan et al. (2023) revealed that coal gangue can 
alter soil moisture and aggregate structural stability. They 
identified that coal gangue content is the primary driving 
factor influencing soil moisture and plant growth, whereas 
particle size is the main determinant affecting soil aggre-
gate structural stability, and the optimal coal gangue con-
tent is 30%, with a particle size ranging from 5 to 8 mm. 
Han et al. (2021) pointed out that the application of coal 
gangue mulch could enhance soil water status through 
increased water infiltration and reduced cumulative evap-
oration. Among different mulch models, the most effec-
tive one is characterized by a thickness ranging from 8 to 

16 cm and particle sizes between 0.5 and 2 cm. The litera-
ture indicates that the typical upper limit for untreated raw 
coal gangue is approximately 20%.

In conclusion, the scientific and rational addition of raw 
coal gangue can effectively enhance soil properties and 
facilitate plant growth. Moreover, the harmless treatment 
of coal gangue prior to application can further optimize its 
utilization efficiency and improve the overall soil improve-
ment effect.

Problems of direct application of raw coal gangue

The bottleneck problem of directly applying coal gangue 
as a soil conditioner has emerged, thereby impeding its 
further development. The relatively stable chemical 
structure and inert organic carbon of coal gangue result 
in less active beneficial components, thereby limiting 
direct absorption of nutrients by plants and microorgan-
isms, leading to poor fertilizer efficiency when utilized as 
a fertilizer (Zhu et al. 2022). Additionally, the coal gangue 
with large particle size and low capillary porosity makes it 
resistant to weathering, which leads to soil structure loos-
ening when directly applied, thus hindering its functions 
in water holding, fertilizer retention, and internal nutrient 
release (Du et al. 2020; Wang et al. 2016a). Consequently, 
it fails to effectively improve degraded soil such as sandy 
soil. Moreover, the addition of overmuch coal gangue will 
lead to excessive accumulation of trace elements, sulfur, 
and salt in the soil, causing environmental pollution and 
impeding plant growth (Singh et al. 2010). The long-term 
weathering and rain leaching of coal gangue will generate 
acidic wastewater, causing the release of toxic and harmful 
elements and subsequent contamination of soil and under-
ground water (Gao et al. 2021b; Li and Wang 2019). The 
maximum feasible amount of coal gangue addition can be 
increased if the harmful substances in it are effectively 
controlled (Clavier et al. 2020).

To sum up, the direct application of coal gangue to 
improve degraded soil presents challenges such as low 
activity of beneficial ingredients, poor water and ferti-
lizer retention performance, environmental pollution, etc., 
resulting in limited efficacy, restricted application amount 
and hidden safety risks. Therefore, it is crucial to thor-
oughly analyze the activity, structural characteristics and 
pollutants contents present in coal gangue prior to applica-
tion. Additionally, considering the specific requirements of 
soil and crops, a rational modification treatment is impera-
tive for producing high-quality and eco-friendly soil con-
ditioners. This approach aims at achieving the harmless 
resource utilization of accumulated coal gangue while 
promoting sustainable agricultural development efficiently.
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The modification methods of coal gangue

The raw coal gangue requires appropriate modification to 
improve its performance, activate its beneficial ingredi-
ents, enhance its water and fertilizer retention, and miti-
gate its pollution and biological toxicity. Therefore, this 
chapter provided a comprehensive overview of the current 
research status on coal gangue modification technologies. 
It further examined the impact of various modification 
methods on soil improvement-related indicators and con-
ducts a comparative analysis to identify their respective 
advantages and disadvantages.

At present, the common modification methods of coal 
gangue include mechanical modification, chemical modi-
fication, microbiological modification and thermal acti-
vation (Han et al. 2022; Lv et al. 2022; Zhang and Ling 
2020). As an advanced modification method, hydrothermal 
method has garnered significant attention in recent years 
(Chao et al. 2022; Lachos-Perez et al. 2022; Munir et al. 
2018).

Mechanical modification

Mechanical modification refers to the physical and chemi-
cal changes of the material under the action of mechanical 
forces, causing the particle size reduction, specific surface 
area enhancement, particle structure destruction, fracture 
of inter-particle hydrogen bonds and Al–O–Si bonds of 
kaolinite, thus promoting the defects or displacement of 
the lattice or even the amorphous state, and achieving 
the activation of beneficial elements (Said et al. 2018). 
Mechanical grinding was employed to modify the struc-
ture and enhance the pozzolanic reactivity of coal gangue 
(Zhao et al. 2022b). It has been observed that during the 
progressive grinding process, the coal gangue particles 
undergo sequential stages of particle size reduction, par-
ticle agglomeration and aggregate dispersion (Guo et al. 
2016), leading to gradual improvements in both dehy-
droxylation degree and activity of coal gangue (Guo et al. 
2009). The ball mill can transform Muscovite into amor-
phous state at 600 rpm, which significantly enhances the 
dissolution rate of silicon from 0.23% to 16.05%, as well 
as boosts the dissolution rate of potassium from 2.62% 
to 81.39%, rendering it suitable as a silica-potash ferti-
lizer (Liu et al. 2020b). The mechanical modification is 
characterized by its simplicity of operation and low cost; 
however, it exhibits limited functionality and activation 
effectiveness, which fails to eliminate the pollution risk 
associated with coal gangue. Therefore, it is commonly 
combined with other modification technologies to enhance 
activation efficiency and mitigate pollutants (Fig. 3).
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Chemical modification

The chemical modification is to modify the coal gangue 
with alkaline solution (such as  Na2CO3, NaOH, KOH) or 
acidic solution (such as  HNO3, HCl). This modification 
disrupts the chemical bonds and alters the crystal structure 
and surface activity of coal gangue. Consequently, there is 
a significant enhancement in pore size distribution, active 
sites, and adsorption performance of coal gangue (Gao 
et al. 2015; Qian and Li 2015). As a result, the preparation 
of functional materials, the removal of impurities and the 
extraction of valuable components can be realized. Valu-
able elements can be extracted from coal gangue through 
heating and  HNO3 leaching, with extraction efficiency of 
95.2%, 56.4% and 80.5% for Al, Ga and Li respectively. 
Additionally, the leaching residue possessed a large BET 
surface area and high available silicon content that can be 
utilized as silicon fertilizer (Shao et al. 2022). Alkaline solu-
tion  destroyed the skeleton of silicoaluminate, so that Si–O-
Si and Si–O-Al bonds quickly dissolved into the solution to 
form  [SiO4]4− and  [AlO4]5−, thus enhancing gel performance 
(Cao et al. 2022). The addition of CaO facilitated a reaction 
between  SiO4

4− and  AlO4
5− with alkaline Ca(OH)2, yield-

ing calcium silicate hydrate (C-S–H) and calcium aluminate 
hydrate (C-A-H), further improving gel properties (Li et al. 
2006; Zhang et al. 2021a). The surface of alkali-modified 
coal gangue exhibited a rougher texture and displayed a dis-
tinct pore structure, whereas the acid-modified coal gangue 
merely present numerous grooves on its surface (Guo et al. 
2021). In general, alkalinity is mostly used to activate the gel 

properties of coal gangue, while acidity is mainly employed 
to leach rare earth elements and heavy metals, as well as 
improve pore structure and adsorption properties simulta-
neously. Chemical modification entails a straightforward 
operation with limited activation effects, typically combined 
with thermal activation (Fig. 4).

Microbiological modification

The metabolic processes of microorganisms are harnessed 
in microbiological modification to degrade minerals present 
in coal gangue, facilitating the release of nutrient elements 
and ultimately obtaining microbial fertilizers (He 2010). The 
study conducted by Bi et al. (2019) has proved the beneficial 
role of both arbuscular mycorrhizal fungi (AMF) and phos-
phate solubilizing bacteria (PSB) in the decomposition of 
organic matter and subsequent release of nutrients. PSB had 
the function of converting organic and inorganic phosphorus 
into soluble forms, which sensibly improved the availabil-
ity of phosphorus in minerals and promotes plant growth 
(Benbrik et al. 2020). Silicate bacteria exhibited selectiv-
ity towards silicate minerals with distinct crystal structures, 
obviously promoting the dissolution of silicon and potassium 
(Lv et al. 2020). Moreover, scholars successfully isolated a 
strain of Stenotrophomonas maltophilia YZ1, which effec-
tively dissolved nutrients and fix  Pb2+ in coal gangue, thereby 
prominently increasing the content of available phosphorus, 
potassium, silicon and reduce the lead released (> 91.1%) in 
the modified coal gangue (Zhu et al. 2022; Zhu et al. 2023).

Fig. 3  The process, principle, effects and defects of mechanical modification (Guo et al. 2016; Liu et al. 2020b; Zhao et al. 2021b)
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Organic acids produced through microbial metabolism 
can effectively enhance the solubilization and activation of 
mineral nutrient elements (Rezakhani et al. 2019), as well 
as the adsorption and immobilization of heavy metal ions 
(Yuan et al. 2017). Therefore, the screening of appropriate 
and efficient strains is anticipated to facilitate nutrient acti-
vation in coal gangue while mitigating its pollution. Due to 
the intricate composition of coal gangue, its microbiological 
modification necessitates the screening of a diverse range of 
functional bacteria for synergistic compounding, which is 
a complex and time-consuming endeavor and crucial chal-
lenge. However, it is noteworthy that the microbiological 
approach offers advantages such as low energy consumption, 
environmental friendliness and remarkable efficacy, making 
it deserving of extensive attention and research (Fig. 5).

Thermal modification

According to the literature, thermal activation is the most 
normally employed method for modification, which is uti-
lized to enhance the activity of beneficial elements through 
breaking down polymerized long chains of silico-oxygen 
tetrahedrons and alumino-oxygen octahedrons at high tem-
peratures (Jabłońska et al. 2017). The key factors influenc-
ing thermal activation efficiency are temperature and time. 
The reported optimal temperature and time for achieving 
maximum activity of coal gangue vary in different litera-
ture sources, which could be attributed to disparities in the 
composition and structure of the coal gangue (Arribas et al. 
2018; Zhao et al. 2022b). It is noteworthy that the optimal 

activation temperature for a specific clay mineral may induce 
recrystallization in another mineral (Zhang and Ling 2020). 
The presence of clay minerals in coal gangue renders it a 
potential pozzolanic material upon thermal activation at 
temperatures up to 600—800 °C. With the temperature ris-
ing from 100 °C to 900 °C, coal gangue experiences dehy-
droxylation and structural transformation, causing a sig-
nificant enhancement in reactivity and a gradual increase in 
available silicon content (Li et al. 2016; Lv et al. 2022). The 
uncalcined coal gangue has a scaly-like layered structure 
that remains unchanged below 500 °C and becomes porous 
and irregular at 600—800 °C. This transformation may be 
caused by the phase transition of metakaolin, dehydroxyla-
tion of kaolinite, as well as the reduction of bound water and 
organic matter (Cao et al. 2016). Excessive calcination above 
950 °C causes the active amorphous material to recrystallize 
into stable mullite, severely reducing the reactivity (Frías 
et al. 2012).

In addition to conventional calcination, microwave 
thermal activation has gained increasing attention. The 
micro-morphology and micro-aggregate effects induced by 
microwave activated coal gangue conferred it with strong 
hydrophilicity, water fixation and water retention capabili-
ties (Qiu et al. 2022). Besides, microwave thermal activation 
altered the mineral composition and gelling properties of 
coal gangue. The microwave-thermally activated products 
can serve as auxiliary gelling materials that are conducive to 
the formation of micro-aggregates (Guan et al. 2021). Ther-
mal activation is an effective, simple and feasible approach 
for industrial applications; however, its implementation is 

Fig. 4  The process, principle, effects and defects of chemical modification (Cao et al. 2022; Guo et al. 2021; Zhang et al. 2021a)
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hindered by its high energy consumption. Additionally, car-
bonaceous minerals and organic carbon are oxidized and 
emitted as greenhouse gases during the high-temperature 
activation process (Huang et al. 2018; Wang et al. 2022b), 
resulting in a substantial loss of organic matter, and thus 
observably diminishing the soil improvement value of coal 
gangue (Fig. 6).

Hydrothermal modification

The hydrothermal modification process takes place within a 
specialized closed reaction vessel, utilizing an aqueous solu-
tion as the reaction medium. Under high temperature and 
pressure conditions, a sub-critical water state is formed in 
the vessel (Kumar et al. 2018), promoting multiple conver-
sions of coal gangue including hydrolysis, depolymerization, 
polymerization, isomerization, dehydration, aromatization, 
condensation, and other transformation reactions (Lachos-
Perez et al. 2022). Because of its splendid activation effect, 
milder operating conditions and faster reaction rate, it has 
been widely applied in the field of solid waste disposal and 
resource recovery. The key parameters for hydrothermal 

modification of coal gangue include reaction temperature, 
residence time, pressure, solid–liquid ratio and reaction 
medium. Among these factors, temperature is the most criti-
cal determinant (Munir et al. 2018). When the temperature 
reaches the activation energy threshold for the reaction, 
chemical bond are broken, resulting in a variety of reactions 
(Sabio et al. 2016).

The commonly employed reaction medium for hydro-
thermal modification of coal gangue typically involves an 
alkaline solution, which accelerates the fracture of Si–O-
Si and Si–O-M (M: Al, Mg, or others) bonds (Zhao et al. 
2023b), thereby enabling the synthesis of novel functional 
materials with diverse morphology and properties through 
hydrothermal condensation or gel reaction (Fan et al. 2023; 
Zhao et al. 2023b). In comparison with chemical modifica-
tion, the surface of coal gangue appears a higher abundance 
of basic functional groups and micro-pores after alkaline 
hydrothermal modification, which brings an augmented spe-
cific surface area, a more extensive distribution of pore sizes, 
and a significantly enhanced adsorption capacity (Jin et al. 
2022; Li et al. 2016). The latest research demonstrated that 
alkaline hydrothermal modification activated nutrients and 

Fig. 5  The process, principle, effects and defects of microbiological modification (Zhu et al. 2022; Zhu et al. 2023)
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removed pollutants in coal gangue simultaneously, yielding 
a highly active and eco-friendly silicon-based compound fer-
tilizer (Tang et al. 2024). The subsequent sections provided 
a comprehensive account of the various specific functions 
associated with hydrothermal modification on soil improve-
ment performance. Despite being a scientific, efficient, and 
versatile modification technology, the hydrothermal method 
still remains on laboratory or demonstration scale and has 
not yet been fully commercialized due to its reliance on 
expensive and intricate reactors (Munir et al. 2018) (Fig. 7).

Activate beneficial components

A vast body of literature has confirmed that alkaline hydro-
thermal treatment can effectively activate the beneficial 
components of silicaluminate minerals, and it is worth 
noting that red mud and coal gangue primarily consist of 
silicaluminate minerals. Chao et al. (2022) subjected red 
mud to hydrothermal conditions at 360 g/L  K2O and 240 
℃ for 1 h, resulting in solid phase effective  K2O and  SiO2 
contents of 12.20% and 18.59%, respectively, meeting the 
market demand for multi-element compound fertilizer. The 

excessively prolonged reaction time caused a decrease in 
the available silicon content in solid products, which was 
attributed to the partial overlap between the reaction condi-
tions for aluminosilicate hydrothermal activation and zeolite 
hydrothermal crystallization, bringing about a tendency for 
structural stability and reduced activity during the transition 
from activation to crystallization conditions (Liu et al. 2022). 
The availability of nutrients in the hydrothermal process was 
closely correlated with the severity of the hydrothermal reac-
tion. For example, the total phosphorus content in the solid 
phase increased as the degree of reaction improved, while 
nitrogen exhibited a significant exponential decrease (Wang 
et al. 2019). The hydrothermal reaction motivated the grad-
ual degradation of polyphosphate and organophosphate into 
orthophosphate (inorganic phosphorus), which was more 
favorable for crop uptake, while ensuring relatively stable 
phosphorus leaching (Huang et al. 2017). The nitrogen in 
the raw material underwent polymerization or condensation 
reactions in the hydrothermal solid phase, forming more sta-
ble quaternary ammonium compounds (Xiao et al. 2017). 
Consequently, hydrothermal methods can be employed to 

Fig. 6  The process, principle, effects and defects of thermal modification (Shao et al. 2022; Wang et al. 2022b; Zhao et al. 2022b)
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regulate the form and properties of nutrients, achieving a 
balance between plant absorption and soil fertility retention.

Improve the performance of coal gangue

According to the existing literature, the hydrothermal 
method is a viable way for removing inorganic ions from 
industrial solid waste and promoting the development of 
porous structures, while inducing alterations in mineral 
composition (Bayuseno et al. 2009; Cao et al. 2020). The 
high-quality zeolite with excellent properties, such as a 
high cation exchange capacity (CEC) and specific surface 
area, can be synthesized by alkaline hydrothermal methods. 
It is capable of stabilizing heavy metal ions and nutrients 
through cation exchange and adsorption (Li et al. 2020b; 
Li et al. 2014). Moreover, several literatures have stated the 
formation of new C-S–H and tobermolite phases from coal 
gangue after undergoing hydrothermal modification (Cao 
et al. 2022; Ye et al. 2022). The development of porous 
structure and clay minerals in these hydrothermally modified 
products can confer them with robust ion exchange, adsorp-
tion, and gel properties, which are positive for soil structure 
reconstruction, remediation of heavy metal pollution, and 
maintenance of soil nutrients.

Reduce the pollution of coal gangue

The application of hydrothermal modification has been 
revealed effective in the treatment of metal-contaminated 
soil, fly ash, and incineration bottom ash (Chen et al. 2020; 
Chen et al. 2019). Alkaline hydrothermal processes facili-
tated the conversion of silicon and aluminum into stable sil-
ico-aluminate minerals, thereby immobilizing heavy metals 
within the lattice structure and impeding their reactivation 

(Bayuseno et al. 2009; Shi et al. 2017). In comparison to 
conventional methods such as chelating agent stabilization 
and cement fixation technology, hydrothermal treatment 
offers simultaneous stabilization of diverse heavy metals, 
along with advantages in terms of simplicity, rapid, effi-
ciency, as well as environmental and economic benefits (Hu 
et al. 2015; Zhang et al. 2022b). Not only that, hydrother-
mal modification triggered the destruction, decomposition 
and transformation of organic sulfur, thereby elevating the 
stability of sulfur structure in hydrothermal products (Chen 
et al. 2020; Wang et al. 2016c), which efficiently mitigated 
soil sulfur pollution and alleviated plant growth inhibition 
caused by excessive available sulfur in coal gangue.

Maximize the utilization of organic matter in coal gangue

Coal gangue is characterized by a high proportion of sta-
ble recalcitrant organic matter (ROM) (Bi et al. 2020). The 
organic matter underwent a complex process of decomposi-
tion and synthesis during hydrothermal processes (Hou et al. 
2022). However, the structure and compositional changes of 
organic matter in coal gangue during the hydrothermal pro-
cess have not been elucidated. Subsequent research is essen-
tial to focus on investigating suitable conditions to regulate the 
proportion of two organic matters with distinct functions, in 
order to ensure a sufficient supply of stable macromolecules 
ROM for promoting the formation of soil aggregates (Qin 
et al. 2021), and an appropriate labile organic matter (LOM) 
that can be directly absorbed and utilized by plants and micro-
organisms (Muqaddas et al. 2019). Additionally, coal gangue 
contains stable organic matter and humus that can be solubi-
lized in an alkaline hydrothermal environment (Kappler and 
Brune 1999; Sriramoju et al. 2022). In the future, it is also 

Fig. 7  The process, principle, effects and defects of hydrothermal modification (Chao et al. 2022; Wang et al. 2016c; Zhang et al. 2022b; Zhao 
et al. 2023b)
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considered to extract humus from the hydrothermal liquid 
phase to further improve the added value of coal gangue.

Combined modification

In practical applications, a combination of multiple modi-
fication methods is recommended to achieve optimal effec-
tiveness and maximum benefits. Combined modification 
methods, such as chemically assisted mechanical milling 
(Zhao et al.. 2021b), thermal activation coupled with chemi-
cal modification (Dong et al. 2023), mechanical pulveriza-
tion combined with microbiological modification (Zhu et al. 
2022), chemical regent facilitated hydrothermal treatment 
(Jin et al. 2022), hydrothermal method coupled with chemi-
cal, mechanical and thermal modification (Li et al. 2010; Li 
et al. 2020b) have attracted a lot of attention. The combined 
technology can effectively address the limitations associated 
with a single technology; however, it necessitates intricate 
and multifaceted operational procedures.

Potential applications of modified coal 
gangue

The soil conditioners derived from different modification 
methods of coal gangue exhibit diverse properties, showing 
varying degrees of enhancement in soil improvement per-
formance and safety. The potential applications of modified 
coal gangue soil conditioner are thoroughly analyzed in this 
chapter.

Used as fertilizers to supply nutrients

The modified coal gangue derived-soil conditioner is antici-
pated to exhibit enhanced efficacy as a fertilizer compared 
to the raw coal gangue, owing to the activation of beneficial 
components. It generally serves as silicon fertilizers, micro-
nutrient fertilizers, as well as nutritious supplementary.

The modified coal gangue exhibits a significantly elevated 
effective silicon content (Chao et al. 2022; Liu et al. 2020b), 
rendering it suitable as a silicon fertilizer to mitigate tran-
spiration loss, enhance nutrient utilization efficiency, and 
augment plant resilience against abiotic and biotic stresses, 
thus enhancing the survival ability of plants in extremely 
harsh environments (Castro and Crusciol 2013). Further-
more, It has been confirmed that supplementing available 
silicon can remarkably upgrade soil water availability and 
holding capacity (Kuhla et al. 2021), enhance soil microbial 
community and mitigate heavy metal accumulation in plants 
(Wang et al. 2020; Zhao et al. 2022a).

Micronutrient deficiency in soil may impede agricul-
tural productivity and affect human nutrition either directly 
or indirectly (Steinnes 2009). The modified coal gangue 

contains an abundant amount of available micronutrient. 
Taking selenium as an example, the activation rate of modi-
fied coal gangue towards selenium reaches a remarkable 
81.24% (Liu et al. 2020a). In China, it is estimated that 
approximately 72% of the territory suffers from selenium 
deficiency. The application of selenium fertilizer derived 
from modified coal gangue in soil will contribute to enhanc-
ing crop resistance and ensuring optimal crop yield in saline-
alkali land and arid areas (Long et al. 2019).

Besides, the modified coal gangue can function as a 
multi-nutrient supplementary, providing moderate available 
organic matter, N, P, K for the poor soil. While ensuring the 
provision of essential nutrients for plant and microorgan-
ism growth, it effectively prevents nutrient loss. Addition-
ally, modified coal gangue possesses the capacity to absorb 
nutriment while maintaining them molecular state, thereby 
facilitating their absorption by crops and effectively improv-
ing nutrient utilization rates (Wang et al. 2021a; Zhou and 
Shan 2008).

Used as soil amendments to improve degraded soil

The modified coal gangue is expected to serve as an eco-
friendly soil amendment with exceptional soil improvement 
performance, primarily attributed to its enhanced pore struc-
ture, water retention capacity, fertilizer retention ability, and 
environmental safety, as well as remarkable ion exchange, 
adsorption, and gel properties.

The addition of porous modified coal gangue can improve 
soil structure, which is conducive to nutrient absorption and 
respiration of plant roots, and significantly boost the bio-
mass of soil microorganisms (Ananyeva et al. 2013). The 
abundance of soil microorganisms plays a pivotal role in 
effectively increasing soil humus content, maintaining the 
dynamic transformation of nutrients, improving soil fertility, 
and ultimately promoting plant growth (Blagodatskaya and 
Kuzyakov 2013).

In addition, the properties of modified coal gangue make 
it applicable for the remediation of sandy soil and heavy 
metal-contaminated soil. The activated organic matter 
in modified coal gangue serves as the foundation for soil 
aggregate formation, thereby influencing soil structure and 
porosity and subsequently altering water holding capacity 
and infiltration capacity of the sandy soil (Gao et al. 2016). 
After the application of modified coal gangue, the effec-
tive Cd content in soil decreased by 21.2–33.9% (Zhao 
et al. 2021a). The coal gangue-based material modified by 
(Chen et al. 2023) effectively reduces the available As and 
Cd by 17.94–29.81% and 14.22–30.41%, respectively. These 
findings suggest that modified coal gangue can reconstruct 
sandy soil function and immobilize heavy metals availably, 
rendering it an ideal amendment for remediating sandy soil 
and co-contaminated soil with multiple heavy metal (Fig. 8).
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Environmental consideration

The resourceful utilization of coal gangue as soil condition-
ers, particularly the modified coal gangue, not only facili-
tates the harmless and resource treatment of substantial 
quantities of coal gangue, but also realize the restoration of 
degraded soil, thereby yielding positive economic, social, 
ecological, and environmental benefits. Additionally, it 
plays an important role in carbon reduction. The spontane-
ous combustion, pollution, and soil degradation caused by 
centralized stacking coal gangue will lead to a decline in 
surrounding vegetation and reduction of carbon sink capac-
ity. However, the utilization of coal gangue as a soil amend-
ment or fertilizer can effectively restore degraded soil and 
improve stable ecological carbon sinks such as soil aggre-
gates and phytic carbon (Liu 2023). Su et al. (2010) demon-
strated that over the 7-year and 32-year recovery periods of 
sandy land, soil carbon sequestration in the 0–15 cm layer 
reached 1.8–9.4 Mg  ha−1 and 7.5–17.3 Mg  ha−1, respec-
tively. Hence, modified coal gangue exhibits significant 
potential for enhancing soil quality and promoting soil car-
bon sequestration in desertification region. According to the 
carbon footprint analysis conducted by (Ashfaq et al. 2021), 
the procurement and transportation of raw materials exhibit 
the highest carbon emissions compared to other stages of 
utilization. Therefore, employing modified coal gangue for 
enhancing local degraded soil through in-situ utilization can 
yield significant reductions in carbon emissions.

It needs to be emphasized that although heavy metal lev-
els in coal gangue generally remain below the threshold, 

prolonged usage may result in the accumulation of heavy 
metals and pose a threat to crop safety. Current research pri-
marily focuses on the influence of modification methods on 
coal gangue characteristics, with limited attention given to 
the impact of modified coal gangue on soil and plant growth. 
It is imperative to closely monitor the environmental impact 
of modified coal gangue throughout its cradle-to-grave life 
cycle and ensure both environmental protection and crop 
safety. In practical applications and subsequent research 
endeavors, an appropriate modification method should be 
selected to obtain modified coal gangue with matching per-
formance based on specific local soil improvement require-
ments, thereby facilitating in-situ treatment of coal gangue 
while yielding positive environmental, economic, and social 
benefits.

Conclusions

As one of the largest industrial solid wastes in the world, 
coal gangue not only poses a pollution risk but also holds 
immense untapped potential for soil improvement that is 
often overlooked. The raw coal gangue is cost-effective, 
easily accessible and compatible with soil. Incorporating 
less than 20% of raw coal gangue typically optimizes soil 
structure, enhances soil fertility, and stimulates plant growth. 
The limited effectiveness and application amount of raw coal 
gangue are attributed to the low reactivity of beneficial com-
ponents, inadequate water and fertilizer retention, as well 
as a high risk of pollution. The modification technologies, 

Fig. 8  Intended benefits and 
unintended risks of (a) raw 
coal gangue (RCG)-based soil 
conditioners and (b) modified 
coal gangue (MCG)-based soil 
conditioners on soil properties, 
plant growth and development
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including mechanical, chemical, microbiological, thermal, 
hydrothermal and combined modifications, are effective to 
enhance the soil improvement performance while mitigat-
ing pollution of coal gangue. This enables the acquisition of 
high-quality and pollution-free multi-functional soil condi-
tioner. Among them, hydrothermal and combined modifica-
tion stands out due to its comprehensive and effective func-
tions, making it deserving of attention. The modified coal 
gangue not only serves as a multi-nutrient source, providing 
essential nutrients for the soil, but also acts as an effective 
soil amendment in rehabilitating degraded soils such as 
sandy soil, heavy metal-contaminated soil. This not only 
facilitates the conversion of coal gangue waste into valuable 
resources but also effectively rehabilitates degraded soil and 
fosters the establishment of a stable ecological carbon sink. 
This paper provided an innovative approach to achieving 
clean coal production and promoting sustainable agriculture.
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