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Abstract
The urban heat island (UHI) effect has become increasingly prevalent and significant with the accelerated pace of urbanization, 
posing challenges for urban planners and policymakers. To reveal the spatiotemporal variations of the urban heat island effect 
in Jinan City, this study utilized Landsat satellite images from 2009, 2014, and 2019, employing the classic Mono-Window 
algorithm to extract land surface temperature (LST). Additionally, Geodetector was introduced to conduct a detailed analysis of 
the relationship between LST in Jinan City and land cover types (vegetation, water bodies, and buildings). The results indicate a 
significant increase in the severity of the urban heat island effect in Jinan from 2009 to 2019, with the central urban area consist-
ently exhibiting a high-intensity core heat island. Suburban areas of Jinan show a clear trend of merging their heat island effects 
with the central urban area. The combined area of strong cool island effect zones and cool island effect zones within water bod-
ies reaches 89.7%, while the combined proportion of heat island and strong heat island effect zones in building areas is 62.2%. 
Vegetation cover (FVC) exerts the greatest influence among all factors on the intensity level of the urban heat island effect. These 
findings provide a reliable basis for decision-making related to urban planning and construction in Jinan City.
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Introduction

The urban heat island (UHI) effect has intensified with the 
expansion of urban areas and the increase in urban popula-
tion density (Zaitunah et al. 2022), leading to significant 

“urban ailments” (Kim and Brown 2021). Examining the 
influence of different types of land cover on UHI is crucial 
to deepen our understanding of its formation mechanisms, 
improve our knowledge of the urban thermal environment, 
and provide practical guidance for mitigating the UHI effect 
caused by urbanization.
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With the rapid growth of remote sensing satellites and 
related technologies in recent decades, research on the urban 
heat island (UHI) effect has increasingly focused on its spa-
tial–temporal evolution, influencing factors, simulations, and 
mechanisms (Liang et al. 2022; Qiao et al. 2019). Common 
methods for inverting land surface temperature (LST) from 
remote sensing data include the mono-window algorithm (Qin 
et al. 2001), radiative balance models (Wan 2014), thermal-
emissivity relationship models (Yamamoto and Ishikawa 
2018), and combined methods using physical models and 
inversion algorithms (Kustas and Anderson 2009). Radiative 
balance models require accurate atmospheric parameters and 
are computationally complex (Ding et al. 2023), while ther-
mal-emissivity relationship models’ accuracy affects inversion 
precision (Ru et al. 2023). Combined methods involve more 
data and algorithms, increasing computational complexity 
(Zhou et al. 2018). This study adopts the mono-window algo-
rithm for its speed, adaptability, and low data requirements. It 
uses a single thermal infrared band to estimate LST based on 
thermal radiation principles, atmospheric radiation transmis-
sion models, and surface characteristics.

Jinan, the capital city of Shandong Province, is a sig-
nificant urban center in the Shandong Peninsula City Clus-
ter and the Lower Yellow River City Cluster(Wang et al. 
2023). The city’s efforts to become a national central city 
have accelerated its urbanization, further spurred by the 
merger with Laiwu, Jiyang, and Zhangqiu. These changes 
have impacted Jinan’s thermal environment and the central 
and western regions of Shandong. Therefore, Jinan is chosen 
as the research area for this study.

The main objective is to analyze the spatiotemporal char-
acteristics and influencing factors of the UHI effect in Jinan 
from 2009 to 2019 using LST data from Landsat remote 
sensing. This analysis aims to support rational urban plan-
ning, enhance urban living conditions, and promote environ-
mental protection and ecological construction.

Materials and methods

Study area

The geographical location of Jinan City is in the cen-
tral part of Shandong Province, with latitude and lon-
gitude ranging from 36°02′ to 37°54′ and 116°21′ to 
117°93′ shown in Fig.1. The Yellow River is part of the 
natural boundary to the west of Jinan and flows through the 
central and northern parts of Jinan. In general, the topog-
raphy slopes steeper in the south and lower in the north. 
Jinan’s climate is warm temperate continental monsoon, 
with an average annual precipitation of 548.7 mm. The 
four seasons are distinct throughout the year with sufficient 

sunshine. The rivers in Jinan are part of two main water 
systems: the Yellow River and the Xiaoqing River. There 
are also numerous lakes and large reservoirs. The forest 
vegetation is mainly distributed with trees and shrubs.

Data sources

In this paper, Landsat series satellites were chosen as the 
remote sensing data. The source was the USGS Earth 
Explorer website (https://​earth​explo​rer.​usgs.​gov). The 
vector data used in this study included the prefecture-
level and county-level administrative boundary vec-
tor files of Jinan City. The data was obtained from the 
Resource and Environmental Science and Data Center of 
the Chinese Academy of Sciences (http://​www.​resdc.​cn). 
Land cover classification data comes from the annual land 
cover classification data of China (Yang, J. and Huang, X, 
2021). The DEM data is provided by the Geospatial Data 
Cloud (https://​www.​gsclo​ud.​cn/) as GDEMV2 data. The 
precipitation data comes from the National Tibetan Pla-
teau Data Center (Peng, S, 2020). In addition, the vector 
files of Jinan’s road network, railways, buildings, water 
bodies, etc. were obtained from OpenStreetMap which is 
an open-source map data project. The flow chart of this 
study is shown in Fig. 2.

Methods

Mono‑window algorithm for LST estimation

Its main idea of the mono-window algorithm is to estimate 
the LST by calculating the thermal energy balance equation 
using the thermal infrared band (Band 10:10.60–11.19 µm). 
The equation is as follows (Eq. (1)):

where

LST  is the land surface temperature; a and b are the 
regression coefficients. When the temperature on the sur-
face was between 0° and 70°, a and b are − 67.3554 and 
0.4586, respectively. T  is the brightness temperature. Ta 
is the atmospheric average action temperature. � is the 
surface-specific emissivity.� is the atmosphere transmit-
tance. LST, T, and Ta are in the Kelvin temperature.

According to Eq. (1), atmospheric transmittance � , 
atmospheric average action temperature Ta , surface 

(1)
ST =

[

a(1 − C − D) + [b(1 − C − D) + C + D] × T − D × Ta
]

∕C

(2)C = ��

(3)D = (1 − �)[1 + (1 − �)�]

https://earthexplorer.usgs.gov
http://www.resdc.cn
https://www.gscloud.cn/
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Fig. 1   The administrative divisions of Shandong Province (left); 
geographical location and administrative division of Jinan (right) 
(Urban: III, Tianqiao District; V, Licheng District; VI, Lixia District; 
VII, Central District; VIII, Huaiyin District; Suburban: I, Shanghe 

County; II, Jiyang District; IV, Zhangqiu District; IX, Changqing 
District; X, Pingyin County; XI, Laiwu District; XII, Gangcheng Dis-
trict)

Fig. 2   The flowchart of this study
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specific emissivity � , and brightness temperature T  are 
needed to invert the surface temperature. The calculation 
of these four parameters is shown below.

Atmospheric transmittance �

The ratio of radiation intensity before and after pass-
ing through the atmosphere is referred to as atmospheric 
transmittance. By entering parameters such as the imaging 
time and center coordinates from the image header file into 
NASA’s atmospheric modeling website (https://​atmco​rr.​
gsfc.​nasa.​gov), it is possible to acquire atmospheric trans-
mittance and atmospheric upwelling radiance.

Atmospheric average action temperature T
a
  

There is a certain linear relationship between the average 
action temperature of the atmosphere and the air temperature 
2 m above the ground. According to Qin et.al (2001), a lin-
ear model for calculating the average action temperature of 
the atmosphere (see Table 1) was proposed. The atmospheric 
average action temperature for each image can be calculated 
using the meteorological station temperature data provided 
by China Meteorological Data Network (http://​data.​cma.​cn).

Surface specific emissivity "

For surface-specific emissivity estimation, the fraction veg-
etation coverage FVC was derived firstly from the normal-
ized vegetation index NDVI of each image based on mixed 
pixel decomposition method (Sobrino et al. 2004) shown in 
Eq. (4), and finally, the surface specific emissivity of dif-
ferent surface types could be obtained according to FVC.

where FVC is the fraction of vegetation coverage. NDVIv and 
NDVIs represented the NDVI threshold of the lush vegeta-
tion pixel and the bare soil pixel, respectively. The value of 
NDVIv is 0.7, and NDVIs is 0. When NDVI is greater than or 

(4)FVC =
(

NDVI − NDVIs
)

∕
(

NDVIv − NDVIs
)

equal to 0.7, the pixel is regarded as a complete vegetation 
pixel, and FVC should be 1. When NDVI is less than or equal 
to 0, FVC should be 0.

The land surface type in remote sensing images could 
be roughly divided into water bodies, building, and natural 
surfaces (Rozenstein et al. 2014). Among them, the struc-
ture of water body pixels would be relatively simple, and � 
can be fixed at 0.995. The composition of building pixels is 
relatively complex (a mixture of vegetation and buildings). 
The natural surface includes all kinds of forest, grassland, 
cultivated land, and bare soil, which can be regarded as 
a mixture of vegetation and bare soil. The equations for 
calculating the specific emissivity were as follows (Eqs. 
(5)–(7):

where �water、�build、�surface represented the surface-specific 
emissivity of water body, building, and natural surface pix-
els, respectively.

Brightness temperature T

The brightness temperature was calculated by Planck’s for-
mula shown in Eq. (8):

where T represented the brightness temperature with unit 
K. L represented the radiance value of the thermal infrared 
band. K1 and K2 were the constants. For Landsat 5 satellite, 
K1 and K2 would be 607.766 W/ (m2 ∙sr·μm) and 1260.56 K, 
respectively. For Landsat 8 satellite, K1 and K2 would be 
774.89 W/ (m2 ∙sr·μm) and 1321.08 K, respectively.

UHI intensity classification

UHI effect was classified based on the LST results for ana-
lytical purposes. In order to eliminate the impact caused by 
temporal differences and enable comparison and analysis 
of LST at different times, the standard deviation method 
(Hanqiu Xu 2015) was adopted to determine the temperature 
threshold Tt shown in Eq. (9), which could represent the 
degree of proximity of the surface temperature of each pixel 
to the average surface temperature.

where Tt was the LST threshold for UHI classification. � 
was the average value of LST. std was the LST standard 

(5)�water = 0.995

(6)�
build

= 0.9589 + 0.086F
V
− 0.067F

V

2

(7)�
surface

= 0.9625 + 0.0614F
V
− 0.0461F

V

2

(8)T = K
2
∕ln

(

K
1
∕L + 1

)

(9)Tt = � + X ⋅ std

Table 1   Linear models for atmospheric average action temperature

*In this table, T
0
 is the air temperature 2 m above the ground, T

a
 indi-

cating atmospheric average action temperature, and the unit is K

Atmospheric mode Atmospheric average action 
temperature calculation model

Tropical mean atmosphere T
a
=17.9769+0.91715T

0

Mid-latitude summer atmosphere T
a
=16.011+0.92621T

0

Mid-latitude winter atmosphere T
a
=19.2704+0.9118T

0

US Standard Atmosphere 1976 T
a
=25.9396+0.88045T

0

https://atmcorr.gsfc.nasa.gov
https://atmcorr.gsfc.nasa.gov
http://data.cma.cn
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deviation. X represented the multiple of the LST standard 
deviation.

The values of X were 0.5 and 1.5 according to the grades 
defined in this study. The estimated LST in Jinan City was 
further classified into five UHI intensity grades: strong heat 
island effect area, heat island effect area, no obvious effect 
area, cold island effect area, and strong cold island effect 
area. Table 2 shows the specific grading standards.

Results

LST results and validation

The estimated LST for each period of images and the cor-
responding meteorological station data are shown in Table 3. 
By comparing them in Fig. 3, it was found that the RMSE 
between the inversion results from the remote sensing 
images and the measurements from the meteorological sta-
tion was 3.6 °C, indicating the higher inversion accuracy. 
Therefore, it is feasible to conduct a spatiotemporal analysis 
of the UHI effect in Jinan City based on the LST inversion 
results from the remote sensing images. To further validate 
the accuracy of land surface temperature inversion, this 
study used the MOD11A1 dataset from NASA’s website 

(https://​ladsw​eb.​modaps.​eosdis.​nasa.​gov/) as validation 
data. After resampling, comparative analysis showed a cor-
relation coefficient exceeding 0.9 and a root mean square 
error of 0.1 °C between the two datasets shown in Fig. 4.

Through the UHI distribution in Jinan City shown in 
Fig. 5, the temperature difference between urban and subur-
ban areas in Jinan City was noticeable in spring and summer. 
Especially in summer, not only was the area of heat island 

Table 2   Classification standard 
of LST in Jinan City

Grade division Temperature class UHI intensity grade

T
t
> 𝜇 + 1.5std High temperature Strong heat island effect area

𝜇 + 0.5std < T
t
≤ 𝜇 + 1.5std Sub-high temperature Heat island effect area

� − 0.5std ≤ T
t
≤ � + 0.5std Medium temperature No obvious effect area

𝜇 − 1.5std ≤ T
t
< 𝜇 − 0.5std Sub-low temperature Cold island effect area

T
t
< 𝜇 − 1.5std Low temperature Strong cold island effect area

Table 3   Comparison of inversed LST results and meteorological sta-
tion data in Jinan City

Image date Estimated LST(°C) Meteorological 
station data (°C)

2009–04-08 18.4 22.80
2009–08-30 17.6 22.00
2009–10-17 16.3 17.60
2009–11-02 -1.2 3.50
2014–03-21 14.6 16.30
2014–07-11 30.2 34.30
2014–10-15 16.9 19.70
2014–12-18 -0.2 2.90
2019–05-22 29.9 34.80
2019–06-07 28.7 33.30
2019–10-29 12.9 14.50
2019–11-14 8 10.30

Fig. 3   The comparison of estimated LST with measured temperature 
from the meteorological station

Fig. 4   The comparison of estimated LST with MODIS product LST

https://ladsweb.modaps.eosdis.nasa.gov/
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wider, but also the urban region had a higher concentra-
tion of significant heat islands. On the contrary, Jinan’s heat 
island effect was less noticeable in fall and winter. The urban 
heat island boundary in Jinan City was evident in 2009, with 
broad strong heat island areas in the central urban area. Heat 

island areas in Gangcheng and Laiwu districts were intercon-
nected, while Changqing and Zhangqiu districts were linked 
to the main urban area via various transportation routes. The 
central regions of neighboring counties and districts also 
featured isolated patches of high-temperature zones.

(a (80-40-9002) b) 2009-08-30 

(c (71-01-9002) d) 2009-11-02

Fig. 5   UHI distribution in Jinan City in 2009
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As illustrated in Fig. 6, the urban heat island effect 
was the strongest in the summer of 2014. The urban heat 
island only appeared in some areas of Jinan in spring 
and autumn. There was a significant disparity between 
the south and north areas. No obvious heat island 

phenomenon was observed in winter. Even in the city 
heart, there were some cold islands. The general extent 
of the UHI effect extended in 2014, with a notewor-
thy increase in severity, particularly in Changqing and 
Zhangqiu districts.

(a (12-30-4102) b)2014-07-11 

(c (51-01-4102) d)2014-12-18 

Fig. 6   UHI distribution in Jinan City in 2014



51909Environmental Science and Pollution Research (2024) 31:51902–51920	

Figure 7 shows a very typical heat island phenomenon 
that occurred in spring, while there was no heat island effect 
in summer. The air and ground temperatures were also lower, 
which may be affected by the weather at the time of image 
generation. In 2019, the UHI area in Jinan City expanded 

further, with the heat island effect in Changqing and Zhang-
qiu districts being practically continuous with the city core. 
The high-temperature zones in Shanghe County, Jiyang 
District, Pingyin County, Laiwu District, and Gangcheng 
District also experienced significant growth.

(a (22-50-9102) b) 2019-06-07

(c (92-01-9102) d)2019-11-14

Fig. 7   UHI distribution in Jinan City in 2019
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Fig. 8   Comparison of UHI intensity (a) and fraction vegetation coverage (b) in Jinan City in 2009

Fig. 9   Comparison of UHI intensity (a) and fraction vegetation coverage (b) in Jinan City in 2014
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Over the 10-year period from 2009 to 2019, the UHI 
effect in Jinan City exhibited a clear intensification, show-
ing a strong correlation with the city’s overall develop-
ment trends and planning. In addition, the UHI effect often 
occurs in spring and summer in Jinan City. The tempera-
ture in the major part of Jinan City, Tianqiao District, 
Huaiyin District, Shizhong District, and Lixia District was 
much higher than in other regions at this time, while the 
southern mountainous area remained a cold island state 
throughout the year.

In order to explore the factors influencing the UHI 
effect in Jinan City, this study utilized land cover types 
such as vegetation, water bodies, and urban buildings to 
analyze the evolution of the UHI effect pattern. The find-
ings aim to provide technical guidance for mitigating the 
UHI effect.

Relationship between the UHI effect 
and the fraction vegetation coverage

Landsat images from the same period as the aforementioned 
UHI intensity distribution map were selected. The fraction 
vegetation coverage in the study area was extracted respec-
tively shown in Eq. (4), and compared with the distribution 
of UHI intensity.

Upon comparing Figs. 8, 9, and 10, it was observed that 
the areas with low fraction vegetation coverage were more 
consistent with the areas with obvious UHI effect, demon-
strating a negative relationship between fractional vegeta-
tion coverage and urban surface temperature. In addition, 
the inversed LST results and fraction vegetation coverage 
data on May 22, 2019, were utilized to conduct quantita-
tive correlation analysis on the relationship between LST 
and fraction vegetation coverage, with 340-pixel samples 
being selected from all types of pixels other than water 
bodies. The correlation analysis results shown in Fig. 11 
revealed that the Pearson correlation coefficient between 
the two was − 0.732 (significant correlation at the p-value 
0.01 level), showing that the effect of vegetation lushness 
on LST was more obvious, and the two demonstrated a 
negative association, implying that locations with more 
vegetation coverage had lower surface temperature.

Relationship between UHI effect and water body

In terms of the relationship between the UHI effect and 
the water body, it is worth noting that regions with low 
surface fraction vegetation coverage are usually accom-
panied by higher surface temperatures. However, water 

Fig. 10   Comparison of UHI intensity (a) and fraction vegetation coverage (b) in Jinan City in 2019
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locations frequently have a low fraction of vegetation 
coverage, with no vegetation pixels present, and the 
water environment in urban areas frequently functions 
as a temperature regulator and aids in alleviating high 
temperatures. Therefore, the UHI effect in the water area 
was studied utilizing the distribution of the water body in 
Jinan City shown in Fig. 12.

By utilizing the vector file of the water body distribution 
in Jinan City, the corresponding regional UHI classification 
data was obtained. The distribution of heat island grades in 
the water body area was further counted and presented in 
Fig. 13.

Table 4 indicates that water bodies in Jinan City exhib-
ited strong cold island effects. The combined area of 
strong cold island effects and cold island effects within 
water bodies amounts to 89.7%. Referring to Fig. 13, the 
Yellow River, Tuhai River, Xiaoqing River, Mouwen 
River, and other rivers in Jinan City exhibit a winding 

Fig. 11   Linear regression relationship between LST and fraction veg-
etation coverage

Fig. 12   Water body distribution 
in Jinan City
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distribution of cold islands. Irregularly shaped reservoirs 
and lakes also align well with the corresponding cold 
island areas. In addition, wetland areas also demonstrated 
a cold island phenomenon, with larger individual areas, 
contributing significantly to the cooling effect in conjunc-
tion with other water bodies.

Relationship between UHI effect and urban 
buildings

Using the data of commercial, medical, industrial, 
and residential buildings in Jinan City, the association 
between building dispersion shown in Fig. 14 and the 
UHI effect was analyzed. By extracting the UHI inten-
sity raster data of the corresponding area from the vec-
tor file of building distribution in Jinan City, the UHI 
effect area of each grade in the building area can be 
obtained. The distribution of UHI grades in the building 
area in Jinan City was further calculated, as shown in 
Fig. 15 and Table 5. Figure 15 illustrates that buildings 
were strongly associated with a considerable number of 
heat island areas. Table 5 showed that heat island and 
strong heat island effect areas constituted 62.2% of the 

Fig. 13   Distribution of UHI 
intensity in the water area of 
Jinan City in 2019

Table 4   The distribution of UHI intensity in water area

UHI intensity grade Number of pixels Percentage

Strong heat island effect area 438 0.2%
Heat island effect area 3701 2.0%
No obvious effect area 14,822 8.1%
Cold island effect area 40,252 22.0%
Strong cold island effect area 124,100 67.7%
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total area, while cold island and strong cold island effect 
areas accounted for less than 3%. The presence of high-
temperature areas within the building distribution range 
indicated that human factors significantly contributed to 
the formation of urban heat islands. The rapid urbaniza-
tion process has resulted in a rise in the UHI effect.

Discussion

Spatiotemporal analysis of UHI effect

It can be seen from Fig. 16 that Jinan City’s urban and subur-
ban areas exhibited notable trends in temperature anomalies 
from 2009 to 2019. In the urban area, temperature anomalies 
decreased from − 0.246 in 2009 to − 1.176 in 2013, sharply 

rose to 1.244 in 2014, and continued to increase to 1.144 by 
2019, indicating a consistent warming trend. Concurrently, 
the urban area’s 2a moving average increased from 20.115 in 
2010 to 21.22 in 2019, reflecting an overall temperature rise. 
In contrast, suburban temperature anomalies also showed 
negative values from 2009 to 2013, declining from − 0.341 
to − 1.231, followed by a shift to positive anomalies starting 
in 2014, peaking at 1.469 by 2019, indicating a pronounced 
upward trend. The suburban 2a moving average increased 
from 20.065 in 2010 to 21.515 in 2019, slightly higher than 
that of the urban area, possibly reflecting a faster tempera-
ture increase due to urban expansion and rural development. 
In conclusion, both urban and suburban areas demonstrated 
a warming trend, with suburbs showing slightly greater vari-
ability, likely influenced by the processes of urbanization 
and their impacts on regional climate.

Fig. 14   Building distribution 
in Jinan
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Urban heat island intensity refers to the temperature dif-
ference between urban and rural areas caused by the urban 
heat island effect, represented by UHI. UHI is calculated 
in Eq. (10).

(10)UHI = Turban − Tsuburban

UHI effect data in Jinan shown in Fig. 17 demonstrated 
significant changes from 2009 to 2019. Through the 2-year 
moving average (2a moving average), it can be seen that 
from 2009 to 2011, the UHI values were relatively stable 
with little change. In 2012, the UHI value dropped sharply 
and turned negative, indicating that urban temperatures 
were lower than suburban temperatures. In 2013, the UHI 
value rebounded and reached the highest value of 0.35. 
From 2014 to 2015, the UHI value fell again but remained 
positive. From 2016 to 2019, the UHI value continued 
to decline, reaching a low of − 0.37 in 2019, indicating 
that urban temperatures were significantly lower than sub-
urban temperatures. The 2-year moving average further 
smoothed these changes, showing an overall downward 
trend, especially with the prolonged period of negative 
values after 2016.

Fig. 15   The distribution of heat 
island intensity in the building 
area of Jinan in 2019

Table 5   The distribution of UHI intensity in the building area

UHI intensity grade Number of pixels Percentage

Strong heat island effect area 20,319 7.0%
Heat island effect area 161,039 55.2%
No obvious effect area 102,535 35.1%
Cold island effect area 4944 1.7%
Strong cold island effect area 2927 1%
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Through the Mann–Kendall (M–K) trend test analysis, 
the comparison of UF and UB values shows that from 2009 
to 2011, both UF and UB values were negative, indicating a 
downward trend in UHI values during this period. In 2012, 
both UF and UB values dropped sharply, further confirm-
ing the significant decline in UHI values. In 2013, the UF 
value turned positive, but the UB value remained negative, 
indicating an upward trend in UHI values, although the 
trend was not stable. In 2014, the UF value turned nega-
tive again, indicating that the upward trend in UHI values 
did not continue. From 2015 to 2019, both UF and UB 
values were negative and declined year by year, confirming 
the long-term downward trend in UHI values. 2010, 2011, 
and 2012 are the intersection years of UF and UB values, 
indicating that these years are important turning points in 
the trend change.

Combining the UHI data and the M–K analysis results, 
it can be concluded that the UHI value in Jinan was rela-
tively stable before 2012, with a significant decline in 
2012. Although there was a short rebound in 2013, the 
overall trend remained downward. After 2016, the UHI 

value remained negative for a long time, indicating that 
urban temperatures were generally lower than suburban 
temperatures. The M–K analysis results (UF and UB val-
ues) are consistent with the actual UHI data trends, both 
indicating that Jinan’s urban heat island effect showed an 
overall downward trend from 2009 to 2019, especially 
with a more pronounced downward trend after 2016.

As can be seen from Fig.  18, from 2009 to 2019, 
the average seasonal temperatures in Jinan showed an 
overall increase: spring temperatures rose from 5.3 to 
7.3  °C, summer temperatures increased from 23.6 to 
25.2 °C, autumn temperatures fluctuated between 31.7 
and 33.6 °C, and winter temperatures rose from 20.7 
to 22.0  °C. The UHI effect in spring increased from 
0.01 to 0.25, while in summer, autumn, and winter, it 
decreased from 0.2 to − 0.4, from − 0.1 to − 0.8, and from 
0.6 to − 0.6, respectively. This indicates that except for 
spring, the temperature in suburban areas increased faster 
than in urban areas, possibly due to urban expansion and 
rural area development.

Fig. 16   Annual mean tempera-
ture anomaly in urban (a) and 
suburban (b) areas of Jinan City 
from 2009 to 2019
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Fig. 17   Annual mean UHI 
change and M–K mutation test 
in Jinan City

Influencing factors of UHI effect in Jinan City

The Geodetector (Wang and Xu 2017) is a statistical tool 
used to reveal spatial distribution patterns and their driv-
ing factors. It assesses their influence and significance by 
analyzing the explanatory power of different factors on the 
target variable. This study uses factor detection to analyze 
the impact of vegetation coverage, land cover classifica-
tion, DEM, and precipitation on the heat island effect.

In Eq. (11), the q value ranges from [0,1], indicating the 
extent of influence of the impact factors on the target vari-
able. The larger the q value, the stronger the influence.

(11)q = 1 −

∑L

h=1
Nh�

2

h

N�2

To investigate the influencing factors of UHI intensity 
levels in Jinan, Geodetector was introduced, and the inten-
sity level of the urban heat island effect was used as the 
dependent variable Y. FVC, land cover, DEM, and slope 
were used as independent variables X1 to X4, before run-
ning the Geodetector, FVC, DEM, and slope were discre-
tized into five categories. The results of factor detection 
are shown in Fig. 19 and Table 6, the influence of FVC 
on the intensity level of the UHI effect is consistently the 
greatest among all factors across the three time points, 
and the average q-value is 0.25. The influence of the three 
factors land cover, DEM, and slope all reached their maxi-
mum values in 2014. The influence of precipitation has 
been steadily increasing year by year.
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(a) Spring (March-May) (b) Summer (June-August)

(c) Autumn (September-November) (d) Winter (December - February) 

Fig. 18   Average temperature and UHI changes in spring (a), summer (b), autumn (c), and winter (d) in Jinan

Fig. 19   Influencing factors of 
different variables
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Conclusions

The study investigated the spatiotemporal characteristics 
of the UHI effect in Jinan City using Landsat TM and OLI/
TIRS remote sensing data based on the mono-window algo-
rithm. The surface temperature data of Jinan City were col-
lected for four seasons in 2009, 2014, and 2019 and were 
coupled with distribution data of urban buildings, vegeta-
tion coverage, and water bodies to examine the temporal and 
spatial fluctuation characteristics of the UHI effect in Jinan 
City. According to the findings, the UHI effect in Jinan 
was relatively significant in the spring and summer, espe-
cially in the summer, but weaker in the autumn and win-
ter. The primary heat island coverage area was in the city 
center, including Lixia District and surrounding areas. The 
research further indicated that the UHI effect was strongly 
influenced by the urban surface type. UHI was inhibited by 
vegetation and water bodies, whereas regions with more 
buildings tended to have a larger UHI effect. In the Geode-
tector analysis results, FVC exhibits the strongest influence 
on the intensity level of the urban heat island effect among 
all factors, with an average q-value of 0.25. The Pearson 
correlation coefficient between FVC and LST is − 0.732. 
The combined area of strong cool island effect zones and 
cool island effect zones within water bodies is 89.7%. The 
combined proportion of heat island and strong heat island 
effect zones in building areas is 62.2%. FVC and land cover 
classification significantly affect heat island intensity, with 
a Pearson correlation coefficient of − 0.732 between FVC 
and LST. The areas with strong cool island effects and cool 
island effects within the water body together account for 
89.7%, while the combined proportion of heat island and 
strong heat island effect zones in building areas is 62.2%.

Although the mono-window algorithm used in this study 
had obtained better surface temperature inversion results for 
TM and OLI/TIRS images, the research still has some limita-
tions. The data selection was affected by image cloud and fog, 
and the surface temperature measured by the meteorological 
station may differ from the sampling of the Landsat satellite 
during the transit time. Future research can improve the results 
by on-site measurement during the satellite transit time.

Acknowledgements  Thanks to Shandong Normal University for its 
cultivation and support.

Author contribution  Guiquan Mo and Yurong Cui wrote the text of the 
main manuscript and compiled the charts. Libo Yan and Zongyao Wang 
conducted research guidance and improved the analysis and content 
of the manuscript. Guiquan Mo contributed to the data analysis and 
the writing of the manuscript. Zhiyong Li, Sixuan Chen, and Shuwei 
Zheng conducted data processing. Huixuan Li contributed to the writ-
ing and revised the manuscript.

Funding  This research was funded by the Technology Department of 
Shandong Normal University, grant number 304–0111107.

Data availability  Landsat satellites data from USGS Earth Explorer 
(https://​earth​explo​rer.​usgs.​gov). Vector data from Resource and Envi-
ronmental Science and Data Center of the Chinese Academy of Sciences 
(http://​www.​resdc.​cn). Land cover classification data from the Zenodo 
Open Science Data Sharing Platform (https://​zenodo.​org/). DEM data 
from Geospatial Data Cloud (https://​www.​gsclo​ud.​cn/). Precipitation 
data from the National Tibetan Plateau Data Center (https://​data.​tpdc.​
ac.​cn/). Vector files of Jinan’s road network, railways, buildings, water 
bodies, etc. from OpenStreetMap (https://​openm​aptil​es.​org/).

Declarations 

Ethics approval and consent to participate  All of the authors have care-
fully read and approved the paper.

Consent for publication  All of the authors have agreed to publish the 
manuscript.

Competing interests  The authors declare no competing interests.

References

Ding N, Zhang Y, Wang Y, Chen L, Qin K, Yang X (2023) Effect 
of landscape pattern of urban surface evapotranspiration on land 
surface temperature. Urban Climate 49. https://​doi.​org/​10.​1016/j.​
uclim.​2023.​101540

Kim SW, Brown RD (2021) Urban heat island (UHI) intensity and mag-
nitude estimations: a systematic literature review. Sci Total Environ 
779:146389. https://​doi.​org/​10.​1016/j.​scito​tenv.​2021.​146389

Kustas W, Anderson M (2009) Advances in thermal infrared remote 
sensing for land surface modeling. Agric for Meteorol 149:2071–
2081. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2009.​05.​016

Liang L, Tan B, Li S, Kang Z, Liu X, Wang L (2022) Identifying the driving 
factors of urban land surface temperature. Photogramm Eng Remote 
Sensing 88:233–242. https://​doi.​org/​10.​14358/​PERS.​21-​00043​R3

Peng S (2020) 1-km monthly precipitation dataset for China (1901–
2022). Nat Tibetan Plateau/third Pole Environ Data Center. https://​
doi.​org/​10.​5281/​zenodo.​31857​22

Qiao Z, Zhang D, Xu X, Liu L (2019) Robustness of satellite-derived 
land surface parameters to urban land surface temperature. Int J 
Remote Sens 40:1858–1874. https://​doi.​org/​10.​1080/​01431​161.​
2018.​14849​62

Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for 
retrieving land surface temperature from Landsat TM data and its 
application to the Israel-Egypt border region. Int J Remote Sens 
22:3719–3746. https://​doi.​org/​10.​1080/​01431​16001​00069​71

Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014) Derivation 
of land surface temperature for Landsat-8 TIRS using a split 

Table 6   Influencing factors of different variables

Note: All data in the table passed the p-test (p < 0.01)

Influence of factors Time

2009/8/30 2014/7/11 2019/5/22

X1(FVC) 0.2222 0.187 0.3570
X2(Landcover) 0.0074 0.0130 0.0010
X3(DEM) 0.0090 0.0466 0.0016
X4(Slope) 0.0049 0.0261 0.0002

https://earthexplorer.usgs.gov
http://www.resdc.cn
https://zenodo.org/
https://www.gscloud.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
https://openmaptiles.org/
https://doi.org/10.1016/j.uclim.2023.101540
https://doi.org/10.1016/j.uclim.2023.101540
https://doi.org/10.1016/j.scitotenv.2021.146389
https://doi.org/10.1016/j.agrformet.2009.05.016
https://doi.org/10.14358/PERS.21-00043R3
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.1080/01431161.2018.1484962
https://doi.org/10.1080/01431161.2018.1484962
https://doi.org/10.1080/01431160010006971


51920	 Environmental Science and Pollution Research (2024) 31:51902–51920

window algorithm. Sensors 14:5768–5780. https://​doi.​org/​10.​
3390/​s1404​05768

Ru C, Duan S-B, Jiang X-G, Li ZL, Huang C, Liu M (2023) An 
extended SW-TES algorithm for land surface temperature and 
emissivity retrieval from ECOSTRESS thermal infrared data over 
urban areas. Remote Sensing of Environ 290. https://​doi.​org/​10.​
1016/j.​rse.​2023.​113544

Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface tem-
perature retrieval from LANDSAT TM 5. Remote Sens Environ 
90:434–440. https://​doi.​org/​10.​1016/j.​rse.​2004.​02.​003

Wan Z (2014) New refinements and validation of the collection-6 
MODIS land-surface temperature/emissivity product. Remote Sens 
Environ 140:36–45. https://​doi.​org/​10.​1016/j.​rse.​2013.​08.​027

Wang J, Xu C (2017) Geodetector: principle and prospective. Acta 
Geographica Sinica 72(1):116–134. https://​doi.​org/​10.​11821/​
dlxb2​01701​010

Wang J, Wang W, Zhang S, Wang Y, Sun Z, Wu B (2023) Spatial and 
temporal changes and development predictions of urban green 
spaces in Jinan City, Shandong. China Ecol Indic 152:110373. 
https://​doi.​org/​10.​1016/j.​ecoli​nd.​2023.​110373

Xu H (2015) Retrieval of the reflectance and land surface temperature 
of the newly-launched Landsat 8 satellite. Chin J Geophys (in 
Chinese) 58:741–747. https://​doi.​org/​10.​6038/​cjg20​150304

Yamamoto Y, Ishikawa H (2018) Thermal land surface emissivity for 
retrieving land surface temperature from Himawari-8. J Meteorol 
Soc Jpn 96B:43–58. https://​doi.​org/​10.​2151/​jmsj.​2018-​004

Yang J, Huang X (2021) The 30 m annual land cover dataset and 
its dynamics in China from 1990 to 2019. Earth Syst Sci Data 
13:3907–3925. https://​doi.​org/​10.​5194/​essd-​13-​3907-​2021

Zaitunah A, Samsuri S, Silitonga AF, Syaufina L (2022) Urban green-
ing effect on land surface temperature. Sensors 22. https://​doi.​org/​
10.​3390/​s2211​4168

Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y, Frolking 
S, Yao R, Qiao Z, Sobrino JA (2018) Satellite remote sensing of 
surface urban heat islands: progress, challenges, and perspectives. 
Remote Sensing 11(1):48. https://​doi.​org/​10.​3390/​rs110​10048

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.3390/s140405768
https://doi.org/10.3390/s140405768
https://doi.org/10.1016/j.rse.2023.113544
https://doi.org/10.1016/j.rse.2023.113544
https://doi.org/10.1016/j.rse.2004.02.003
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.1016/j.ecolind.2023.110373
https://doi.org/10.6038/cjg20150304
https://doi.org/10.2151/jmsj.2018-004
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.3390/s22114168
https://doi.org/10.3390/s22114168
https://doi.org/10.3390/rs11010048

	Spatiotemporal changes of urban heat island effect relative to land surface temperature: a case study of Jinan City, China
	Abstract
	Introduction
	Materials and methods
	Study area
	Data sources
	Methods
	Mono-window algorithm for LST estimation

	Atmospheric transmittance 
	Atmospheric average action temperature   
	Surface specific emissivity 
	Brightness temperature 
	UHI intensity classification


	Results
	LST results and validation
	Relationship between the UHI effect and the fraction vegetation coverage
	Relationship between UHI effect and water body
	Relationship between UHI effect and urban buildings

	Discussion
	Spatiotemporal analysis of UHI effect
	Influencing factors of UHI effect in Jinan City

	Conclusions
	Acknowledgements 
	References


