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Abstract
Nitroaromatic compounds (NACs) stand out as pervasive organic pollutants, prompting an imperative need to investigate 
their hazardous effects. Computational chemistry methods play a crucial role in this exploration, offering a safer and more 
time-efficient approach, mandated by various legislations. In this study, our focus lay on the development of transparent, 
interpretable, reproducible, and publicly available methodologies aimed at deriving quantitative structure–activity relation-
ship models and testing them by modelling the mutagenicity of NACs against the Salmonella typhimurium TA100 strain. 
Descriptors were selected from Mordred and RDKit molecular descriptors, along with several quantum chemistry descrip-
tors. For that purpose, the genetic algorithm (GA), as the most widely used method in the literature, and three alternative 
algorithms (Boruta, Featurewiz, and ForwardSelector) combined with the forward stepwise selection technique were used. 
The construction of models utilized the multiple linear regression method, with subsequent scrutiny of fitting and predic-
tive performance, reliability, and robustness through various statistical validation criteria. The models were ranked by the 
Multi-Criteria Decision Making procedure. Findings have revealed that the proposed methodology for descriptor selection 
outperforms GA, with Featurewiz showing a slight advantage over Boruta and ForwardSelector. These constructed models 
can serve as valuable tools for the quick and reliable prediction of NACs mutagenicity.

Keywords QSAR · Mutagenicity · Nitroaromatic compounds · Feature selection · Machine learning · Quantum chemical 
calculations

Introduction

Nitroaromatic compounds (NACs) are a class of aromatic 
molecules that contain at least one nitro group attached to 
the benzene ring. Due to their unique structure, NACs are 
utilized in a wide variety of applications. The most promi-
nent applications are in the field of explosive materials, 
where molecules such as 2,4,6-trinitrotoluene, 1,3,5-trini-
trobenzene, and hexanitrobenzene are used (Akhavan 2022). 
Besides that, for example, 2,4-dinitrotoluene and its deriva-
tives are used in the synthesis of polyurethanes, dyes, 

medicaments, and rubbers (Lent 2015), while 1-nitropyrene 
and 2-nitronaphthalene are found in fuels (Hayakawa 2016).

Due to electron-withdrawing nitro groups, NACs are per-
sistent pollutants, i.e., resistant to oxidation and hydrolysis. 
Thus, their degradation is not efficacious enough, leading to 
accumulation in the environment (Zhang et al. 2018). The 
primary source of NACs in the environment is emission, 
mainly by industry and vehicles. However, a minor emission 
originates from nonanthropogenic sources, i.e., as a product 
of the metabolism of microorganisms (Tiwari et al. 2019). 
On the other side, the secondary source of NACs is the pho-
tochemical reactions of parent molecules with nitrogen oxide 
(Arey et al. 1986; Hayakawa 2016). Notably, NACs are not 
only omnipresent in the environment but are also detected in 
food sources (Deng et al. 2015; Tiwari et al. 2019).

Among other pollutants, several NACs have been singled 
out as priority pollutants by the United States Environmental 
Protection Agency, such as nitrobenzene, 2,4- dinitrotoluene, 
2,6-dinitrotoluene, 2-nitrophenol, 4-nitrophenol, etc. (Tiwari 
et al. 2019). Additionally, the toxic effects of NACs and 
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their relation with  PM2.5 particles, have raised great con-
cern among scientists and environmental protection agen-
cies (Loomis et al. 2013). NACs exhibit a myriad of toxic 
effects. They were reported to be mutagenic and carcino-
genic, as well as, to cause gastrointestinal, neurological, and 
reproductive disorders, respiratory and skin irritation, aller-
gic reactions, immunotoxicity, methemoglobinemia, endo-
crine system impairment, etc. (Hsu et al. 2007; Kovacic and 
Somanathan 2014). For instance, diesel exhaust, containing 
6-nitrochrysene, 1-nitropyrene, and 1,6-dinitropyrene, has 
been identified as carcinogenic and mutagenic to mammals 
(Benbrahim-Tallaa et al. 2012). Additionally, 2,4,6-trini-
trotoluene, 2,4-dinitrotoluene, and their metabolites have 
been linked to adverse reproductive effects in crickets and 
salamanders (Bazar et al. 2008; Karnjanapiboonwong et al. 
2009).

Mutagenicity is often assessed by the Ames test with 
Salmonella typhimurium assays, which is renowned for 
its high sensitivity to base-pair substitution and frameshift 
mutagens (Hornberg et al. 2014). However, the Ames test 
has a few drawbacks: it requires significant time, costs, and 
manpower. On the other side, since millions of organic 
chemicals are used in industry, it is impossible to evalu-
ate all of them through the Ames test experimentally. Euro-
pean Union Registration, Evaluation, Authorization, and 
Restriction of Chemicals legislation recommends the use 
of in silico methods to comply with Organization for Eco-
nomic Co-Operation and Development (OECD) principles, 
ensuring the provision of reliable toxicity data (Gozalbes 
and de Julián-Ortiz 2018). Several in silico approaches have 
been developed to address challenges in safety evaluation 
and risk assessment, as well as drug and material discovery, 
with quantitative structure–activity relationship (QSAR) 
standing out (Hong 2023; Huang et al. 2021; Ambure et al. 
2019; Halder and Cordeiro 2021; Halder et al. 2022). QSAR 
is often coupled with Monte Carlo (Toropova et al 2023; 
Toropov et al 2023) and quantum chemistry (Ostojić et al. 
2014a, 2014b; Stanković et al. 2016a, 2016b) methods and is 
recommended for early detection of various toxic chemicals 
(Khan et al. 2019a, 2019b). Further, mutagenicity in S. typh-
imurium has demonstrated a close correlation with carcino-
genicity in rodent and human bioassays (Mortelmans and 
Zeiger 2000), which consequently led to numerous QSAR 
studies on NACs toxicity in rats (Keshavarz and Akbarzadeh 
2019; Daghighi et al. 2022).

Among various properties, the lipophilicity and saturation 
of aromatic compounds hold particular significance due to 
their role in enabling molecules to penetrate cellular mem-
branes. Specifically, NACs promote the fluidization of the 
phospholipid bilayer of a cell membrane, facilitating their 
subsequent accumulation within the cell. This entry into the 
redox cycle allows NACs to induce oxidative stress, trig-
gering the production of reactive radicals that bond to the 

exocyclic amino group of the phosphodiester bonds, ulti-
mately causing mutations (Yu et al. 2016). In addition to 
lipophilicity and saturation, properties related to electroneg-
ativity also play a crucial role in determining mutagenicity, 
as electronegative atoms have the potential to intercalate into 
the space between two adjacent base pairs of DNA, inducing 
structural changes.

Wang et al. (2005) modelled the Salmonella typhimurium 
TA98 strain mutagenicity of NACs. Besides other parame-
ters, the model contains the energy of the lowest unoccupied 
molecular orbital (LUMO), highlighting the significance of 
nitroreduction in NACs mutagenicity. To examine NACs 
mutagenicity, Gramatica (2007) used topological molecular 
descriptors, which are known for their efficiency in predict-
ing mutagenicity (Estrada 2002; Pérez-Garrido et al. 2010, 
2014). Zhang et al. (2008) developed a QSAR model of S. 
typhimurium TA98 strain mutagenicity of nitronaphthalenes 
and methylnitronaphthalenes using common quantum chem-
ical (QC) descriptors. They involved energies of both LUMO 
and HOMO (highest occupied molecular orbital) in the 
model. Ding et al. (2017) constructed QSAR models to pre-
dict the TA98 strain mutagenicity of NACs. Model consist 
of several descriptors: electrophilic index, hydrophobicity, 
the partial atomic charge on the carbon attached to the nitro 
group, the sum of molar refractivity of substituents at the 
ortho positions, indicators if a molecule has more than one 
nitro group and more than two fused rings, dipole moment, 
solvation free energy, edge adjacency index, as well as few 
descriptors related with charge distribution, size, and the 
methyl groups. Hao et al. (2019) investigate the mutagenic-
ity of NACs towards S. typhimurium TA100 strain using a 
QC descriptor-based QSAR model. The best model includes 
energy of HOMO and four 2D descriptors related to lipophi-
licity and complexity of the structure. Jillella et al. (2020) 
constructed a QSAR model for the mutagenicity of nitro and 
amino aromatic compounds in a test with Salmonella typh-
imurium TA98. They categorized descriptors into subclasses 
related to unsaturation, size and properties of rings, hydro-
phobicity, and electronegativity. In the case of mutagenicity 
in the test without S9 activation, they showed that mutagen-
icity increases with the size of the molecules, unsaturation 
of the molecule, lipophilicity, and the number of N atoms, 
but decreases with branching and electron-richness of the 
molecule. Further, according to their findings, mutagenicity 
is lower for molecules with pentacyclo or hexacyclo rings, 
as well as in systems with more rings, whereas it is higher 
for molecules with higher ring complexity.

This study aims to develop transparent, interpretable, 
reproducible, and publicly available methodologies for 
deriving quantitative structure–activity relationship mod-
els. The focus is on enhancing feature selection techniques, 
which literature has not explored extensively. The developed 
methodologies were applied to estimate the mutagenicity of 
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NACs against the Salmonella typhimurium TA100 strain. 
Further, as aforementioned, many QC descriptors were used 
in modelling NACs mutagenicity. However, their calcula-
tion is significantly more time-consuming compared to the 
molecular descriptors. This is even more pronounced when 
they are calculated with greater precision. Consequently, this 
study aims to evaluate whether QC descriptors can enhance 
the prediction of NACs mutagenicity in the Salmonella typh-
imurium TA98 strain and if they can be computed efficiently 
while maintaining good precision.

Materials and methods

Dataset

The investigation was focused on a set of 48 nitroaromatic 
compounds (Fig. 1A in Appendix A of the Supplementary 
Information (SI)) sourced from Benigni's report for the 
OECD (2004). Mutagenicity assessments were conducted 
using the Ames test with Salmonella typhimurium TA100 
strain, performed without S9 activation. Mutagenicity values 
were given as the logarithm of the number of revertant per 
nanomole (rev/nmol). It is noteworthy that the OECD vali-
dation principle No. 1, emphasizing "a defined endpoint", is 
satisfied by this dataset (OECD 2007).

Splitting of data in the training and the test set followed 
the stratified sampling approach outlined in the paper of 
Hao et al. (2019). The molecules were sorted based on their 
mutagenic activity, organized into groups of four, and one 
molecule was selected from each group for inclusion in the 
test set. The remaining NACs were assigned to the train-
ing set. Additionally, both the least and the most mutagenic 
compounds were intentionally included in the training set to 
ensure that the molecules selected for the test set fall within 
the applicability domain of the subsequently developed 
QSAR model. Details regarding the compound names, CAS 
numbers, corresponding log TA100 values, and the quantum 
chemical descriptors selected by the ML models developed 
in this study have been provided in Appendix A of the SI.

Molecular descriptors

In this study, both 2D molecular and QC descriptors were 
employed to comprehensively characterize the NACs. 
Molecular descriptors were calculated by Mordred (Mori-
waki et al. 2018) and RDKit (Landrum et al. 2023) pack-
ages. Geometry optimization of selected molecules was 
performed by the B3LYP method with the 6–31 + G(d,p) 
basis set. Vibrational frequency analysis was conducted to 
ensure the identification of minima on potential surfaces. 
The values of descriptors were then refined by single-point 

calculations performed on the optimized structures using 
the 6–311 +  + G(2d,2p) basis set with the same functional.

From the output files, electronic energies, dipole 
moments, and polarizability tensor values were extracted. 
Additionally, electron energies of neutral molecules, as 
well as energies of cations and anions of NACs, were calcu-
lated on the same optimized geometries. These parameters 
were then utilized for calculating various commonly used 
energy-related descriptors, including ionization energy, 
electron affinity, hardness, softness, chemical potential, and 
electrophilic index, as defined in the literature (Ostojić et al. 
2014a, 2014b; Stanković et al. 2016a). In addition to these 
conventional descriptors, the values of modified chemical 
potential and electrophilic index proposed by Gazquez et al. 
(2007) were incorporated. This choice was influenced by 
recent evidence suggesting their utility in classifying the 
carcinogenic activity of activated metabolites derived from 
nitroaromatics (Halabi et al. 2022).

In addition to the above-mentioned descriptors, the aim 
was to consider QC descriptors calculated using different, 
less time-consuming yet sufficiently accurate methods. 
Therefore, polarizability obtained by a ML method based 
on symmetry-adapted Gaussian process regression and the 
smooth overlap of atomic positions (Wilkins et al. 2019) 
was included.

Selection of descriptors and modelling

The schematic representation of model development process 
and in detail scheme of feature selection process has been 
given in Fig. 1. Before the selection process, descriptors 
with missing values for at least one molecule or containing 
non-numerical values were discarded. Following this step, 
the dataset was split into training and test sets and normal-
ized so that each descriptor was in the range of 0–1. As the 
initial step of the feature selection, both constant and nearly 
constant (i.e. those with a standard deviation in the training 
set less than 0.05) descriptors were omitted, as suggested in 
the literature (Tropsha et al. 2003). For the selection process, 
the genetic algorithm (GA) was employed along with three 
algorithms that, to our knowledge, have not been previously 
utilized in the QSAR literature, namely Boruta, Featurewiz, 
and the ForwardSelector algorithm. For more detailed infor-
mation and references on these algorithms, please refer to 
section “Software”.

In the case of GA, a two-step procedure was implemented 
as in Hao et al. (2019). First, a set of descriptors was nar-
rowed to ensure that no pair of descriptors had a pair-wise 
correlation higher than 0.95. More precisely, a descrip-
tor with a higher sum of correlation coefficients with the 
remaining descriptors was omitted. In the second step, a GA 
was employed for the final selection of up to 7 descriptors. 
The algorithm parameters were set as follows: population 
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size as 100, mutation rate as 20, and number of generations 
as 500. Coefficients of determination evaluated in leave-one-
out cross-validation was used as the fitness function.

For Boruta, Featurewiz, and ForwardSelector algorithms, 
different threshold for acceptable pair-wise correlation 
between descriptors (i.e. 0.80, 0.85, 0.90, 0.95, and 0.99) 
were applied. As a subsequent step of descriptor selection, 
forward stepwise feature selection was applied to create 
models, commencing from each of the selected descriptors. 
During this process, new descriptors were gradually incor-
porated into the models to optimize the correlation coef-
ficient in leave-one-out cross-validation.

Modelling was utilized using the multiple linear regres-
sion method incorporating up to 7 descriptors. The param-
eters of the model were estimated using the ordinary least 
square procedure, aligning with OECD validation principle 
No.2, "model building with an unambiguous algorithm".

Methods for inspection of chemical space

The OECD validation principle No.3 emphasizes that the 
model should have “a defined domain of applicability” 
(OECD 2007). This study utilized the leverage approach 
(please see Appendix B of the SI) to define the applicabil-
ity domain (AD) (Gramatica 2007; Gadaleta et al. 2016). 
Alongside the leverage approach, for further insight into 
chemical space, a plot of the second vs. the first principal 
component and a plot of molecule weight (MW) against 
the Wildman-Crippen partition coefficient (SlogP) was 
employed.

Evaluation of models

Model evaluation with “appropriate measures of goodness-
of-fit, robustness and predictivity” aligns with the OECD 
validation principle No.4. A range of commonly used 

statistics was employed, as documented in the literature 
(Ding et al. 2017; Hao et al. 2019, 2020). These included 
measures for goodness-of-fit and robustness, such as the root 
mean square error in both the training set, RMSEtr , and 
cross-validation, RMSEcv , coefficients of determination in 
the training set, R2 , as well as in leave-one-out, Q2

LOO
 , and 

leave-many-out, Q2
LMO

 , cross-validation. Additionally, the 
adjusted coefficients of determination,R2

adj
 , concordance cor-

relation coefficient in the training set CCCtr , and internal 
validation, CCCcv , along with F-value were assessed. Predic-
tive performance was estimated using root mean square error 
in the test set, RMSEext , mean absolute error in the test set, 
MAEext , alongside three metrics derived from coefficients of 
determination: Q2

F1
 , Q2

F2
 , and Q2

F3
 . Furthermore, correlation 

coefficient in test set, CCCext , slopes of regression lines of 
predicted vs. experimental values, k, and experimental vs. 
predicted values, k’, (both through the origin), along with 
parameters introduced by Roy et al. (2012): ⟨r,2

m
⟩ and Δr2

m
 , 

and Golbraikh and Tropsha (2002):R2
ext

 , 
(
R2
ext

− R�2
0

)
∕R2

ext
 , 

and 
(
R2
ext

− R
�2
0

)
∕R2

ext
 were consider. Additional details on all 

statistics can be found in Appendix B of the SI.
Following the approach outlined by Hao et al. (2019), an 

acceptable model should satisfy the following criteria: 1) 
Q2

LOO
> 0.70 , 2) R2

ext
> 0.5 , 3)|||R

2
0
− R

,2

0

||| < 0.30 , and 4) 
(
R2
ext

− R
�2
0

)
∕R2

ext
< 0.10  a n d  0.85 < k < 1.15  o r (

R2
ext

− R
�2
0

)
∕R2

ext
< 0.10 and 0.85 < k′ < 1.15 . However, aim 

was to ensure that the model also meets more stringent cri-
teria as suggested in the literature (Ding et al. 2017; Hao 
et al. 2020):

5) R2,Q2
Fn

> 0.70 , 6) |||R
2 − Q2

LOO

||| < 0.10 , 7) both criteria 
in 4) should be fulfilled, 8) r2

m
> 0.65 , 9) Δr2

m
< 0.20 and 10) 

CCCext ≥ 0.85.
To mitigate multicollinearity and chance correlation, 

a three-fold selection process was employed. Initially, the 
QUIK (Q Under Influence of K) rule proposed by Todeschini 

Fig. 1  Schematic representation of model development process and in detail scheme of feature selection process



54607Environmental Science and Pollution Research (2024) 31:54603–54617 

et al. (2004) was applied. Following the recommendation of 
the literature (Hao et al. 2019, 2020), only models exhibiting 
a difference of more than 0.05 between two K indexes were 
retained for further assessment. Subsequently, the Variance 
Inflation Factor (VIF) was calculated, and models where 
each descriptor had a VIF value lower than 5 (Singh et al. 
2008) advanced to the final test, in which Y-scrambling was 
applied to ensure the robustness of the chosen models. In this 
step, the target variable was reordered, and the coefficients 
of determination for the training set, R2

Yscr
 , and leave-one-out 

cross-validation, Q2
Yscr

 , were calculated. Models with signifi-
cantly low values of R2

Yscr
 and Q2

Yscr
 were accepted.

Selection of the best model

The process of selecting the optimal model involved the 
application of the Multi-Criteria Decision Making (MCDM) 
procedure, more precisely the weighted sum model (Pesode 
et al. 2023). By this approach, all the measures of goodness-
of-fit, robustness, and predictivity from the previous section 
were normalized and summed to rank the various models. 
In addition to the MCDM value, the number of descriptors 
was also considered a factor in determining the most suitable 
model. This dual consideration ensures a comprehensive 
assessment, incorporating both the model's overall perfor-
mance according to MCDM and the simplicity reflected in 
the number of descriptors utilized.

Software

Modelling was performed in Python programming language 
(version 3.10.12). For that purpose, several standard libraries 
were used, such as NumPy (version 1.25.2), pandas (version 
1.5.3), sklearn (version 1.2.2), statsmodels (version 0.14.1). 
Visualization of results was done using seaborn (version 
0.13.1).

Quantum-chemical descriptors were calculated using the 
Gaussian 16 package (Frisch et al. 2016). Molecular descrip-
tors were derived by Mordred (Moriwaki et al. 2018) and 
RDKit (Landrum et al. 2023) packages. Particularly, Mor-
dred version 1.2.0 (available at https:// github. com/ mordr ed- 
descr iptor/ mordr ed) and RDKit version 2023.9.5 (available 
at https:// github. com/ rdkit/ rdkit) was applied.

Feature selection using GA, was performed by genetic_
selection module version 0.6.0 (available at https:// github. 
com/ manuel- calzo lari/ sklea rn- genet ic), as well as in the 
QSARINS software version 2.2.2 (Gramatica et al. 2013; 
Gramatica 2014), and the best model was selected. Besides 
GA, for a feature selection, three algorithm were used: 
Featurewiz (version 0.5.7, available at https:// github. com/ 
AutoV iML/ featu rewiz), Boruta (version 0.3 available at 
https:// github. com/ scikit- learn- contr ib/ boruta_ py; Kursa and 
Rudnicki 2010), ForwardSelector within step-select package 

(version 0.1.1, available at https:// github. com/ chris- santi ago/ 
steps).

In the case of the Boruta algorithm, RandomForestRe-
gressor was employed as an estimator. Parameter max_iter 
(the number of maximum iterations to perform) was set to 
20, while for the rest of the parameters, the default values 
were taken. For the RandomForestRegressor, the parameter 
max_depth (the maximum depth of the tree) was set to 5. 
All other parameters retained default values. Given the sto-
chastic nature of the Boruta algorithm, relatively low values 
for these parameters were chosen, and the algorithm was run 
multiple times to thoroughly explore the parameter space 
and ensure the reproducibility of the method. Specifically, all 
descriptors from 500 runs were considered, as an additional 
100 runs did not yield any new descriptors. In the case of 
Featurewiz and ForwardSelector algorithms, default adjust-
ments were applied.

Results and discussion

Chemical space distribution

The distribution of chemical space plays a pivotal role in 
assessing the predictive capability of the developed model. 
A commonly employed method to visualize chemical space 
is plot of dependence between MW and SlogP for the train-
ing set and test set (Fan et al. 2018; Hao et al. 2019). As 
illustrated in Fig. 2, the molecules within the datasets exhibit 
a chemically diverse profile. Additionally, it can be seen that 
the training set and the test set share similar chemical space, 
indicating consistency and generalizability in the model's 
applicability.

To better understand the potential applicability of the 
models derived in this study, the dataset and its division 

Fig. 2  The plot of SlogP vs MW for training and test set

https://github.com/mordred-descriptor/mordred
https://github.com/mordred-descriptor/mordred
https://github.com/rdkit/rdkit
https://github.com/manuel-calzolari/sklearn-genetic
https://github.com/manuel-calzolari/sklearn-genetic
https://github.com/AutoViML/featurewiz
https://github.com/AutoViML/featurewiz
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/chris-santiago/steps
https://github.com/chris-santiago/steps
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into the training and test sets will be briefly discussed. Mol-
ecules within dataset contain a different number of nitro 
groups (22 with one, 15 with two, 9 with three, and 2 with 
four groups) and benzene rings (17 with one, 16 with two, 7 
with three, and 8 with four rings). Notably, 3 NACs feature 
a nitrogen atom in the pyrrole ring, while 2 others have it in 
the pyridine ring. Furthermore, 15 NACs include one methyl 
group, and 10 have cyclopentane rings (3 of which contain 
a cyclopentanone moiety).

The log TA100 values span in a range from -2.10 to 4.74. 
The broad range of mutagenic activities makes the dataset 
suitable for QSAR analysis, while the diverse moieties in 
NACs provide a robust foundation for model development, 
potentially applicable to other NACs containing only C, H, 
N, and O atoms. However, it's crucial to note that both mol-
ecules with the pyridine ring and both nitroanthracenes are 
placed in the test set. Since the models developed here will 
not be trained on molecules with such geometries, predict-
ing the mutagenic activities of these molecules might pose 
a challenge for certain models, a point that will be discussed 
later in this study.

Model selection and evaluation

To model NACs mutagenicity, 1821 2D molecular descrip-
tors (1613 Mordred and 208 RDKit) and 10 QC descriptors 
were calculated. Calculating 3D descriptors is time-consum-
ing and may require rigorous calculations to obtain reliable 
values. Therefore, this study included only those descriptors 
that previous studies indicated to be particularly significant 
in modelling NACs mutagenicity, as well as that can be 
calculated with satisfactory precision (Ostojić et al. 2014a, 
2014b; Stanković et al. 2016a; Hao et al. 2019).

During the data cleaning step, which involved omitting 
descriptors with missing or non-numerical values for at 
least one molecule, the number of descriptors was reduced 
to 1135. Following the first step of feature selection, which 
involved removing constant and nearly constant descriptors, 
the count further decreased to 1124. As detailed in section 
“Selection of descriptors and modelling”, at this point 
descriptor selection branches in four different paths.

Following an established rule that the ratio between the 
size of the training set and the number of descriptors should 
be higher or equal to 5, modelling was performed using the 
multiple linear regression method incorporating up to 7 
descriptors (Gramatica et al. 2013). To ensure fair compari-
sons with results from the literature (Hao et al. 2019), model 
development was also conducted in the QSARINS software 
(version 2.2.2) (Gramatica et al. 2013; Gramatica 2014). The 
modelling approach in QSARINS mirrored that of Hao et al., 
though with different descriptors. This comparative analysis 
allows for a comprehensive evaluation of our results in rela-
tion to prior findings.

In the feature selection step employing GA, 100 models 
with up to 7 descriptors were selected for further evalua-
tion. When QSARINS software is used, less than 50 per-
cent of models pass the check for low collinearity based on 
the QUIK rule. Notably, approximately 10 percent of the 
top-best models were rejected in this process. Further, after 
the step that filters out models not meeting the criteria for 
metrics defined in “2.5 Evaluation of models”, only around 
one-fourth of the initially selected models remained. Addi-
tionally, obtained models often suffer from reduced applica-
bility domain. The situation is exacerbated when employing 
the GeneticSelectionCV algorithm, which produced around 
10 applicable models, while issues with the applicability 
domain persisted. QSARINS software (on average) gener-
ates better models, probably due to the better choice of the 
initial population. Given the challenges encountered with 
GA, coupled with the stochastic nature of the algorithm, the 
idea of finding alternative feature selection methodologies 
that are more time-efficient in searching the descriptor space 
and yet yield well-designed models comes to mind.

Given the lack of consensus in the literature regarding 
the ideal threshold for intercorrelation between descriptors, 
this study aimed to investigate the effect of the threshold 
for acceptable pair-wise correlation between descriptors. 
Table 1 summarizes the number of descriptors selected by 
each algorithm at different intercorrelation thresholds. Fea-
turewiz and ForwardSelector consistently yield the same set 
of descriptors. However, in the case of the Boruta algorithm, 
the number of descriptors can vary between runs. Thus, both 
the average number of descriptors and the overall number 
of unique descriptors (i.e., those selected in 500 runs) has 
been presented.

The Featurewiz algorithm stands out by selecting the few-
est descriptors. A lower starting number of descriptors can 
substantially reduce the time needed for subsequent steps. 
This is particularly significant when model performances 
are similar. In this particular case, the following steps (i.e., 
forward stepwise feature selection and model evaluation) are 
the most time-consuming part. On the other hand, they take 
only a few seconds per selected descriptor, which hardly lim-
its the applicability of the algorithm for such small datasets. 
Nevertheless, in future research, significant effort will be 

Table 1  The number of descriptors which can be selected by different 
feature selection algorithms and intercorrelation thresholds between 
descriptors. For the Boruta algorithm numbers in parentheses shows 
the average number of descriptors in a single run

threshold 0.80 0.85 0.90 0.95 0.99
algorithm

Featurewiz 11 15 19 19 19
ForwardSelector 17 30 35 35 35
Boruta 15 (11) 22 (16) 28(20) 43(27) 52 (27)
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made to ensure the methodology has good scalability with 
larger dataset sizes.

The decrease in the intercorrelation threshold signifi-
cantly affects the number of descriptors only in the case of 
the Boruta algorithm. Specifically, with the other two algo-
rithms, changes in the number of descriptors are noticeable 
primarily around the threshold value of 0.85. Additionally, 
for threshold values of 0.90, 0.95, and 0.99, the differences 
in the performances of the selected models are negligible. 
On the contrary, further decreasing the threshold to 0.80 has 
a significant impact on the performances of the ForwardSe-
lector and Boruta algorithms, particularly affecting param-
eters related to accuracy. Therefore, for simplicity, results for 
thresholds 0.99 and 0.85 have been analysed.

Nine models, labelled as model 1–9 (Table 2 and Appen-
dix C of the SI), have been presented in this study. Models 
1–5 were derived using a threshold of 0.99 and different 
algorithms. As one of the aims of this research is to explore 
whether QC descriptors can enhance the modelling of NACs 
mutagenicity, models 1, 2, and 3 were selected as the best 
models that do not contain QC descriptors obtained in the 
step with Featurewiz, Boruta, and ForwardSelector algo-
rithm, respectively. Since the Boruta algorithm didn’t select 
any QC descriptors, only two models with QC descriptors 
have been presented here: model 4 (Featurewiz algorithm) 
and model 5 (ForwardSelector algorithm). Additionally, to 
investigate the extent to which the intercorrelation threshold 
affects modelling, the three best models selected with an 
intercorrelation threshold of 0.85 were considered. Model 6 
was obtained starting from the Featurewiz algorithm, model 
7 from the ForwardSelector algorithm, and model 8 from 
the Boruta algorithm. Finally, model 9 represents the best 
model selected using GA, as the most common approach in 
the literature.

Each QSAR equation has been provided in two forms 
expressing the relation between mutagenicity and scaled 
(Eq.  C.1a–C.9a in Appendix C of SI) and unscaled 
(Eq. C.1b–C.9b in Appendix C of SI) descriptors. In the 
former, the importance of each descriptor can be esti-
mated based on the corresponding coefficient—the higher 
the coefficient, the greater the importance. In the latter, 
predicting the mutagenicity of compounds not present in 
the dataset becomes more straightforward. Coefficients in 
Eq. C.1a–C.9a vary within two orders of magnitude, indicat-
ing the significance of all descriptors.

Metrics for nine models are presented in Tables 2 and 3. 
Correlation coefficients R2 and R2

ext
 of the QSTR models fall 

within the ranges of 0.845–0.957 and 0.783–0.886, respec-
tively. Additionally, Q2

LOO
 and Q2

Fn
 take values within inter-

vals of 0.783–0.921, and 0.761–0.876, respectively. The 
comparability of parameters from internal and external vali-
dation to R2 indicates the reliability and stability of the mod-
els. Apart from good precision, all models demonstrate more Ta
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than satisfactory accuracy. CCCext surpasses 0.883 (goes up 
to 0.935) and is close to the CCCtr (0.916–0.978) and CCCcv 
(0.887–0.971), indicating a consistent distribution of the 
target variable between the training and test sets. Values of 
r2
m
 fall within the intervals of 0.737–0.838, while Δr2

m
< 0.1 , 

which is a particularly good result. Furthermore, values of 
k and k′ are within ranges of 0.867–1.04 and 0.874–1.037, 

while 
(
R2
ext
−R

�2
0

)

R2
ext

 and 
(
R2
ext
−R

�2
0

)

R2
ext

 are of the order of magnitude 
 10–7–10–3. Thus, even stricter criteria from the literature are 
satisfied.

All models listed in Table 2 adhere to the QUIK rule and 
none of the descriptors within them exhibit a VIF exceeding 
5, indicating low multicollinearity. Low values of R2

Yscr
 and 

Q2
Yscr

 signify the absence of chance correlation. Thus, it can 
be said that the presented models are suitable for predict-
ing Salmonella typhimurium TA100 mutagenicity of NACs. 
The model 1 was selected as the best model among models 
1–9. A scatter plot depicting the experimental vs. predicted 
mutagenicity values for the training and test sets (Fig. 3) 
confirms the excellent fitness and predictability. Notably, 
despite the presence of both NACs with a pyridine ring 
and nitroanthracenes in the test set, NACs with a pyridine 
exhibit deviations comparable to other classes of molecules, 
while nitroanthracenes represent the only NACs for which 
the absolute difference between experimental and predicted 
values exceeds one log unit.

Among all models, model 9 exhibits the best performance 
in internal fitting but turns out to be the worst in external 
validation, indicating a high level of overfitting. Conse-
quently, the MCDM method rates this model as the least 
favourable. During the comparison of various models by the 
MCDM method, an interesting observation emerged — the 
designation of the best model often hinges on the specific 
set of models being compared. For example, model 4 stands 
out as the best when considering all models selected by the 
Featurewiz algorithm, with model 1 following closely as the 
second best. However, when comparing the most well-per-
forming models selected by all algorithms, model 1 emerges 

as the top choice. Moreover, the selection of the best models 
is contingent upon the metrics considered, making it chal-
lenging to unequivocally determine the best model.

Of all the models, model 1 has a value of k closest to 1, 
while model 4 has a relatively poor value for this statistics, 
although the majority of other parameters are comparable 
and in favor of model 4. Since model 9 shows better perfor-
mance in internal fitting than all models selected by the Fea-
turewiz algorithm, comparing models 1 and 4 in the same set 
with model 9 reduces the difference in internal fitting scores 
between models 1 and 4, making model 1 better ranked. It 
should also be noted that another MCDM model might rank 
model 4 as the best. Additionally, model 5 is well-ranked, as 
its measures of goodness-of-fit, robustness, and predictivity 
are relatively high compared to other models. Thus, it is 
evident that QC descriptors can be a significant component 
of models for predicting NACs mutagenicity.

Among the three alternative algorithms, Featurewiz 
appears to be the most promising. Not only that mod-
els built by Featurewiz are slightly better rated than other 
models, but the entire procedure following its use is less 

Table 3  External validation parameters of the models

No R2

ext
RMSEext Q2

F1
Q2

F2
Q2

F3
CCC ext MAEext r2

m
Δr2

m
k k, (R2

ext
− R2

0
)/R2

ext (R2

ext
− R

,2

0
)/R2

ext

1 0.835 0.670 0.836 0.835 0.851 0.911 0.544 0.798 0.058 0.999 0.877 0.000 0.008
2 0.819 0.757 0.790 0.790 0.810 0.902 0.592 0.780 0.001 0.867 0.995 0.003 0.003
3 0.785 0.787 0.774 0.773 0.794 0.884 0.608 0.737 0.095 0.907 0.925 0.000 0.019
4 0.886 0.611 0.863 0.863 0.876 0.935 0.444 0.838 0.056 0.881 1.037 0.001 0.008
5 0.849 0.666 0.837 0.837 0.852 0.921 0.528 0.816 0.058 0.931 0.948 0.006 0.000
6 0.824 0.746 0.796 0.795 0.815 0.904 0.604 0.785 0.014 0.868 0.998 0.002 0.004
7 0.813 0.732 0.804 0.803 0.822 0.900 0.613 0.774 0.078 0.968 0.882 0.011 0.000
8 0.838 0.667 0.837 0.837 0.852 0.913 0.525 0.803 0.002 1.004 0.874 0.002 0.002
9 0.783 0.807 0.762 0.761 0.784 0.883 0.675 0.739 0.086 0.916 0.904 0.016 0.000

Fig. 3  Scatter plot of predicted versus experimental mutagenicity for 
the molecules in the training and test set for the model 1
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time-consuming, offering excellent performances even at a 
lower intercorrelation threshold. Formally, while model 6 
is ranked as the fourth-best model, its notable feature is the 
ability to be obtained with a threshold as low as 0.8. This has 
the potential to significantly accelerate the model develop-
ment process, especially for larger datasets.

In the existing literature, only a limited number of models 
have been developed on the dataset investigated here. Gra-
matica (2007) utilizing two topological molecular descrip-
tors, achieving correlation coefficient ranges of 0.768–0.885 
in the training set, 0.705–0.861 in LOO cross-validation, 
and 0.504–0.841 in external validation. The models pre-
sented in this study demonstrate better performance, which 
is expected given the higher limit set for the maximal num-
ber of descriptors. A more recent study by Hao et al. (2019) 
derived models showing great fitting performances. How-
ever, it was found that the model developed by Hao et al. 
faced multicollinearity issues, as it couldn't pass the QUIK 
rule and exhibited high VIF values. This prevented a direct 
comparison with the models developed in this study.

Calculating QC descriptors by ML methods

As said, the cost associated with the calculation of QC 
descriptors by precise ab initio and DFT methods limits their 
widespread use in QSAR studies. Consequently, most stud-
ies rely on semi-empirical or HF calculations, predominantly 
utilizing HOMO and LUMO energies. Although Koopmans' 
theorem suggests that HOMO/LUMO energy should reflect 
the negative values of IP/EA, the unreliability in predict-
ing EA arises from significant orbital relaxation effects on 
LUMO eigenvalues (Zhang and Musgrave 2007). Therefore, 
there is a pressing need to develop an efficient yet accurate 
methodology for calculating quantum chemical descriptors. 
In recent years, various attempts have been made to develop 
ML procedures for the rapid and accurate computation of 
these descriptors.

As far as our knowledge extends, no model for predict-
ing EA has achieved both high accuracy and a large AD. In 
contrast, Wilkins et al. (2019) introduced a method based 
on symmetry-adapted Gaussian process regression and the 
smooth overlap of atomic position descriptors for predicting 
polarizability. Their model demonstrated superior accuracy 
compared to moderate-precision QC methods and exhibited 
scalability with an increase in molecule size. As can be seen 
from Fig. 4, there is an excellent correlation between values 
of α obtained by the DFT and the ML approach. Moreover, 
substituting the ML-predicted values into model 5 results 
in negligible changes in metrics. Therefore, utilizing ML 
methods for calculating QC descriptors, given its compara-
ble computational efficiency with 2D molecular descriptors, 
emerges as a valuable approach to enhance QSAR studies 
such as the one presented here.

Mechanistic interpretation

OECD validation principle No. 5 requires “a mechanis-
tic interpretation, if possible” (OECD 2007). With this in 
mind, the discussion will first address each of the descriptors 
selected by the best model according to MCDM.

The best model identified in this study comprises six 
descriptors (AATS1v, GATS1are,  VE2Dzse, ATS8dv, CIC4, 
and GATS4i). AATS1v represents the averaged Moreau-
Broto autocorrelation of lag 1 weighted by van der Walls 
volume. This descriptor shows the diversity of atoms within 
bonds by volume. It increases with the size and number 
of heteroatoms in the structure (and thus, consequently, 
with the number of nitro groups). As a lag 1 autocorrela-
tion descriptor, AATS1v considers chain lengthening and 
branching, but also charge transfer and Coulomb interac-
tions, as it is related to the distribution of heavier atoms. 
Given the positive correlation between the size, the number 
of  NO2 groups, and the number of heteroatoms in rings with 
NACs mutagenicity (Yu et al. 2016; Hao et al. 2019; Jil-
lella et al. 2020), the substantial role of a descriptor such as 
AATS1v in the mutagenicity model is expected. However, 
AATS1v yields the same value for different isomers, neces-
sitating additional descriptors to differentiate between them. 
In other models, two autocorrelation descriptors weighted 
by van der Walls volume were chosen: GATS2v (the Geary 
coefficient of lag 2) and AATS5v (the averaged Moreau-
Broto coefficient of lag 5). Additionally, five descriptors 
related to the size and shape of molecules were selected: 
FpDensityMorgan1 (Morgan fingerprint density of radius 
1), Vabc (van der Waals volume of the molecule), ATSC0m 
(centered Moreau-Broto autocorrelation of lag 0 weighted 
by mass), Xc-3d (3-ordered Chi cluster weighted by sigma 
electrons), and Kappa3 (3rd Kier and Hall kappa molecular 

Fig. 4  Scatter plot of average polarizability calculated with QC 
method (α-QC) and ML (α-ML) method of Wilkins et  al. (Wilkins 
et al. 2019)
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shape index). AATS5v, as Moreau-Broto coefficient of lag 
5, exhibits lower values when two nitro groups are in the 
meta position (topological distance of 5 between O and N 
from different groups) compared to ortho or para positions. 
Moreover, all ATSC descriptors depend on molecule size, 
accounting for dispersion interaction strength. The impor-
tance of considering the size and shape of the molecule in 
mutagenicity assessment is underscored by the fact that 
several descriptors, which will be elaborated on below, are 
dependent on these two properties.

Two descriptors related to the electronegativity were 
selected GATS1are (Geary coefficient of lag 1 weighted by 
Allred-Rochow electronegativity) and VE2_Dzse (average 
coefficient of the last eigenvector from the Barysz matrix 
weighted by Sanderson electronegativity). Differences in 
electronegativity between two adjacent atoms can indicate 
higher hydrophilicity, potentially leading to lower mutagen-
icity (Yu et al. 2016; Jillella et al. 2020). These descriptors 
are also influenced by the size of the molecule, but decrease 
with it. Therefore, a negative correlation is expected, as indi-
cated by Eq. C.1. Additionally, VE2_Dzse is lower for the 
less substituted molecules and molecules with fewer hetero 
atoms in the rings and it can differentiate isomers, making 
it a valuable descriptor  (R2 = 0.76). Apparently, the distri-
bution of electronegative atoms within a molecule might 
be particularly important for determining mutagenicity, as 
similar descriptors are selected in other models. Notably, 
GATS1pe (Geary coefficient of lag 1 weighted by Pauling 
electronegativity) was selected in models 2 and 6, while 
GATS1se (Geary coefficient of lag 1 weighted by Sanderson 
electronegativity) is part of model 5.

ATS8dv, the Moreau-Broto autocorrelation of lag 8 
weighted by valence electrons, is sensitive to steric hin-
drance and long-range rearrangements, thus accounting for 
patterns in branching and dispersion forces. In addition to 
being part of model 1, it is also selected in model 4. This 
descriptor exhibits a negative coefficient in corresponding 
equations, aligning with the established knowledge that 
branching and steric hindrance decrease the toxicity of 
NACs (Kuz’min et al. 2008; Mondal et al. 2020; Jillella et al. 
2020). Moreover, ATS8dv, as a lag 8 descriptor, has a value 
equal to 0 for small molecules where there are not 2 atoms 
at a topological distance of 8, thus considering molecule 
size to some extent.

The 4-ordered complementary information content 
(CIC4) is a descriptor that describes connectivity in the 
molecule, considering both its size and atomic composition. 
For compounds with complex structures and diverse atom 
types, CIC4 has a small value, while for simple molecules 
with uniform atom types, the value is large. Accordingly, 
coefficient in Eq. C.1 is negative. This descriptor is related to 
intermolecular interactions and as such it has been selected 
in the research of rodent carcinogenicity (Li et al. 2022). 

Additionally, other information content descriptors such 
as 2-ordered complementary information content (CIC2), 
3-ordered Z-modified information content (ZMIC3), and 
information content of the coefficients of the characteristic 
polynomial of the adjacency matrix (Ipc) were chosen in 
different models.

GATS4i, Geary coefficient of lag 4 weighted by ioniza-
tion potential, tends to have higher values when the same 
substituents are in the meta position. Moreover, this descrip-
tor is capable of estimating interactions like Coulombic, 
dipolar, and hydrogen bonding interactions. Similarly, the 
averaged Moreau-Broto autocorrelation of lag 5 weighted 
by ionization potential (AATS5i) was chosen in model 8. As 
indicated in the literature (Kuz’min et al. 2008; Gooch et al. 
2017; Mondal et al. 2020; Hao et al. 2020) the positioning 
of substituents significantly influences the NACs toxicity, a 
fact further highlighted in studies involving small datasets 
consisting solely of different isomers of molecules (Ostojić 
et al. 2014a; Stanković et al. 2016a). While GATS4i alone 
may not exhibit a significant correlation with mutagenic-
ity in the current dataset, by examining derivatives of pyr-
ene, it becomes apparent that molecules with nitro groups 
in the meta position tend to have lower mutagenicity. To 
further investigate the significance of GATS4i as a descrip-
tor of mutagenicity, a model consisting of all descriptors 
from model 1 except GATS4i was examined. This model 
performed worse, particularly in terms of accuracy-related 
parameters. For instance, the value of Δr2

m
 increased 

from 0.058 to 0.098. Moreover, the overall MCDM value 
decreases significantly, resulting in this model being one of 
the lower-ranking.

The similarity in MCDM values among all models sug-
gests that the determination of the best model is contingent 
on the chosen set of metrics used for evaluation and the 
MCDM model. Consequently, it implies that several of these 
models or descriptors might offer improved descriptions of 
mutagenicity when applied to a different, potentially larger, 
dataset. With this consideration, the mechanistic interpreta-
tion of these models will be explored.

Descriptors related to the intrinsic state consider factors 
like chain length, branching, heteroatoms, and unsaturation. 
GATS6s (Geary coefficient of lag 6 weighted by intrinsic 
state) is a part of model 7 and accounts for steric hindrance 
and long-range rearrangements, leading to a negative coef-
ficient in Eq. C.7. MinEStateIndex, the minimal value of 
electrotopological state (EState), is included in model 5. The 
Estate value, affected by intrinsic state and topology, esti-
mates the deficiency of pi and lone pair electrons. Thus, it 
can serve as a measure of affinity toward nucleophilic attack, 
justifying the positive coefficient in Eq. C.5. EState_VSA3 
descriptor (sum of van der Waals surface areas with EState 
in the range of 4.69 <  = x < 9.17) was selected in models 2 
and 5. EState_VSA descriptors can be related to specific 



54613Environmental Science and Pollution Research (2024) 31:54603–54617 

electrostatic interactions of backbone atoms and the pres-
ence of reactive sites, explaining positive coefficients in the 
respective equations.

Charge distribution within the molecule is captured by 
GATS1c (Geary coefficient of lag 1 weighted by Gasteiger 
charge) and JGI6 (6-ordered mean topological charge). Simi-
lar to GATS1are, GATS1c exhibits a negative coefficient 
(Eq. C.8), as an increase in its value can be associated with 
higher hydrophilicity of the molecule. JGI6 is often referred 
to as a measure of dipole momentum and depends on the 
size and shape of the molecule. The descriptor's value is 
higher than zero for compounds where charge transfer can 
occur over a distance of 6, with monosubstituted benzenes 
and para-substituted benzenes having the highest values. 
Descriptors related to charge distribution account for Cou-
lomb, dipolar interactions, and H-bonding. The positive 
coefficient in Eq. C.7 is straightforward to understand, as 
mutagenicity increases with both size and dipole momen-
tum, leading to higher interactions between the molecule 
and the enzyme.

Another class of descriptors is one that counts certain 
moieties in a molecule's structure. For instance, in model 
3, fr_bicyclic represents the number of bicyclic fragments 
and NumAliphaticCarbocycles counts aliphatic carbocycles. 
These descriptors help model 3 estimate both the size and 
aromaticity of NACs. However, due to their partial simi-
larity, discussing their signs in the model equation is not 
straightforward. Nevertheless, both of these descriptors sig-
nificantly improved the model. Omitting fr_bicyclic notably 
decreases model performances. Thus, for instance, it reduces 
the value of Q2

LOO
 from 0.92 to 0.87 and Q2

LMO
 from 0.89 

to 0.80. The exclusion of NumAliphaticCarbocycles has 
lower effect, primarily impacting the values of RMSEtr and 
RMSEcv , which increases from 0.38 to 0.44 and from 0.49 to 
0.55, respectively. C3SP2, the number of sp2 carbons bound 
to 3 other carbons, is also part of model 3. In this particular 
case, C3SP2 counts from the number of methyl groups in 
the structure. The negative coefficient in Eq. C.3 aligns with 
literature findings that a higher number of methyl groups 
decreases mutagenicity (Kuz’min et al. 2008; Jillella et al. 
2020). Similarly, NumRotatableBonds in model 9, counts 
the number of substituents (i.e. nitro and methyl groups).

Electron affinity, included in model 4, is a descriptor 
reflecting the reduction potential of the nitro group—an 
essential step in mutagenic activation (Wang et al. 2005; 
Zhang et al. 2008). Accordingly, molecules with higher 
electron affinity are expected to be more easily activated, 
contributing to their increased mutagenicity. This aligns with 
the positive coefficient observed in Eq. C.4. Averaged polar-
izability (α) is one of the descriptors with the highest corre-
lation with mutagenicity,  R2 = 0.68. In support of this, other 
descriptors related to polarizability are parts of the models. 
SpAbs_Dzp is the graph energy from the Barysz matrix 

weighted by polarizability, while GATS2p and ATSC2p are 
the Geary and centered Moreau-Broto autocorrelation coef-
ficient of lag 2 weighted by polarizability. Molar refractivity 
(MolMR) is incorporated in model 6, and it is directly pro-
portional to polarizability. However, MolMR calculations, 
which sum the contributions of individual atoms, yield the 
same values for all isomers. In contrast, although α has 
demonstrated effectiveness as a mutagenicity descriptor for 
various isomer classes with  R2 > 0.99 (Ostojić et al. 2014a; 
Stanković et al. 2016a) and took a part in the QSAR model 
for toxicity of nitrobenzene derivates against Tetrahymena 
pyriformis (Niazi et al. 2008), QC calculations are time-
consuming. Given that many enzymes feature hydrophobic 
active sites, polarizability, directly related to dipole-induced 
dipole and dispersive interactions, emerges as a valuable 
descriptor in QSAR models. This aligns with the notion that 
stronger interactions between NACs and enzymes are facili-
tated by higher polarizability and is further substantiated by 
the positive coefficients in the model equation.

Applicability domain analysis

The applicability domain of model 1 was estimated through 
an analysis of both the plot of the second vs. the first princi-
pal component (Fig. 5) and the Williams plot (Fig. 6). Fig-
ure 5 underscores the high degree of similarity between the 
training and test sets, implying a well-executed split into 
two subsets (training and test) and a well-designed model 
selection process.

A more robust estimation of the applicability domain 
can be achieved by the leverage method. As the leverage of 
each compound in both training and test sets falls below the 
threshold (h* = 0.58), it can be concluded that no response 
outlier is present. Therefore, the predictions of mutagenicity 

Fig. 5  The plot of the second vs the first principal component of 
descriptors from model 1
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of NACs could be extrapolated by model 1. Moreover, no 
structural outliers were identified. In essence, even the two 
nitroanthracenes are within AD. Thus, there is a stable basis 
to assert that the proposed model is suitable for predicting 
mutagenicity across a broad spectrum of NACs.

It is worth noting that many models selected from GA 
exhibited Y-outliers. This aligns with the previously noted 
trend that overfitting is mitigated in models derived through 
the Featurewiz, ForwardSelect, and Boruta algorithm 
workflow.

Conclusions

The QSAR models developed in this study aimed to predict 
the mutagenicity of NACs against Salmonella typhimurium 
TA100. The approach involved the utilization of Mordred, 
RDKit, and quantum-chemical descriptors and used innova-
tive, transparent, interpretable, reproducible, and publicly 
available feature selection methodologies.

Three feature selection algorithms were used (Boruta, 
Featurewiz, and ForwardSelector), each followed by for-
ward stepwise feature selection. Models were ranked 
using a Multi-Criteria Decision Making procedure, i.e. the 
weighted sum model. According to this procedure, the Fea-
turewiz algorithm performs slightly better than the other two 
approaches. Nevertheless, all three approaches yield better 
results than the genetic algorithm, the most commonly used 
state-of-the-art algorithm in the field. Furthermore, it was 
found that many models obtained by the genetic algorithm 
suffer from multicollinearity and overfitting, while also hav-
ing a narrower applicability domain compared to the three 
approaches proposed here.

Evaluating the impact of the pair-wise correlation 
threshold on model performance, the study revealed that 

lowering the threshold from 0.99 to 0.85 does not sig-
nificantly compromise performance, opening possibilities 
for more time-efficient model development. The research 
discussed the importance of quantum-chemical descriptors 
in QSAR models. Although this aspect seems promising, 
final conclusions need to be reached after more detailed 
analysis, possibly involving larger datasets. In the end, 
using machine learning methods existing in the literature, 
it was shown that average polarizability, as one of the 
quantum-chemical descriptors, can be efficiently calcu-
lated without sacrificing accuracy.

The constructed models showcase excellent fitting abil-
ity and external predictive performance. Notably, for their 
simplicity, robustness, alignment with OECD criteria, and 
surpassing existing literature models, these QSAR models 
prove their reliability for practical use, thereby potentially 
reducing the necessity for experimental procedures for 
estimating mutagenicity of NACs against Salmonella typh-
imurium TA100. However, the derived models can be used 
only for molecules containing C, H, N, and O atoms. Mov-
ing forward, the study plans to test the derived methodolo-
gies on larger sets of NACs and aromatic compounds with 
a wider variety of substituents, as well as other datasets 
related to chemical toxicity and other chemical properties.
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