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Abstract
Advances in sustainable toxic heavy metal treatment technologies are crucial to meet our needs for safer land to develop an 
urban resilient future. The heavy metals bioaccumulate in the food chain due to their persistence in the soil, which poses a 
serious challenge to its removal and control. Utilisation of hyperaccumulators to reduce the mobility, accumulation and toxic 
impact of heavy metals is a promising and ecologically safe technique. Amendments such as biochar and chelates have been 
shown to enhance the phytoremediation efficiency. However, the potential soil improvement is influenced by the properties 
of the amendment, plant and metal heterogeneities. In this study, an organic sugarcane bagasse biochar amendment for the 
60-day pot experiment using Catharanthus roseus L. (NT) and Chrysopogon zizanioides L. (VT) in a heavy metal–contami-
nated soil was applied. The influence of biochar on the phytoremediation of lead (Pb), zinc (Zn) and cadmium (Cd) from the 
soil was explored. The plant survival rate enhanced to 100% with biochar amendment, and the biomass increased from 5.83 
to 15 g in Zn-contaminated samples. Nutrients such as potassium concentration are directly correlated to the amendment 
rates, whereas phosphate decreases beyond the 2% biochar amendment rate in both plants. High heavy metal accumulation 
capacities with improved growth with biochar indicate the sustainability of the process. The translocation factor (TF) > 1 
for Zn in NT represents the phytoextraction efficiencies whereas VT indicates high BCF values in the range of 0.5–3.53 
for the amended Zn-contaminated soils. The findings indicate that the amendment rate of 2% improves nutrient cycling, 
plant biomass and heavy metal removal efficiencies. The insights from this study establish that the synergy between biochar 
amendment and the selected medicinal plants improved the phytoremediation efficiency.
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Introduction

In recent times, there has been an unprecedented surge in 
the demand for mineral resources, resulting in substantial 
changes in land utilisation and landscape alteration. The 
shifts have exacerbated environmental contamination, 
primarily due to the release of heavy metals into soil and 
water systems. They pose a serious threat to ecosystems and 
human health (Narayanan and Ma 2022; Zhang et al. 2023). 
Within this context, various physicochemical strategies such 
as vitrification, solidification and biological methods such 
as bioremediation and phytoremediation have been devel-
oped to ameliorate heavy metal contamination, which can 
be categorized as per their approaches to either mobilise or 
remove contaminants from the environment (Zhang et al. 
2023; Zhong et al. 2024). The physicochemical methods 
disturb the soil microflora and generate secondary contami-
nation with irreversible changes in the soil. These methods 
seem futile for low to moderately contaminated soil reclama-
tion. Hence, there is a growing preference for eco-friendly 
approaches that offer cost-effectiveness and reduced poten-
tial for secondary contamination (Ghosh and Maiti 2020; 
Zhong et al. 2024).

Bioremediation is an attractive, nature-based, low-cost 
alternative for reducing heavy metal toxicity in soil and 
water. However, there are chances of toxic element genera-
tion with certain microbial interactions (Igiri et al. 2018). 
Phytoremediation, on the other hand, utilises plants to 
remove, destroy and stabilise the contaminants, with mini-
mum chances of secondary contamination and sustained 

reclamation. The selection of the appropriate plant species 
is crucial for the phytoremediation process. The hyperaccu-
mulators persist in locations with heavy metal (HM) stress 
without showing signs of phytotoxicity. The need for HMs 
by the hyperaccumulators allows them to sequester signifi-
cant amounts of HM compounds, compared to non-accumu-
lators. To increase contaminant bioavailability, plants secrete 
phytosiderophores in the rhizosphere, which solubilise and 
chelate the soil-bound metals. Further, plants resist metal 
damage either through compartmentalisation, precipitation 
or chelation (Thomas et al. 2024; Yan et al. 2020). The major 
limitation of this method is the slow-growing process and 
adaptability of the plants to poor nutrient conditions (Khan 
et al. 2020; Rees et al. 2020; Sun et al. 2023). To improve 
the pace of plant growth and its removal efficiency, vari-
ous amendments like biochar, compost and other chelating 
agents such as ethylenediamine tetraacetic acid (EDTA), 
zeolites, lime, phosphate chemicals, dolomites, oxides of 
iron and manganese have been suggested (Gul et al. 2020; 
Kafle et al. 2022; Kumar et al. 2023). Such amendments are 
capable of improving the metal accumulation in the plant 
and medium. Biochar is preferred over chemical chelators 
due to the evidence of secondary contaminants generated 
from these chemical chelators (Hasan et al. 2019; Ogundiran 
et al. 2018; Wang et al. 2019).

Biochar is a solid carbon-rich organic material with high 
porosity, low density and high specific surface area with 
high metal immobilisation capacity (Otunola et al. 2023; 
Pandey et al. 2022; Patwa et al. 2023b; Sun et al. 2023). It 
is derived from the thermochemical decomposition of waste 
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biomass in a closed container with low to no oxygen content 
(Patwa et al. 2022b). The biochar has alkaline metal cati-
ons, electrons and surface functional groups, and the porous 
structure of the material provides binding sites for soil 
organic and inorganic contaminants (Guo et al. 2020; Pandey 
et al. 2022). It is capable of improving plant growth through 
reduced nutrient loss and improved soil fertility with the 
release of essential macro and micronutrients such as potas-
sium (K), calcium (Ca), magnesium (Mg), manganese (Mn) 
and Zn in addition to improved water absorption capacities 
(Fellet et al. 2014; Rees et al. 2020; You et al. 2021; Kumar 
et al. 2023; Zhang et al. 2023). The application of biochar in 
a metal-contaminated environment modifies microbial activ-
ities. However, with plant growth, there are likely changes 
in the effects of the biochar on heavy metal removal. For 
the preparation of biochar, locally available lignocellulosic 
waste biomass is often preferred, as it significantly aids in 
the reduction of transport-related costs and waste valori-
sation (Muigai et al. 2021; Patwa et al. 2022a). Sugarcane 
bagasse is a by-product generated in huge amounts from the 
sugar and alcohol industries. The global production is esti-
mated to be approximately around 1010MT, with India being 
the second highest producer (Ajala et al. 2021). Previous 
studies have indicated the biochar’s efficiency in removing 

heavy metal contaminants such as lead, cadmium, chromium 
and other organic contaminants.

Table 1 mentions some of the studies conducted to evalu-
ate the role of biochar-amended phytoremediation (BAP) 
efficiency in HM-contaminated soil. From Table 1, it is evi-
dent that the specific plant species and biochar type play 
a pivotal role in determining the efficiency of phytoreme-
diation. Although various edible plant species are popular 
hyperaccumulators, recent studies suggest an increasing 
demand for the identification of aromatic and medicinal 
plants globally (Pandey et al. 2016; Pirzadah et al. 2019; 
Qurban et al. 2021; Deka et al. 2024). They are increasingly 
promoted due to their potential application in soil health 
recovery. Some of the previously investigated plants include 
Carantheus Roseus, Vetiveria zizanioides, Ocimum basili-
cum, Cymbopogon flexuosus (Dorafshan et al. 2023; Pandey 
and Singh 2020; Soumya and Kiranmayi 2023). Literature 
indicates the high HM removal efficiencies of the C. roseus 
and Chrysopogon zizanioides plants (Nugroho et al. 2021; 
Soumya and Kiranmayi 2023; Subhashini and Swamy 2013). 
However, very few studies have compared the behaviour of 
diverse species in the presence of different HM contami-
nants in soil. Therefore, this study focuses on the deliberate 
selection of specific medicinal/aromatic plant species, in 

Table 1   Literature review on phytoremediation of heavy metal contaminated soil

HM Biochar Plant Conclusions/metal removal Reference

Cd, Pb, Zn Miscanthus giganteus straw Agrostis capillaris L., 
Lupinus albus L

Immobilisation of heavy metals using 
biochar is dependent on the rhizos-
phere pH

Houben and Sonnet (2015)

Cd Eucalyptus, poultry litter Amaranthus tricolor L BAP improved soil biochemical proper-
ties

Lu et al. (2015)

Pb Rice husk, ground shell M. oleifera Rice husk improved shoot growth and 
ground shell improved Pb removal

Ogundiran et al. (2018)

Cd Wheat straw and sugarcane bagasse Spinacia oleracea Wheat straw is more effective in Cd 
stabilization at 2% application rate

Bashir et al. (2019)

Cd Tea waste Boehmeria nivea (L.) Biochar changed Cd speciation and 
subcellular distribution. Reduction in 
oxidative stress

Gong et al. (2019)

Cr, Pb Poplar wood (PWB), sugarcane 
bagasse (SBBC)

Lactuca sativa Optimum content of SBBC was more 
effective in increasing biomass, reduc-
ing intake, accumulation and health 
risk in contrast to PWB

Khan et al. (2020)

Cd Pine needle Bidens pilosa L Accumulation enhanced with biochar. 
Plant stress indicates increased proline 
concentration and reduced chlorophyll

Manori et al. (2021)

Pb, Cd Sugarcane bagasse Zea mays SBBC improves heavy metal stabilisa-
tion

Rassaei (2023)

Cd, Zn Rice straw Quercus spp. Increased growth biomass in Q. fabri and 
improved bioconcentration, biomass in 
Q. taxena with amendment

Li et al. (2023)

Cd, Pb, Zn Corn straw Lolium perenne L Change in bioavailability of heavy metals 
increased Cd and Zn but decreased Pb 
accumulation

Zhang et al. (2023)
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conjunction with sugarcane bagasse biochar, to address the 
sustainable remediation of Pb, Cd and Zn contamination in 
soil. The detailed list of the abbreviations used in this study 
is mentioned in Table 2.

The novelty of this research lies in the recognition of 
the phytoremediation potential of the medicinal C. roseus 
(locally known as Nayantara: NT) and Chrysopogon ziza-
nioides (locally known as Vetiver Grass: VT) plants, which 
exhibit remarkable characteristics to identify as exception-
ally well-suited for our study area. These plants and sug-
arcane bagasse biomass are found worldwide with wide 
prospects in phytoremediation. To date, there are limited 
studies assessing the synergy between sugarcane bagasse 
biochar (SB) and the two medicinal plants for HM removal. 
Hence, the present study explores the influence of sugarcane 
bagasse biochar on the VT and NT plants in severely HM-
contaminated soil. The objectives of the work are threefold: 
(1) to evaluate the effect of biochar on the growth, survival 
and HM accumulation in the plant; (2) to assess the soil HM 
concentrations and its physicochemical properties; and (3) 
to investigate the relationship between the amendment rates 
and the performance of NT and VT in the remediation effi-
ciency of HM-contaminated soil. The findings of this study 
will provide deeper insights and broader scopes in develop-
ing the phytoremediation potential of medicinal plants and 
the role of biochar in enhancing HM removal mechanisms 
and plant performances.

Materials and methodology

Soil and plants

The locally accessible residual soil from the Assam state 
of the North-eastern part of India was used in this study. 
The soil samples were oven dried as air drying enhances the 
organic matter mineralisation, and the impurities like dead 
leaf, organic matter and stones were physically removed. 
The soil was sieved through a 4.75-mm sieve for homogeni-
sation. Table 3 presents the soil index properties determined 
as per the ASTM procedures (ASTM D.854 2014; ASTM 
D422-63 2007; ASTM D4318 2010; ASTM D698 2012). 
The detailed procedure for soil characterization is mentioned 
in Patwa et al. (2023a). The background values of the HMs 
(Pb, Zn, Cd) in the soil were negligible in comparison to the 
artificially spiked concentrations.

The saplings of the two selected medicinal crops, NT 
and VT, were collected from the IIT Guwahati campus 
(26.1847°N and 91.6672°E). The VT grass characteristics 
include high metal tolerance with minimum growth and 
development effects, reduction of soil erosion and evapo-
transpiration (Otunola et al. 2023). The fast-growing and 
essential oil-producing grass requires low maintenance and 
provides additional soil reinforcement (Dorafshan et al. 
2023). The NT, on the other hand, indicates enhanced alka-
loid, phenol and flavonoid accumulation under HM stress, 

Table 2   List of abbreviations in the study

Abbreviations Definition

BCF Bioconcentration factor
Cd Cadmium
CK Control contaminated unamended soil
EC Electrical conductivity
HM Heavy metal
K Potassium
LA Leaf area
Mn Manganese
NT Catharanthus roseus L. (Nayantara)
ORP Oxidation–reduction potential
Pb Lead
RSR Root-to-shoot ratio
SB Sugarcane bagasse biochar
SB-1 1% sugarcane bagasse biochar amended soil
SB-2 2% sugarcane bagasse biochar amended soil
SB-4 4% sugarcane bagasse biochar amended soil
SEM Scanning electron microscope
TF Translocation factor
VT Chrysopogon zizanioides L. (Vetiver grass)
Zn Zinc

Table 3   Basic physicochemical properties of soil

Property Value Code

Grain size distribution (mm) ASTM D422-63, 2007
  Coarse Sand (4.75–2) 0.8%
  Medium Sand (2–0.425) 12.1%
  Fine Sand (0.425–0.075) 9.1%
  Silt (0.075–0.002 mm) 39.74%
  Clay (< 0.002 mm) 38.26%

Compaction characteristics ASTM D698, 2012
  Maximum dry density 

(MDD)
1.579 g/cc

  Optimum moisture content 
(OMC)

22.7%

Specific gravity 2.71 ± 0.03 ASTM D.854, 2014
pH 4.68 ASTM D4972-19, 

2019
Organic matter 5.45% ASTM D2974-14, 

2014
Consistency limits

  Liquid limit 54.42 ± 1.58 ASTM D4318, 2010
  Plastic limit 35.25 ± 1.18
  Shrinkage limit 30.12 ± 1.08
  USCS classification MH ASTM D2487-11, 

2011
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which increases the medicinal value (Qurban et al. 2021; 
Soumya and Kiranmayi 2023). The ornamental plant is 
suited to different climates and soil along with enhancing the 
aesthetic value of the surroundings. Such drought resistance 
and high metal tolerance are essential characteristics for effi-
cient metal uptake and overall phytoremediation success.

Biochar

The biochar used in this study was prepared from the bio-
mass of sugarcane bagasse. The feedstock was collected from 
the local markets of Amingaon, Assam, India (26.1847°N, 
91.6672°E). To remove dirt and contaminants, the feedstock 
was rinsed thoroughly in running water. After sun-drying at 
room temperature for 7 days, they were cut to 30-mm size for 
uniform and complete pyrolysis of the biomass. Thereafter, it 
was oven-dried at 60 °C for 72 h and stored in an airtight box. 
The process for the generation of biochar from the pyroly-
sis of the oven-dried biomass is mentioned in Patwa et al. 
(2022b). Initially, thermogravimetric analysis (TGA) was 
performed on both raw biomasses to determine the optimal 
pyrolysis temperature. The biomass was then pyrolyzed at 
500 °C, with a heating rate of 10 °C per minute and a hold-
ing time of 45 min in a fixed batch reactor under an argon 
atmosphere. The resulting biochar from the pyrolysis pro-
cess was pulverized, sieved through a 2-mm sieve and stored 
in airtight containers for further analysis. Table 4 provides 
the properties of the sugarcane bagasse biochar (SB) used 
in this study. The high pH value of SB could be attributed 
to the base cation concentrations, and the high electrical 
conductivity (EC) was due to the presence of higher solu-
ble salts. Figure 1 represents the honeycomb structure of the 
SB as observed in the scanning electron microscope (SEM) 
micrograph images. The presence of lignin, cellulose and 
hemicellulose biopolymer generates the particular structure 
of the intra-pores (Patwa et al. 2022b). The biochar exhibits 
significant water-holding capacity, which can be due to the 
higher surface area, intra-pores and various functional groups 
(Khan et al. 2020; Muigai et al. 2021).

Experimental design

To analyse the effects of HM contamination, the soil was arti-
ficially spiked with individual 500 mg/kg concentrations of 
Pb, Zn and Cd. The stock solutions of lead nitrate, cadmium 
nitrate and zinc nitrate were added to the oven-dried soil 
while maintaining the optimum moisture content. The soil 
and soil biochar–contaminated composites were stored for 
7 days to develop proper soil and metal reaction in a closed 
container. The biochar amendment rates of 1%, 2% and 4% 
were selected following the recommended optimum range 
by Gao et al. (2021) for plant growth rate. Table 5 lists the 
different treatments for the pot experiments. The terms CK, 

SB-1, SB-2 and SB-4 denote the different rates of biochar 
amendment of 0%, 1%, 2% and 4% respectively under dif-
ferent contaminant and plant treatments. For uniformity and 
clear representation of the amended and contaminated sam-
ples, they are denoted by treatments of T1–T12 (Table 5).

Of the prepared soil samples, 1.7 kg was collected in 
plastic pots of dimensions 15 × 15 × 14 cm, and the biochar 
amendment rate was measured as a percentage of dry soil 
weight and the compaction characteristics of the composites 
are mentioned in Table S3. All the pots were paced with 
trays, to avoid the mixing of the leachates. A photograph 
of the test set-up is presented in Fig. 2. The plant saplings 
were grown for 20 days in clean soil prior to transplanting 
into the contaminated samples. The saplings were planted 
in the experimental soils after the completion of the equili-
bration period. Plants were regularly irrigated with distilled 
water, and the excess water was poured back from the tray. 
The planted pots were allowed to develop the contaminated 
soil and plant equilibrium for 2 weeks, and thereafter, the 
experimental analysis of the percentage germination, sur-
vival, shoot length and leaf area was initiated. All of the 
experimental analyses were conducted in triplicates, and the 
average values with statistical deviations were plotted. The 

Table 4   Properties of biochar

Properties Value

Feedstock Sugarcane bagasse
Pyrolysis process Slow pyrolysis
Pyrolysis temperature (℃) 500
Proximate analysis (%)

  Moisture content 6.09
  Volatile matter 15.42
  Ash content 3.82
  Fixed carbon 74.67

Ultimate analysis (%)
  Carbon (C) 78.93
  Hydrogen (H) 3.57
  Nitrogen (N) 0.74
  Oxygen (O) 12.94

Atomic ratios
  H/C 0.54
  O/C 0.12
  C/N 124.44

Specific gravity 0.605
pH 9.16
EC (mS cm−1) 1.52
Zeta potential (mV)  − 64
Water holding capacity (%) 874.08
Specific surface area (m2 g−1) 21.787
Average pore diameter (nm) 8.423
Total pore volume (cm3 g−1) 0.045
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pots were placed randomly in a shed of translucent fibre 
sheets for protection against rainfall, wind and for uniform 
ambient conditions. Table S1 shows the average pH, EC and 
oxidation reduction potential (ORP) at the initial stage for 
both plants under different treatments. The pH for all the CK 
soils under different contaminants indicates unamended soil 
samples. There was no significant variation in the metal-
contaminated and clean soil samples. The possible reason 
may be that the heavy metals Pb, Cd and Zn considered 
in this study do not undergo extensive hydrolysis such as 
aluminium (Al), iron (Fe) and Mn in acidic soils (Shetty 
et al. 2021; Ngoune Tandzi et al. 2018). So, they do not 
have a direct impact on the pH, but their toxicity affects the 
microbial activities, which may indirectly impact the soil 
pH. However, in this study, the weight of amended biochar is 
significantly low to increase the pH values. The soil pH over 
the period of the experiment slightly changes but remains in 

the acidic range at the end of the experiment as shown in the 
supplementary table S2, indicating the chances of possible 
high mobility of the metal cations. The slight increase from 
the initial pH values can be due to the pH neutralisation with 
biochar amendment (Narayanan and Ma 2022). The EC vari-
ations with biochar were due to the higher surficial charged 
particles. The ORP shows a reduction with an increase in the 
amendment rate, as biochar acts as a reductant and lowers 
the redox potential (Joseph et al. 2021). The acidic pH and 
reducing condition favour metal solubilisation in the soil.

Analytical testing

The plant growth parameters were recorded at regular inter-
vals during the experiment period. The rate of survival indi-
cates the number of plants surviving in the contaminated 
environment till the end of the experiment with respect to 

Fig. 1   SEM micrograph images of sugarcane bagasse biochar

Table 5   Different treatments of 
heavy metal contaminated and 
amended soil samples

Treatments Heavy metal (HM) Biochar amendment 
rate (%)

Nayantara (NT) Vetiver (VT)

T1 Zinc 0 Zn-CK-NT Zn-CK-VT
T2 Zinc 1 Zn-BC1-NT Zn-BC1-VT
T3 Zinc 2 Zn-BC2-NT Zn-BC2-VT
T4 Zinc 4 Zn-BC4-NT Zn-BC4-VT
T5 Cadmium 0 Cd-CK-NT Cd-CK-VT
T6 Cadmium 1 Cd-BC1-NT Cd-BC1-VT
T7 Cadmium 2 Cd-BC2-NT Cd-BC2-VT
T8 Cadmium 4 Cd-BC4-NT Cd-BC4-VT
T9 Lead 0 Pb-CK-NT Pb-CK-VT
T10 Lead 1 Pb-BC1-NT Pb-BC1-VT
T11 Lead 2 Pb-BC2-NT Pb-BC2-VT
T12 Lead 4 Pb-BC4-NT Pb-BC4-VT
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the transplanted saplings. On the other hand, the rate of ger-
mination refers to the saplings that showed the growth of 
green leaves after transfer to the contaminated soil in the first 
week. The shoot length was considered from the collar of 

the root to the tip of the plant (Fig. 3a, b). The leaf area (LA) 
is the leaf pixel area determined with the colour threshold 
technique from the histogram of the leaves and their reflec-
tion using the ImageJ software (Fig. 3c). The cropped image 

Fig. 2   Overall methodology for HM and nutrient analysis in plants and soil

Fig. 3   Plant morphological parameters: a shoot length, b shoot and root biomass, c leaf area
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was adjusted for hue, saturation and brightness to select the 
pixels that fall under the leaf colour. This parameter plays a 
critical role in plant respiration, photosynthesis, precipita-
tion and interception. It is the major site for volatilisation 
and excretion, which is an essential detoxification mecha-
nism for contaminants (Liu et al. 2018). The fundamental 
component of global vegetation, LA was analysed from the 
initial to the final stage of the experiment. At the end of 
the experiment, the plants were harvested and separated 
into leaves, stems and roots. The plant parts were rinsed 
thoroughly using deionised water to remove soil and dried 
for 72 h at 80 °C. The oven-dried biomass is separated and 
weighed as the root and shoot biomass to calculate the root-
to-shoot ratio (RSR). The RSR is a stable indicator of the 
above- and belowground plant biomass produced in harsh 
environments (Xia 2004). It is a standard parameter used 
in the phyto-recurrent studies for the selection of different 
plant species (Rogers et al. 2019). Soil samples were col-
lected from the rhizosphere region and oven dried for 72 h 
at 60 °C for further analysis. The nutrients in the soil were 
analysed to check if the non-availability of nutrients affected 
the growth characteristics.

The concentrations of the soil nutrients: ammonium, 
potassium and phosphate were examined at the beginning 
and end of the experiment. The soil solutions were pre-
pared using an orbital shaker, and the filtered extractants 
were subsequently analysed. The exchangeable ammonium 
and phosphate concentration were determined using the 
phenate method and stannous chloride method respectively 
(APHA et al. 2012) using a UV/VIS spectrophotometer. 
The stannous chloride and ammonium molybdate were 
used as the colouring reagents. The potassium concentra-
tion in the extractant was analysed using a Flame photom-
eter (APHA et al. 2012). Table 6 shows the average initial 
soil nutrient concentrations under different treatments. The 

application of biochar increased the potassium concentra-
tion (Farrar et al. 2022), but did not have any significant 
effect on the ammonia (NH4

+) and phosphate (PO4
3−) con-

tent. In general, phosphorous sorption is affected by the 
acidic pH and higher metal oxide content (Wu et al. 2022).

Heavy metal analysis

For the HM analysis, the soil and plant samples were 
oven-dried at 60 °C for 48 h and ground to fine powder. 
Approximately, 1 g of soil samples was weighed in a Tef-
lon beaker and digested using the modified aqua regia 
method (nitric acid, hydrogen peroxide, hydrochloric acid) 
(USEPA 3051: 1997) by using a hot plate (Fig. 2). The 
digested samples were filtered using Whatman 42-mm fil-
ter paper and diluted to 100 ml using deionised water. The 
diluted extracts were analysed for concentration of HM 
content using an atomic absorption spectrometer (AAS). 
The translocation from the shoots to roots was evaluated 
using the translocation factor (TF) given by

The HM translocated from soil to the plants was evalu-
ated in terms of bioconcentration factor (BCF), which is 
given by

The concentration ratios were evaluated in the treated 
and control samples in triplicates. The mean and standard 
deviations of the experimental samples were used to report 
the findings.

TF =
Heavy metal concentration in shoots (mg∕kg)

Heavy metal concentration in roots (mg∕kg)

BCF =
Heavy metal concentration in plant(mg∕kg)

Heavy metal concentration in soil (mg∕kg)

Table 6   Nutrient concentrations 
in the soil at the time of 
transplantation

HM Treatment NH4
+ PO4

3− K+

NT VT NT VT NT VT

Zn T1 1.77 1.30 0.07 0.07 2.05 1.67
T2 1.12 1.08 0.04 0.04 4.1 1.37
T3 1.41 1.31 0.06 0.14 7.84 8.08
T4 1.45 1.35 0.06 0.04 10.56 13.6

Cd T5 1.09 1.01 0.04 0.04 1.73 1.8
T6 0.93 1.16 0.07 0.07 3.56 4.84
T7 0.96 1.25 0.07 0.07 13.28 7.53
T8 1.17 1.24 0.07 0.07 13.78 11.56

Pb T9 0.40 0.86 0.19 0.06 4.49 1.65
T10 0.98 0.93 0.05 0.07 3.37 4.53
T11 0.70 0.62 0.11 0.04 7.91 8.48
T12 0.90 0.80 0.04 0.08 11.26 19.42
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Results and discussions

Effects of biochar amendment on the plant

Germination and sapling survival rate

Figure 4 presents the variation of plant survival and the ger-
mination rate with respect to different treatments mentioned 
in Table 5. The red markers indicate the percentage germina-
tion, and the black columns indicate the percentage of plants 
surviving till the end of the experiment (Fig. 4). The sur-
vival rates of VT plants in Zn contaminated soils increased 
from 50% at control to 75% and 100% with an increase in 
the biochar amendment rates to 1 to 2%. Similar patterns 
were observed for the NT plants in the Cd-contaminated 
soil where the survival increased from 17% without amend-
ment to 75% at 4% biochar amendment. The percentage of 
germination in Pb contaminated NT indicates an increase 
from 30% in control samples (T1) to 90% with 4% biochar 
amendment, while survival increased to 100%. The germi-
nation of VT in Zn contaminated soil indicated a steady 
increase with biochar amendment from 60 to 100%. Plants 
in all the treatments did not significantly show signs of HM 
stress upon biochar amendment.

The high survival rates in NT plants exposed to Pb con-
taminated samples may be due to the high metal tolerance 
of the plant (Subhashini and Swamy 2013). Also, Cd- and 
Zn-contaminated VT and NT samples indicated an increase 
in survival rates of biochar-amended samples in comparison 
to the control. Survival rates lower than 50% in the Cd and 
Zn samples can be due to the alteration of physiological, bio-
chemical and metabolic activities of the plants owing to the 
absorption and translocation of beyond-limit essential and 

non-essential metal concentrations. The presence of basic 
cations and nutrients on the biochar surface is capable of 
occupying the exchangeable sites of the contaminated soil by 
replacing harmful cations from the soil, thereby increasing 
the plant survival rate. Furthermore, they are bioavailable 
and beneficial for promoting optimal plant growth (Deal 
et al. 2012; Ogundiran et al. 2018).

Responses of the plant morphological characteristics

1	 Leaf area (LA)
	   Figure 5 presents the variation of LA with the number 

of days for both the plant species during the experiment 
period. The trends from the LA analysis under different 
treatments indicate a gradual initial increase followed 
by a decline or stagnant growth over the period. The 
maximum LA values were achieved between 40 and 
50 days. Following the maximum value, the control sam-
ples indicated a significant decline of 34.65%, 41.57% 
and 52.69% in the Pb, Zn and Cd samples of NT respec-
tively. LA values reached a maximum value of 10.28 
in the T2 treatment for NT species. Similarly, the VT 
samples showed a significant increase with the amend-
ments, with the highest LA of 66.37 in the T6 treatment.

	   Hence, it can be observed that biochar modulates leaf 
development, as evident from the increase in LA with 
amendment. Similar observations were corroborated in 
the study by Wan et al. (2023). Biochar is capable of 
mitigating the effects of contaminants, increasing water 
retention and improving nutrient cycling efficiency 
(Ilyas et al. 2021; Li et al. 2021). The higher biochar 
content may not enhance the leaf area concerning the 
canopy area. However, it improves the lateral growth of 

Fig. 4   Rate of survival and 
germination of NT and VT in 
different soil treatments
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the leaf, resulting in canopy expansion (Guo et al. 2023; 
Qian et al. 2019).

2	 Shoot length
	   Fig. S1 demonstrates the variation in the plant heights 

of NT and VT during the experiment period. The perfor-
mance of the plant species in the control and amended 
contaminated samples is indicated through the plant bio-
mass and shoot length. The shoot length variations stabi-
lise for both plants after 40 days of the experiment. The 
biochar-amended samples indicated consistently high 
values in both the plants (Fig. 6). For the NT samples, 
2% biochar amendment showed a significant increase of 
33.7% in Zn-contaminated soil and 37.93% for the Cd-

contaminated soil in comparison to the control. On the 
other hand, the VT shows a high average plant height, 
with a maximum of 80 cm in T4 treatment. For the Cd-
contaminated VT plants, the maximum plant height 
increased by 18.75% in comparison to the control with 
2% biochar amendment. In both plants, a 2% amend-
ment rate indicated a considerably high maximum shoot 
length.

	   From the observations, it was evident that biochar 
enhances shoot elongation. Low shoot lengths in the 
control soil indicate signs of plant metabolism inhibition 
due to HM stress. It has been suggested that the allo-
metric relationships between aboveground and below-
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Fig. 6   Maximum shoot length 
for NT and VT at the end of the 
60-day experiment
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ground traits respond to the growth conditions of the 
plant (Wan et al. 2023). The root morphology is critical 
in the plant-soil system and can directly influence shoot 
development. Biochar addition reduces soil bulk den-
sity and increases porosity, enhancing root penetration 
and extension (Zhang et al. 2012). This modified root 
morphology, with increased nutrient pools, may improve 
shoot growth and yield compared to unamended control 
samples (Ali et al. 2021).

3	 Plant biomass

Figure 7 represents the variations in plant biomass in 
terms of root-to-shoot ratio to represent the response to vari-
ations in biochar amendments. In general, previous studies 
have indicated an increase in RSR with high contaminant 
concentrations. Except for the Pb-contaminated VT and 
Zn-contaminated NT plants, the RSR values were higher 
than the control. The RSR in the T9 samples of VT was 
2.78, whereas the T11 indicated a value of 2.49. Significant 
variations have been observed in the 2% biochar-amended 
samples for both plant species. The total biomass content 
for VT in T3 treated samples was 29% higher than the con-
trol, whereas, for Cd, it was 64.05% higher than the control. 
The NT species indicated higher biomass at 4% amendment 
rates (0.62 g) for Zn-contaminated samples, whereas there 
was no significant increase in the biomass from the Pb and 
Cd samples.

Biochar amendment increases the overall yield and shoot 
biomass which is reflected in the lower RSR. This can be 
attributed to the significant abridging of metal stress on the 
plant along with improved chlorophyll content (Rathika 
et al. 2021). The reduced RSR in the amended samples is an 
indication of amelioration of the contaminant effect in the 

shoots (Xia 2004). On the contrary, the increased values rep-
resent the promotion of the growth rate of the roots, which 
are the primary accumulation sites and can be an indication 
of improved contaminant removal potential. However, RSR 
cannot be objectively used to demonstrate the amendment 
effects (Wan et al. 2023).

Effect of biochar amended phytoremediation 
on contaminated soil

1	 Nutrient concentrations
	   Figure 8 shows the nutrient concentrations in the soil 

at the end of the experiment period. In general, the bio-
availability of ammonium and phosphate is lower in 
biochar-amended samples for both plant species. Bio-
char provides adsorption sites for the nutrients, reduc-
ing their leaching and ensuring better plant growth 
characteristics. In the case of phosphate, the VT grass 
showed a similar trend in Pb- and Cd-contaminated sam-
ples, whereas Zn-treated soil showed an increment in 
nutrient availability with biochar amendment. As in a 
study by Li et al. (2021), the nutrients showed lower 
concentrations than the control but increased with the 
higher amendment rates. For the NT species, phosphate 
concentrations showed similar trends in Zn and Pb, 
whereas ammonia variations in the Zn- and Cd-treated 
samples were fairly alike (Fig. 8). The most significant 
direct relationship was observed between the biochar 
doses and the K concentrations. The increase in biochar 
amendment rate from control (CK) to 4% indicated an 
increase in K values from 1.6 to 19.5 mg/l in Zn, 2.77 
to 13.6 mg/l in Cd and 2.33 to 18.18 mg/l in Pb-con-
taminated NT soil samples. Additionally, for VT plants, 
Zn shows an increase from 1.58 to 16.04 mg/l, whereas 
Cd and Pb indicate an increase from 1.5 to 12.48 mg/l 
and from 2.29 to 11.02 mg/l respectively. The elevated 

Fig. 7   Plant biomass (root and 
shoot) for NT and VT under 
different treatments
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K concentration is due to the higher retention and con-
tinuous cycling of the nutrient with the porous and high 
surficial structure of biochar (Farrar et al. 2022; Li et al. 

2021). The lower available PO4
3− and NH4

+ values can 
be due to the enhanced carbon/nitrogen (C/N) ratio with 
biochar amendment, leading to biological fixation of the 
nutrients (Lehmann et al. 2003; Li et al. 2021).

	   In both plants, the minimum bioavailability of nutri-
ents at a 2% biochar amendment rate can be an indica-
tion of higher adsorption capacities. At higher biochar 
additions, the increased negative charges in the soil may 
limit the availability of sorption sites for PO4

3−, and 
other molecular organic acids released by biochar might 
compete for these adsorption sites (Wu et al. 2022). Fur-
ther, the dissolved black carbon released with biochar 
amendment increases the total organic carbon, which 
competes with the phosphate ions for sorption sites (Wu 
et al. 2022). In all cases, the nutrient concentrations have 
increased from the initial stage, which can be attributed 
to plant growth and biomass production.

2	 Heavy metal concentrations

Figure 9 shows the range of Pb, Cd and Zn levels in the 
amended and unamended soil for the two plant species. The 
difference in the residual metal content in the pots could be 
due to variations in plant uptake (Fig. S2), mobilisation, 
leaching potential, biochar interactions and type of plant 
(Guo et al. 2019; Pandey et al. 2022). Following the harvest, 
the VT plants showed minimum concentrations of Pb and 
Zn in the T3 and T11 treatments. The Cd concentrations in 
the soil for both species can be ranked as T5 > T6 > T7 > T8, 
with values in the concentration range of 175 to 386 mg/kg. 
The 2% amended treatments experienced low Zn concentra-
tions in the narrow range of 106–159 mg/kg, due to its role 
as an essential metal for plant growth. Compared to the soil 
without biochar treatment, there was no significant influence 
on the Pb concentration in the amended soil. The total Zn 
concentration with 1% biochar amendment in NT and VT 
plants showed 59.8% and 56.25% lower metal concentrations 
than the control. For the Cd-contaminated soil, the treatment 
with NT decreased metal concentration by 40.51% with the 
2% amendment. Hence, the biochar amendment rate of 2% 
was found to have comparatively low soil HM concentra-
tions in all treatments, for both the plant species.

The precipitation of Pb, Zn and Cd due to the adsorption 
on the porous biochar surface may reduce the bioavailability 
of the metals (Ahmad et al. 2012; Namgay et al. 2010). The 
SB structure is capable of removing HMs through physi-
cal and chemical processes along with electrostatic inter-
actions. The pore volume and surface area of the biochar 
adsorbent determine the potential covalent bond forma-
tions for the removal of HMs. Further, electrostatic interac-
tion between the hydroxymethyl (–COOH) on the biochar 
and positively charged metal ions could lead to chelation 
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or coordinate adsorption (Ghosh and Maiti 2020). These 
interactions enhance the ion exchanges between the metal 
cations and the proton (H +)-emitted carboxyl (–COOH) or 
hydroxyl (–OH) groups. The phenolic (lignin), hemicellu-
lose and cellulose of the biochar bind with HMs, leading to 
the enhanced inner sphere and surface metal complexation. 
Hence, biochar amendment enhances the electronegative 
charges, which improves the adsorption ability, reduces the 
phytotoxicity of the metals and releases essential nutrients 
in the soil (Bashir et al. 2019).

Translocation and bioconcentration of heavy metals 
in biochar‑amended phytoremediation

Figure 10 represents the translocation and bioconcentra-
tion of heavy metals within the plant and from the soil to 
the plant after the 60-day experiment. Results shown in 
Fig. 10a, b indicated that a wide range of TF values was 
evident in NT (0.12 to 2.44) and VT (0.09 to 1.13) plants. 
Since the shoot biomass is predominant in the NT plants, the 
TF corresponds to higher values in comparison to VT. For 
Pb, the biochar amendment of 1% increased the TF, while 
for Cd, the TF decreased with increasing rates of biochar 
amendment. The translocation factor (TF) values less than 
1.0 indicate restricted movement of metals from roots to 
aboveground biomass. This restriction can be attributed to 
the lowered bioavailability of metals due to biochar amend-
ment or their accumulation in the vacuoles of roots and cell 
membranes (Peng and Gong 2014). The 1% biochar amend-
ment increased the Zn translocation by 52.01% in VT, while 
it decreased from 2.44 (control) to 1.18 in NT plants.

BCF of any plant in contaminated soil is recognised as 
a significant measure of human health risk (Bashir et al. 
2019; Zhang et al. 2023). It calculates the extent of HM 

accumulation by the plant biomass from a HM-polluted 
soil. The BCF values as shown in Fig. 10c, d indicated 
that the biochar amendment improved the translocation 
from soil to plants, which is in accordance with our previ-
ous results. For all the HMs, the BCF values indicated a 
significant increase with biochar. The VT plants showed 
low Cd accumulation capacity (BCF: 0.31–1.53), while the 
highest accumulation was observed for Zn of 3.53 across 
all the treatments. When the VT plants were exposed to 2% 
biochar amendment, the BCF for Pb enhanced by 10% and 
by 3.05 times for Cd and by 9.31 times for Zn as compared 
to the control. The increase in BCFs with biochar indicates 
a decrease in the plant defence response in suppressing 
the HM translocation. From our findings, it is evident that 
NT can act as an effective phytoextractor of Cd, Zn and 
Pb (TF > 1 and BCF > 1), while VT can be a potential 
candidate for the phytostabilisation (Banerjee et al. 2016; 
Nugroho et al. 2021) of Pb and Cd and extraction of Zn.

Figure 11 provides a conceptual diagram to illustrate 
the role of biochar in enhancing plant growth and heavy 
metal removal. It can be considered that amendment had a 
more prominent effect on the metal translocation from soil 
to plants, than from roots to shoots. Furthermore, varying 
extraction capacities for different HMs by specific plant 
species speculate selective extraction of HMs for differ-
ent treatments and conditions. It has been stated that the 
HMs are predominantly taken by the root tips through the 
root apex mainly at the meristematic elongation zone, 
then transported to the plant aboveground tissues via 
xylem (Yan et al. 2020). The decreased metal toxicity and 
improved soil characteristics with biochar amendment 
enhanced the uptake and accumulation of metal by the 
plant roots. The increased porosity with biochar in the 
soil composite allows the plant roots to grow, allowing 

Fig. 9   Soil heavy metal concen-
trations in amended and treated 
soil after 60-day experiment 
period
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possibilities for metal mobilisation and reduced bioavail-
ability due to metal complex formation.

A comparison between the NT and VT plants in una-
mended and amended pots shows that the VT grass exhibited 
enhanced growth and survival characteristics with higher 
HM and biomass production in the amended soil. The 
membrane transporter proteins can transport HMs due to 
the chemical similarity of the ions. This similarity can lead 
to competition thereby affecting the uptake and transport of 
nutrients in contaminated soil. These proteins are species-
dependent and might be the reason behind the high TF val-
ues in NT plants. Moreover, the lower TF values in VT can 
help restrict the exposure to the food chain, and the high 
BCF can reduce the HM leaching towards the underground 
water sources.

Our findings revealed that the effects of biochar on the 
soil and plants were closely related to the amendment 
rates. An optimum amount can improve the soil structure, 
promote soil aggregation and stability (Li et al. 2021). 
As per our findings, the 2% amendment rate limited 

the translocation towards the aboveground biomass but 
increased the contaminant removal from the soil. The 
improved survival and lower contaminant levels in the 
amended soil are signs of enhanced phytoremediation 
mechanisms. However, excessive biochar application can 
inhibit plant growth. This can be attributed to the high 
water retention and less oxygen in the pore space leading 
to an anaerobic state of the plant roots. Also, the high 
adsorption capacity at the early stages reduces the release 
of nutrients thereby leading to a lack of fertilisers in the 
later stages (Shi et al. 2022).

It is remarkable to note that the biochar improvement of 
HM accumulation and translocation can establish it as an 
effective and nature-based alternative to enhance phytore-
mediation. Adding biochar at an optimum rate can generate 
additional benefits in comparison to the expensive and risk-
prone chemicals and complexing agent applications. The 
biochar-augmented soil functions include increased storage 
of organic carbon, water retention and lower risk of nutrient 
leaching.
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Conclusions

The current study elucidates the efficiency of phytoremedia-
tion using medicinal plants amended with 1%, 2% and 4% 
sugarcane bagasse biochar in HM-contaminated soil. The 
major findings of the study include:

•	 Biochar amendment rates of 2–4% improve the survival 
rate to 100% in Pb NT samples. The improved plant sur-
vival and germination in biochar-amended soil can be 
attributed to the reduced physiological and metabolic 
effects of HM stress.

•	 VT contaminated with Zn at 4% amendment indicated 
the highest shoot length of 80 cm. The LA results showed 
a similar trend, with values gradually declining after 
40–50 days in unamended samples. The amendment rate 
of 2% indicated an increase in the total biomass of VT 
in Zn from 5.83 to 15.12 g, and the Pb samples demon-
strated a 73.52% increase in comparison to CK.

•	 Potassium values are directly related to the amendment 
rates, with Zn NT soil showing 19.5 mg/l in 4% amend-

ment but 1.6 mg/l in CK. Similarly, Cd indicated an 
increase from 2.77 to 13.6 mg/l, and Pb samples indi-
cated an increase from 2.33 to 18.18 mg/l.

•	 The TF values in Cd and Zn indicate a reduction from 
2.18 to 0.012 and from 2.44 to 1.18 respectively for NT 
plants with biochar amendment. TF values lesser than 
1 indicate the restriction of HM from roots to shoots 
as observed for the VT plants. On the other hand, BCF 
values indicated an enhanced translocation from soil 
to plants with amendment, with the highest increase in 
the Zn-contaminated samples. VT plants in Pb samples 
indicate an increase of 9.5% with 2% amended soil in 
comparison to the CK, whereas the Cd-contaminated soil 
showed an increase from 0.31 to 0.96.

The results from this study indicate that the biochar amend-
ment rate of 2% represents an enhanced nutrient cycling with 
biomass increase, denoting improved plant growth in an HM-
contaminated environment. Although the findings provide 
insights into the development of biochar-amended phytore-
mediation for the removal of heavy metals, these are limited 

Fig. 11   Conceptual diagram 
representing the effect of 
biochar amendment on plant 
responses to heavy metal con-
tamination
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to laboratory conditions. The potential implementation of the 
proposed application should be investigated via pilot-scale 
experiments for field applications. Moreover, the present 
study only accounts for the quality of soil under heavy metal 
(HM) contamination. The effect of HM on the water leached 
from the pots, necessary for the partitioned assessment has not 
been considered in this study. Bioconcentration factor (BCF) 
is only indicative of the phytoremediation of the medicinal 
plants existing in an HM-contaminated biochar-amended soil. 
The aspects related to precipitation, adsorption affecting HM 
mobility will require a more controlled experimental leaching 
setup and can be incorporated into future studies.
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