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Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due 
to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant 
regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. 
The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In 
the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south 
year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions 
(130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicat-
ing that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were 
detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher 
concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with 
the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China 
predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu 
Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus 
on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage 
in urban greening and household settings.

Keywords  Neonicotinoids · Sources · Occurrence · Regional difference · Ecotoxicity

Introduction

Neonicotinoids (NEOs), following organophosphates, 
pyrethroids, and carbamates, are widely used globally and 
control pests like aphids and whiteflies (Elbert et al. 2008). 
NEOs have been registered in more than 120 countries and 
already accounted for approximately 25% of the global 

pesticide market in 2014 (Bass et al. 2015). As the world’s 
top user of pesticides, China had an annual cultivated area 
exceeding 150 million hectares and an annual demand for 
pesticides above 273.3 thousand tons (FAO 2023).

The first generation of neonicotinoid insecticide 
imidacloprid (IMI) was put on the market in 1991 (Jeschke 
et al. 2011). Subsequently, several other neonicotinoids such 
as nitenpyram (NIT), acetamiprid (ACE), thiamethoxam 
(THIM), clothianidin (CLO), thiacloprid (THID), and 
dinotefuran (DIN) were developed and released into 
the market between 1995 and 2002 (Bass et  al. 2015). 
China has independently innovated and synthesized a 
new generation of neonicotinoids: Imidaclothiz (IMIZ), 
Cycloxaprid (CYC), Guadipyr (GUA), Paichongding (IPP), 
and Cycolxylidin (CYCN) (Tan, 2023). Currently, the new 
generation of neonicotinoids was only used in China and 
has not been registered in the USA or the European Union 
(Thompson et al. 2020).
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According to the current publications, neonicotinoids 
could be harmful to non-target beneficials (e.g., pollinators 
and insectivorous birds) and inhabitants (e.g., earthworms 
and fish) (Hallmann et al. 2014; Hano et al. 2019; Rundlöf 
et al. 2015; Wang et al. 2015). Mounting studies showed 
that neonicotinoids can lead to the decline of bee popula-
tions (Rundlöf et al. 2015; Wang et al. 2020; Woodcock 
et al. 2016), which subsequently resulted in the reduction of 
food production (Klein et al. 2007) and losses of bee biodi-
versity (Woodcock et al. 2016). Especially, the new genera-
tion of neonicotinoids may indicate increased toxicity. For 
instance, GUA is highly toxic to silkworms and honeybees 
(Li et al. 2016), whereas CYC, IPP, and IMIZ exhibit lower 
LC50 values in zebrafish compared to traditional neonicoti-
noids (Wang et al. 2023b). Notably, neonicotinoids can enter 
the human body through diets, causing potential chronic 
risks (e.g., hepatotoxicity, neurotoxicity, genotoxicity, and 
endocrine-disrupting effect) (Han et al. 2018; Zhang and 
Lu 2022).

Neonicotinoids are widely used in agriculture includ-
ing foliar sprays, seed treatment, and soil drenches (Alford 
and Krupke 2019), and also used as household pesticides 
and veterinary drugs (Simon-Delso et al. 2015). However, 
the majority of neonicotinoids are released into the envi-
ronments with a small amount left being absorbed by the 
targeted plants or animals (Sur and Stork 2003). Previous 
studies found that only 1.6–4.9% of IMI was absorbed by 
cotton, eggplant, potato, and rice during seed dressing or 
particle seeding (Canadian Council of Ministers of the Envi-
ronment, 2007; Wood and Goulson 2017), and the majority 
of IMI was released into soils (He et al. 2021; Naumann 
et al. 2022). Due to its high hydrophilia, neonicotinoids in 
the soil and the atmosphere can enter the aquatic environ-
ment through precipitation. Although some neonicotinoids 
are restricted in some countries (CCME 2007; Pietrzak 
et al. 2019; EU 2013), they are widely detected and exist in 
the environment (Bradford et al. 2018; Hladik and Kolpin 
2016; Starner and Goh 2012). For example, concentra-
tions of neonicotinoids were 343 ± 210 ng/L along the east 

coast of China (Chen et al. 2019b), which is significantly 
higher than the acute and chronic toxicity levels (200 and 
8.3 ng/L) of the aquatic environment in Europe (Borsuah 
et al. 2020). The new generation neonicotinoid insecticide, 
IMIZ, has even been detected in the surface waters of the 
Yangtze River basin and Beijing (Chen et al. 2019a, 2023; 
Li et al. 2022), with an average concentration reaching up to 
27.49 ng/L (Chen et al. 2023), approaching the residue levels 
of earlier generations of neonicotinoids. It is important to 
identify the concentration, biotoxicity, and ecological risks 
of neonicotinoids in the ecosystems.

There have been some works in the literature on neonico-
tinoids in aquatic ecosystems or other environmental metrics 
in China. However, there are diverse climate types across the 
country, especially the northern regions and the southern 
regions, which lead to diverse planting cycles, crop types, and 
neonicotinoid applications. The neonicotinoids sources and 
distribution caused by the regional differences have little been 
systematically summarized. This study aims to (1) summarize 
the dominant sources of neonicotinoid insecticides, from the 
aspects of the agricultural and urban activities in China’s envi-
ronment; (2) clarify the spatial distribution of neonicotinoid 
insecticides; and (3) elucidate the effects of neonicotinoid 
insecticides on organisms and the ecological risks.

Methodology

This article employs the keywords neonicotinoids, insecti-
cides, soil, surface water, atmosphere, agriculture, urban, 
ecological risk, and biological toxicity to conduct a literature 
search on the presence of neonicotinoids in China’s envi-
ronment from 2016 to 2023. The trend in the number of 
publications retrieved from the search is shown in Fig. 1. 
The search encompasses databases such as Web of Science, 
Google Scholar, PubMed, ScienceDirect, and other online 
resources. Utilizing the data obtained from these searches, 
the article analyzes the origins of neonicotinoids in China’s 
agricultural and urban settings and their distribution across 

Fig. 1   Number of studies on 
the detection of neonicotinoids 
in various media in China from 
2016 to 2023
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soil, water, and atmospheric media, as well as their toxico-
logical impacts on living organisms and the associated eco-
logical risks.

Sources of neonicotinoids in China’s 
environment

Agricultural sources

In China, abundant resources allow for the cultivation of a 
variety of crops, with corn leading in the cultivation area, 
followed by rice, accounting for 25.33% and 17.32% of the 
total cultivated area, respectively (National Bureau of Sta-
tistics of China 2023). Neonicotinoids are applied to corn 
mainly through seed coating or mixing with seed, while 
rice is primarily treated with pesticide sprays. The pollu-
tion characteristics of neonicotinoids in the soil environment 
are affected by the different periods and types of pesticide 
application for these main crops.

Corn is typically planted once a year, with sowing times 
ranging from March to May in northern regions of China. 
Thus, this is also an explanation for the high NEO value in 
summer in northern regions (Huang et al. 2022). In the south-
ern tropical regions, it can be planted twice a year, with the 
second planting in October and November. The total neonico-
tinoid concentration in cornfields tends to increase in the first 
5 weeks after planting, especially after rainfall (Schaafsma 
et al. 2015). THIM and CLO are commonly used as seed 
treatments for corn (Ding et al. 2018). As reported in pre-
vious research, THIM can be spread to 30 cm deep on the 
eighth day after sowing through seed coating (Radolinski 
et al. 2018). Most of the THIM remains in the 0–30 cm soil 
layer by the 33rd day, although it could reach a larger depth 
of 30–45 cm (Radolinski et al. 2018).

In China, rice cultivation typically begins in spring, occur-
ring once in northern regions and two to three times in south-
ern regions. Neonicotinoids are heavily used at the beginning 
of rice planting to eliminate overwintering pests. Common 
pests are the rice stem borer, rice planthopper, and rice leaf 
folder, which account for 86.3% of the total area affected by 
rice pests and diseases. These pests are targets for neonicoti-
noid control, with the main pesticide used dinotefuran (Sun 
et al. 2016). Therefore, the levels of dinotefuran in the effluent 
from Poyang Lake rice fields reached up to 802 ± 139 ng/L 
(Wang et al. 2023a). Due to the predominance of coarse-
stemmed, large-eared varieties, the fields are densely planted 
and could create a microclimate conducive to pest and disease 
occurrence. The application cycle of pesticides applied to rice 
is closely related to the growth cycle of rice. In the process of 
controlling rice pests, neonicotinoids contaminate non-target 
areas due to inefficient pesticide application and pesticide 
drift problems (Wang et al. 2022). China’s manual spraying 

machinery accounts for 80% of the market (He 2019), and the 
pesticide utilization rate is less than 41% as of 2020 (Ministry 
of Agriculture 2015). The spraying drones used to improve 
work efficiency caused serious pesticide drift, and pesticide 
droplets were still detected 17 m downwind (Yan et al. 2021).

Urban sources

Urban greening activities are the second largest non-point 
source of neonicotinoids after agricultural activities. The 
usage of chemical pesticides during urban municipal pest 
control in lawn turf, gardens, and parks was 10 times higher 
than that in agriculture (Meftaul et al. 2020). In addition, 
neonicotinoids were used in municipal pest control, such as 
ant, cockroach, and fly bait products, and in the veterinary 
field, such as treating lice on pets (Shao et al. 2013).

According to data from the Chinese Statistical Yearbook, 
the urban green space area increased from 865,000 hectares 
in 2000 to 3.586 million hectares in 2022, appearing a 3.14-
fold increase in the 20 years. The park area also grew from 
82,000 hectares to 623,000 hectares. There are numerous 
types of pests and diseases in ornamental plants. Aphids 
and scale insects are the primary targets for neonicotinoid 
control. Due to different climatic conditions and natural 
environments, the manifestation of pests and diseases can 
vary in different seasons and regions. Aphids are widely 
distributed throughout the country and can reproduce to 
cause damage all year round under suitable conditions, 
affecting herbaceous flowers in summer and autumn and 
woody plants in April and May. However, scale insects 
mainly occur in southern China, parasitizing on woody 
plants. Ornamental plants may be an important pathway 
for the influx of neonicotinoids from outside urban areas, 
with mean neonicotinoid concentrations in the leaves of 
different ornamental plants ranging from 1.7 to 34 ng/g 
(Lentola et al. 2017). Spring overwintering pest control in 
parks also leads to neonicotinoid pollution, with an average 
concentration of 102 ng/g in park soil during spring, higher 
than 50.4 ng/g in autumn (Zhou et al. 2021). As a result, the 
increase in green spaces could lead to an increase in the use 
of neonicotinoid insecticides. However, there is currently 
no statistical data on the quantities of neonicotinoids used 
in urban greening (Zhang 2022).

Neonicotinoids in urban sewage typically originate from 
pet flea treatments, horticulture, and household pest con-
trol products (Sadaria et al. 2016). Urban sewage treatment 
plants (STPs) currently do not have specific and efficient 
methods for addressing the migration and transformation 
of neonicotinoids. Conventional sewage treatment processes 
such as the activated sludge process, A2/O process, and oxi-
dation ditch are not effective in removing neonicotinoids 
(Campo et al. 2013). The treatment technologies commonly 
used in Chinese sewage treatment plants include biological 
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wastewater treatment methods, especially the activated 
sludge process. Sludge adsorption is a major removal path-
way for neonicotinoid insecticides in urban sewage treatment 
systems, with an average adsorption rate of 41% during the 
anaerobic phase. However, the overall removal rate was only 
1% due to desorption that may occur during the anoxic and 
aerobic phases, resulting in a decrease in the concentration 
of neonicotinoid insecticides in the sludge (Sun et al. 2021). 
The low removal rate results in higher concentrations of neo-
nicotinoids in the effluent. For example, IMI was detected at 
concentrations of 45–106 ng/L in the effluents of municipal 
STPs in Beijing (Qi et al. 2015). In addition, wastewater 
from food, beverage, and raw material processing facilities 
is also an important source of neonicotinoids in the environ-
ment (Hubbard et al. 2022).

Occurrence of neonicotinoids in China’s 
environment

Neonicotinoids in the water

Regional occurrence

The water solubility of neonicotinoid pesticides allows them 
to be detected in diverse water environments throughout 
China, with concentrations ranging from not detected (ND) to 
3543.85 ng/L (Table 1). However, the majority of detected lev-
els are below 100 ng/L. Chinese researchers have focused their 
studies primarily on inland rivers, particularly in the southern, 
eastern, and central regions of the country, especially in the 
Yangtze River Basin and Pearl River Basin (Fig. 2). The detec-
tion in small watersheds is still relatively sparse, especially the 
research on surface water in the southwestern region, which 
has only involved sampling in the Yangtze River. Research on 
marine environments and groundwater regions is scarce. The 
author has created a bar graph depicting the detection of these 
pollutants in different regions of China, as shown in Fig. 3.

Spatial and seasonal distribution

According to the current data (Fig. 3), the detection of 
neonicotinoids in urban river Sects. (157.7 ng/L) was 3.73 
times higher than in other river Sects. (42.3 ng/L). Among 
urban river sections, the highest average detection concen-
tration was found in Beijing (446.67 ng/L), followed by 
Guangzhou (190.97 ng/L), and Changzhou Wujin District, 
northwest of Lake Taihu (88.86 ng/L) (Fig. 3). This con-
firms that the application of neonicotinoids in residential 
daily life and urban green space management also had a 
certain impact on urban aquatic ecosystems, especially in 
areas with high population density (Jia et al. 2023). Overall, 
neonicotinoid contamination in the surface waters of Eastern 

China was severely significant (Li et al 2023). However, 
in some southwestern areas, such as the Qilu Lake basin 
in Yunnan, the average concentration during summer can 
reach 2593.04 ng/L (Luo et al. 2023). The Southwest, one 
of China’s six major rice-growing regions, accounted for 
41.22% of the total grain output in 2014. Yet, due to a lack 
of scholarly focus, research on neonicotinoids in this area 
remains sparse, potentially not accurately representing the 
actual conditions in each province.

The concentration of neonicotinoids in rivers typically 
increases as they flow downstream. For example, down-
stream concentrations can be 1000 times higher than 
upstream in the Yangtze River, which may be related to the 
special distribution pattern of cities in China. Most river 
downstream areas are often located in many developed 
cities, such as the Yangtze Delta and Pearl River Delta, 
where various pollutants continuously converge. Whereas, 
the concentration of NEOs decreases during the migration 
process due to adsorption, transformation, degradation, and 
sedimentation. For example, the pollution levels of Dongting 
Lake and Poyang Lake, with the water inlet connected to the 
Yangtze River, are relatively lower compared to the Yangtze 
River (990 ± 490 ng/L), with concentrations of 144.07 and 
79.37 ng/L, respectively (Chen et al. 2019a). The concen-
tration ratio of the parent compound to the transformation 
products decreases during the transfer of neonicotinoids 
from paddy fields to receiving lakes, indicating that deg-
radation affects the residue of pollutants during the migra-
tion process (Xiong et al. 2021). For river basins, tributaries 
showed higher pollution levels than the mainstream. In the 
Hangzhou water system and Songhua River basin, tributaries 
have higher pollution levels than the mainstream (Liu et al. 
2021; Ying et al. 2022), possibly due to their direct con-
nection with agricultural emission sources and the dilution 
effect during the converging into the mainstream. Neoni-
cotinoids entering the sea also show a significant decrease 
in concentration, for example, with low detection levels in 
the seawater of Jiaozhou Bay (1.22 ng/L) and the Bohai 
Sea (0.56 ng/L). Groundwater detection levels are also 
lower than surface water, with an average concentration of 
13.61 ng/L (Mahai et al. 2021).

Seasonal distribution shows that detection levels are much 
higher during the rainy season compared to the dry season. 
For example, the concentrations of ∑NEOs were 2.51 and 
3.09 times higher in wet seasons than in dry seasons in the 
central Yangtze River, and in the Bohai Sea respectively 
(Mahai et al. 2019; Naumann et al. 2022). Additionally, 
due to the high water solubility of neonicotinoids and their 
transport through the xylem of plants to various parts, dry 
weather conditions can make it difficult for plants to trans-
locate neonicotinoids, thereby reducing the effectiveness of 
the pesticides and potentially leading to increased pesticide 
use (Khodaverdi et al. 2016).
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Neonicotinoids in the soil

Neonicotinoids can persist in soil for extended periods, 
sometimes exceeding several years. In citrus orchard soil 
that has been planted for 1 year, neonicotinoids can only be 
detected at a depth of 0–50 cm, while in soil that has been 
planted for 20 years, neonicotinoids can reach a depth of 
80–100 cm (Zheng et al. 2022). Compared to aquatic envi-
ronments, neonicotinoids have limited mobility in soil but 
longer retention time, necessitating attention to the risks 
posed by accumulation effects.

Regional occurrence

The levels of neonicotinoids in the soil vary greatly, with the 
concentration ranging from ND to 9643.9 ng/g, and the high-
est detection in Hainan’s farmland (Tan et al. 2023). Overall, 
areas with high concentrations of neonicotinoids were con-
centrated in the tropical regions of southern China. Given 
the varied detection methods across the current studies, the 
comparison between northern and southern regions’ data 
could lead to significant inaccuracies. It can be concluded 
from the soil neonicotinoid pollution map in China that the 
concentration of neonicotinoids in the soil of agricultural 
areas in the south (mean 27.21 ng/g) was higher than in the 
northern regions (mean 12.77 ng/g), and the provinces with 
the highest median concentrations were Fujian (109 ng/g), 
Yunnan (53.7 ng/g), and Guangdong (45.6 ng/g), possibly 
due to the humid climate that easily triggers pests and dis-
eases, necessitating the use of large amounts of pesticides 
(Hou et al. 2023).

Dominant congers

In most soils, IMI was the most widely detected 
neonicotinoid, due to its relatively low water solubility 
of 610  mg/L and strong adsorption potential in soil 
(Kurwadkar et al. 2013). However, the concentration of IMI 
detected varies significantly across the country. In major 
grain-producing areas, the IMI detection rate in Jiangsu, 
Zhejiang, Guangdong, and Jiangxi exceeds 96% (Gu et al. 
2023). The average total residual concentration of nine 
types of neonicotinoid insecticides in Zhejiang Province 
was 75.8 ng/g, with an IMI of 49.6 ng/g, accounting for 
60.4% of the total neonicotinoids (Chen et al. 2022a). IMI 
residues detected in Tianjin (101 ng/g) are higher than those 
in Shandong’s agricultural soils (1.90 ng/g) (Wu et al. 2020; 
Zhou et al. 2021). The IMI contribution rate exceeds 50% in 
orchards and rural areas, and 80% in parks and residential 
areas, indicating a prominent role in pest and disease 
control (Zhou et al. 2021).

The impact of land use and soil types

Neonicotinoid pollution levels in soils vary by land use 
types, influenced by crop types and the extent of arable 
land areas. Generally, the pollution level in farmland soil 
is the highest. In a soil survey in Tianjin, the average 
concentration of neonicotinoids in greenhouses was 4 to 
11.48 times higher than in orchards, parks, and residential 
areas (Zhou et al. 2021). The concentration in Guangzhou 
farmland (1.69 ng/g) was also higher than those in urban 
land use types (0.13–0.70 ng/g) (Ying et al. 2022; Zhang 
et al. 2020a). Further division of farmland showed that 
the median concentration of neonicotinoids in the Pearl 
River Delta was highest in vegetable fields, followed by 
rice paddies and orchards (Yu et al. 2021). In soil samples 
from vegetable cultivation areas, the residue levels of 
neonicotinoids were relatively high, with an average total 
concentration ranging from 27.55 to 157.64 ng/g, peaking 
at 1816.67 ng/g in tomato and pepper cultivation areas (Cui 
et al. 2023; Wu et al. 2020). This may be due to the high 
frequency of vegetable cultivation leading to higher pesticide 
use and resulting in higher pollution. Especially, the longer 
vegetable cultivation time in greenhouse environments and 
the enclosed environment are conducive to the retention of 
neonicotinoids. Furthermore, studies have shown that at a 
spatial resolution of 1 × 1 km2, neonicotinoid concentrations 
are significantly positively correlated with the coverage of 
arable land (Chen et al. 2022a).

In terms of soil properties, clay and organic particles can 
increase the persistence of pesticides in the soil (Morrison 
et al. 2022). The adsorption strength follows the order of 
black soils, fluvo-aquic soils, paddy soils, and red soils in 
China (Zhang et al. 2018). Soil types exhibit distinct geo-
graphic distribution patterns across regions. Black soil pre-
dominates in the Northeast region, and fluvo-aquic soil is 
the main soil type in the North China Plain, while paddy 
soils and red soil are primarily distributed in Southern China 
(Based on the Soil Science Database n.d.). A study by Hu 
et al. (2023) confirmed that red soil has a higher leaching 
potential than other soils, with the mass percentage range of 
neonicotinoids in the 20–30 cm leaching layer and leachate 
being 73.8 to 87.4%, indicating that red soils in the southern 
regions of the Yangtze River are more prone to neonicoti-
noid migration.

Neonicotinoids in the atmosphere

The vapor pressure of neonicotinoid insecticides generally 
ranges from 1.3 × 10−10 to 4.5 × 10−4 Pa (Raina-Fulton 2015). 
The low volatility means that they are primarily present in 
the atmosphere in the form of atmospheric particulate matter.
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Fig. 2   The total concentrations of nine neonicotinoids (ΣNEOs, average value) in China’s aquatic environment

Fig. 3   Average concentrations of neonicotinoids in different types of water bodies in China
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In the agricultural area, the air concentration level 
reached 80.9 pg/m3, and 13.1 × 106 pg/m3 at a distance 
of 10 m from the exhaust of pneumatic seeders, which is 
more severe than in the nearby urban areas (Zhou et al. 
2020b). Urban air neonicotinoid surveys in China have been 
conducted in Beijing, Taiyuan, Zhengzhou, Nanjing, Wuhan, 
and Shenzhen, which are representative of North China, 
Middle China, East China, and South China. According to 
the existing research data, Nanjing has the highest degree 
of urban air pollution, and IMI has the highest median 
concentration (45.2 ng/g), followed by ACE of 4.09 ng/g, 
far exceeding other regions (Chen et al. 2022c). IMI and 
ACE are registered for use in lawn greening and indoor 
pest control, indicating their widespread application in 
cities. With the increase in the usage of neonicotinoids, 
the concentration in the air also exhibits an upward trend. 
For example, the concentration of neonicotinoids in indoor 
dust in 2018 (geometric mean 86.1 ng/g) had significantly 
increased compared to 2016 (geometric mean 17.3 ng/g) in 
the Wuhan area (Wang et al. 2019), which may be due to 
the increase in the number of neonicotinoid registrations for 
household sanitation pesticides in China, from 87 types in 
2016 to 139 types in 2018.

Effects of neonicotinoids on organisms 
and the ecological risks

Neonicotinoids have been widely detected in organisms, 
including aquatic invertebrates, insects, and fish (Barmentlo 
et al. 2021; Hano et al. 2019; Lima-Fernandes et al. 2019). 
Previous studies showed that neonicotinoids had detrimen-
tal effects on aquatic organisms from the individual level 
to the community level, finally resulting in ecological risks 
(Sánchez-Bayo et al. 2016). In general, IMI shows the high-
est toxicity to non-target organisms, with the half-lethal 
concentration (LC50) progressively rising from insects to 
crustaceans, fish, birds, and mammals (Zhang et al. 2020b). 
Table 2 lists the toxicity data of non-target species to neo-
nicotinoids in China.

Toxic effects of neonicotinoids on fish

Research on the toxicity of neonicotinoids to fish in China 
usually uses zebrafish as test subjects. According to the 
results of seven local studies on the toxicity of neonicotinoids 
to fish in China, the sublethal toxicity of neonicotinoids to 
fish was specifically manifested in inducing oxidative stress 
effects, DNA damage, and changes in metabolite levels 
within the fish body. Studies by Yan et al. (2016) and Ge 
et al. (2015) respectively found that short-term exposure to 
0.3 mg/L THIM and IMI can induce oxidative stress and 

DNA damage in zebrafish, and DNA damage has an obvious 
dose–effect relationship. After 28 days, the antioxidant 
enzyme activity and the level of reactive oxygen species 
in the body were significantly different compared with the 
control group. THID and NIT exposure also affects oxidative 
stress, antioxidant enzyme activity, and DNA damage in the 
liver of zebrafish (Xie et al. 2022; Yan et al. 2015). Judging 
from the current studies, IMI caused the greatest damage to 
zebrafish DNA, with the Olive Tail Moment (OTM) > 20 
exposed to a concentration of 1.25 mg/L on the 7th day. 
However, OTM only exceeded 20 on the 28th day after 
exposure to 5 mg/L of THIM, while exposure to a 5 mg/L 
concentration of NIT for 28 days resulted in an OTM below 
8 (Ge et al. 2015; Yan et al. 2015; Yan et al. 2016). Zhang 
and Zhao (2017) found that ACE caused the metabolism of 
zebrafish head, serum, and liver (amino acid metabolism, 
TCA cycle, and neurotransmitter balance) interference, 
especially the liver was more sensitive to neonicotinoids. Ma 
et al. (2019) also showed that ACE affects the development 
of zebrafish and increases embryonic mortality and 
malformation rates.

Toxicity experiments under laboratory conditions have 
shown that neonicotinoids at high concentrations are 
subacutely toxic to zebrafish. However, the concentration 
of neonicotinoids in the environment was generally much 
lower than the mg/L level used in laboratory toxicity studies, 
and the toxicity damage to zebrafish at low concentrations 
still needs to be investigated. Yang et  al. (2023b) found 
that zebrafish exposed to 0.0001 mg/L THIM are more at 
risk of bioaccumulation, while exposure to 0.01  mg/L 
THIM will make them hyperactive and restless, with 
enhanced social activities, short-term memory loss, and 
other abnormal behaviors, which may increase predation 
risk for adult zebrafish and affect community safety. THIM 
at a concentration of 0.05 mg/L can cause a significant 
increase in the embryonic mortality rate of the Chinese rare 
minnows, Gobiocypris rarus, and a significant increase in the 
deformity rate of hatchling larvae (Zhu et al. 2023). Even 
at a concentration of 0.005 mg/L, THIM can cause a down-
regulation of functional gene transcript expression in larval 
fish (Zhu et al. 2023). Neonicotinoids at 0.5 mg/L or 2 mg/L 
cause oxidative stress and DNA damage in Gobiocypris rarus 
(Tian et al. 2020). The diverse pollutants in the environment 
may cause more severe damage to zebrafish than single 
pollutants. For instance, the toxicity of IMI is significantly 
enhanced when mixed with other types of insecticides (Wang 
et al. 2017). Judging from a survey from 2017 to 2021, the 
existing fishery resources in China’s Yangtze River are 
124,800 tons, which is only equivalent to 58.7% of the 1980s 
(Yang et al. 2023c). Apart from human overfishing, water 
pollution of the neonicotinoid pesticides has contributed to 
the deterioration of fish habitats (Lin et al. 2023).
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Table 2   Toxicity of neonicotinoids to non-target organisms

Organisms Species NNIs Does Exposure time Effect LC50/EC50 Reference

Zebrafish Danio rerio THID 1, 10, 100, 
1000, and 
10,000 µg/L

20 days Developmental 
toxicity and 
oxidative 
stress; hypoac-
tivity; behavio-
ral alterations; 
neurotoxicity

Xie et al. 2022

Zebrafish Danio rerio IMI 0, 0.3, 1.25, and 
5 mg/L

7, 14, 21, and 
28 days

Oxidative stress 
and DNA 
damage

Ge et al. 2015

Zebrafish Danio rerio THIM 0.30, 1.25, and 
5.00 mg/L

7, 14, 21, and 
28 days

Oxidative stress 
and DNA 
damage

Yan et al. 2016

Zebrafish Danio rerio THIM 0.1, 10, and 
1000 μg/L

Abnormal 
behavior; brain 
tissue lesions

Yang et al. 2023b

Zebrafish Brachydanio 
rerio

ACE 2.4 mg/L 4 days Impaired 
metabolism of 
head, serum, 
and liver

Zhang and Zhao 
2017

Zebrafish Danio rerio NIT 0.6, 1.2, 2.5, and 
5.0 mg/L

7, 14, 21, and 
28 days

Oxidative stress 
and DNA 
damage

Yan et al.  2015

Minnows Gobiocypris 
rarus

IMI, NIT, and 
DIN

0.1, 0.5, or 
2.0 mg/L

60 days Oxidative stress 
and DNA 
damage

Tian et al. 2020

Minnows Gobiocypris 
rarus

THIM 0, 0.5, 5, 50 μg/L 28 days Teratogenesis 
and death of 
larvae; expres-
sion levels of 
some func-
tional genes 
are down-
regulated

Zhu et al. 2023

Quails Coturnix 
japonica

IMI 20–45.75 mg/kg 
body weight

7 days Significant 
reduction in 
weight and 
food consump-
tion

30.25 mg/kg Deng et al. 2013

Quails Coturnix 
japonica

THIM 5 mg/kg body 
weight

24 hours THIM was rap-
idly absorbed, 
distributed, 
metabolized, 
and eliminated

Pan et al. 2022

Bee Apis mellifera ACE 0, 5, and 
25 mg/L

Interference with 
birth weight 
and emergence 
rate of newly 
emerged bees; 
shortened 
lifespan

Shi et al. 2020

Bee Apis mellifera IMI, and CLO IMI (6–14 ng/
bee)

CLO (1.6–
2.4 ng/bee)

24 hours Downregulation 
of activ-
ity of some 
detoxification 
enzymes; 
lethal effects

IMI: 8.6 ng/bee
CLO: 2.0 ng/bee

Li et al. 2017
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Toxic effects of neonicotinoids on birds

In the USA and the Netherlands, it has been reported that the 
decline in bird populations is closely related to the increased 
use of neonicotinoids (Hallmann et  al. 2014; Li et  al. 
2020). However, there are no official statistics on the bird 
population in China (Hallmann et al. 2014). The main effects 
of neonicotinoids on birds are physiological and reproductive 
harm. Consuming invertebrates contaminated with 
neonicotinoids and eating seeds coated with neonicotinoids are 
the main ways of exposure (Eng et al. 2019). Neonicotinoids 
are less toxic to birds, and their effects can be eliminated 
quickly with less exposure over a short period. Pan et al. 
(2022) showed that even after oral administration of 5 mg/
kg body weight of THIM to Coturnix japonica, it was rapidly 
metabolized or eliminated within 4 h so that the contaminant 
could not be detected in the plasma. It is worth noting that 
the metabolism of THIM is accompanied by the production 
of its metabolite CLO, whose rapid increase may result in 
comprehensive exposure risks (Pan et al. 2022). Under the 
same toxicity experiment, it was observed that neonicotinoids 
can have varying effects on different individuals, likely due to 
genetic differences, age, and other factors. For example, male 
Coturnix japonica exposed to IMI showed hyperactive and 
nervous states such as being easily frightened, while females 
showed reduced activity and dyskinesia (Deng et al. 2013). 
Neonicotinoids reduce the feeding and movement of birds 
and cause migration delays, which may affect their survival 
and reproduction and cause population declines (Eng et al. 
2019). There are currently nine bird migration corridors in 
the world, four of which pass through China. Among them, 
Poyang Lake, the most important waterbird wintering ground 
on the “East Asia-Australasia” migratory bird migration route, 
has been contaminated by neonicotinoids (Wang et al. 2023a). 
Although endangered birds are concentrated in areas that have 

been less impacted by human activities, the threat to them 
after the widespread use of neonicotinoids cannot be ignored 
(Yang et al. 2021). Future studies should focus more on the 
effects of neonicotinoids on seed-feeding and migratory 
birds, as these populations are at high risk of toxicity and may 
provide critical insights into the broader ecological impacts.

Toxic effects of neonicotinoids on bees

The two main bee species in China are Apis mellifera Lin-
naeus and Apis cerana Fabricius (Yue et al. 2018). Apis mel-
lifera may be exposed to more neonicotinoids than A. cerana 
because the detection rate and concentration of neonicotinoids 
in honey produced by A. mellifera are higher (Wang et al. 
2020). Studies have compared the sensitivity of two bee spe-
cies to neonicotinoids, but the results have been inconsistent. 
Li et al. (2017) found that IMI and CLO were more toxic to A. 
cerana than A. mellifera, with acute oral median lethal dose 
of 2.7 and 8.6 ng/bee (IMI) and 0.5 and 2.0 ng/bee (CLO) 
respectively. Research by Yue et al. (2018) shows that A. mel-
lifera was more sensitive to IMI than A. cerana. The differ-
ences in study results may be due to various factors such as 
the genetic characteristics of the bees (Rinkevich et al. 2015), 
age (Rinkevich et al. 2015), or environmental temperature 
(Saleem et al. 2020). In general, the order of toxicity of neo-
nicotinoids to bees was CLO > THIM > IMI > DIN > NIT > 
ACE (Yue et al. 2018). Orally administering 0.2 ng of THIM 
will increase the average return time, flight speed, flight dis-
tance, and flight duration for A. cerana, thereby impairing 
its homing ability (Ma et al. 2019). The cognitive ability of 
A. cerana to avoid predators was reduced when feeding on 
nectar containing 40 mg/L IMI (Tan et al. 2014). ACE affects 
the emergence and development of A. mellifera larvae and 
shortens the lifespan of adult bees (Shi et al. 2020). Multiple 
pressures such as environmental changes and pesticides have 

a ACE, acetamiprid; IMI, imidacloprid; CLO, clothianidin; THIM, thiamethoxam; THID, thiacloprid; DIN, dinotefuran; NIT, nitenpyram

Table 2   (continued)

Organisms Species NNIs Does Exposure time Effect LC50/EC50 Reference

Bee Apis cerana IMI, and CLO IMI (1–5 ng/bee)
CLO (0.2–1 ng/

bee)

24 hours Increased activ-
ity of some 
detoxification 
enzymes; 
lethal effect

IMI: 2.7 ng/bee
CLO: 0.5 ng/bee

Li et al. 2017

Bee Apis cerana IMI 10, 20, and 
40 mg/L

Reduce predator 
avoidance 
behavior; 
inhibit worker 
bees from 
foraging

Tan et al. 2014

Bee Apis cerana THIM 0.2 ng/bee Muscle agita-
tion; impaired 
learning ability

Ma et al. 2019
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led to a decline in bee populations (Liu et al. 2018). China has 
enacted bans on 46 highly toxic pesticides and imposed usage 
restrictions on 22 other highly toxic pesticides, contributing 
to the protection of pollinating insects. However, it has not 
yet established targeted policies akin to those in place in the 
European Union and Canada.

Many studies have reviewed the ecological risks of aquatic 
invertebrates (Malhotra et al. 2021; Zhang et al. 2020b), and 
through the species sensitivity distribution method and joint 
probability distribution curve method, it was found that neo-
nicotinoids pose the highest threat to aquatic insects, especially 
Chironomus dilutus (Fan et al. 2022; Wang et al. 2023b). A com-
prehensive analysis of species sensitivity distribution, based on 
214 toxicity tests across 48 species, predicted ecological thresh-
olds for neonicotinoid concentrations in the water environment of 
2 × 10−4 mg/L for short-term acute exposure and 3.5 × 10−5 mg/L 
for long-term chronic exposure (Morrissey et al. 2015). The 
total neonicotinoid concentration in most of China’s surface 
water exceeds the chronic toxicity ecological threshold. At 49 
sampling points in the Pearl River, neonicotinoid concentrations 
exceeded 35 ng/L, with 15.4% of these points showing levels 
above 2 × 10−4 mg/L (Zhang et al. 2019). Near the Bohai Sea, 
72.2% of the 36 rivers were under chronic toxicity, and 8.3% 
were under acute toxicity (Naumann et al. 2022). Among the 
water samples collected from 12 sites along the Yangtze River 
Basin in wet seasons, neonicotinoid concentrations in 58.3% of 
samples were above the chronic toxicity threshold, and 33.3% 
exceeded the acute toxicity threshold. In the surface water of 
Beijing and the Qilu Lake Basin, although concentration data for 
each sampling point was unavailable, their overall average value 
was significantly higher than 2 × 10−4 mg/L, indicating that most 
aquatic organisms in these waters were likely subjected to acute 
toxicity. Although the survey data were not sufficiently compre-
hensive, these studies indicated the potential for both short-term 
and long-term impacts of neonicotinoids on aquatic invertebrate 
species in China.

Conclusion

This article discusses the sources of neonicotinoids (mainly 
agricultural and urban non-point sources) and analyzes the 
factors affecting their distribution based on China’s regional 
characteristics, as well as their toxicity and ecological risks 
to organisms. The presence of these compounds has been 
widely documented across various environmental compart-
ments, including water, soil, and atmosphere, with detection 
no longer confined to agricultural areas, as urban contribu-
tions are increasingly recognized. The southern climate pro-
vides advantages for pest reproduction and multiple planting 
cycles, and rainfall plays a significant role in the detection 
rate of pesticides. Urban activities, such as park greening and 
household pesticide use, also contribute to their presence in 

cities. The distribution surveys of neonicotinoids in China’s 
aquatic environments are predominantly concentrated in the 
eastern river basins (such as the Yangtze River Basin, the 
Pearl River Basin, the Huai River Basin, and the Yellow River 
Basin). The southwestern region of China (such as Guizhou 
and Guangxi) boasts rich agriculture, but currently lacks sur-
veys on the distribution of neonicotinoids within the area. 
The latest surveys are continuously filling the gaps in pol-
lution data, but there is still a lack of specific data on the 
usage of neonicotinoid pesticides in various applications, and 
further analysis of their sources. The regulated application 
of neonicotinoids will play a crucial role in elucidating the 
origins of neonicotinoid residues and control of pollution lev-
els. Under laboratory conditions, neonicotinoids have shown 
chronic toxicity, and in densely populated areas of China, the 
detection of neonicotinoids exceeds the predicted ecological 
threshold, potentially causing significant ecological harm in 
the long term. It is worth noting that the combined toxicity 
of neonicotinoids and other pesticides may be greater than 
their individual effects. While some countries have restricted 
certain neonicotinoids, the existing compounds in the soil will 
continue to leach into the water environment, highlighting 
the need for continued risk assessment, particularly in China 
where restrictions have not been issued.
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