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Abstract
Assessing environmental exposure to pollution is a challenging task, and scientists often use distance-based or proximity 
indicators when field or modeled data are unavailable. Although buffers are commonly used to represent the impact of a 
pollution source on neighboring populations, they can result in high-exposure misclassification. Euclidean distance-based 
indicators offer a promising alternative, but practices vary significantly in the literature. In this study, we aimed to compare 
several distance-based indicators for multiple environmental contaminants in an industrial and urban area. At the popula-
tion’s grid cell resolution of 200 × 200 m, we compared the distance to the closest source, the average or median distance to 
all sources, or a restricted number of nearby sources for six types of sources (industries, railways, rail areas, roadways, road 
crossings, and agricultural patches) against environmental contamination data  (PM10,  NO2, and multimetallic contamination 
in lichens). Our findings revealed that the representativeness of contamination by indicators is significantly affected by the 
type and number of nearby sources considered. Specifically, we found that considering the distance to the nearest source or 
the average distance to all sources can lead to exposure misclassifications. The optimal correlation between distance indica-
tors and pollutant levels was observed when considering 10–14 of the closest industrial sources, located within a 4.9- to 
5.5-km radius. For rail areas, the optimal number was two to three sources within a 5.4- to 7.4-km radius. For main roads, 
intersections, and railways, the optimal number of sources varied depending on the pollutant, generally falling within a 3- 
to 9.4-km radius. Environmental contamination is influenced by the diversity of nearby sources, and considering only one 
source increases the risk of misclassification. Our results suggest that proximity models are still appropriate for study areas 
where the etiology of existing health effects is unclear, providing an exploratory analysis before more sophisticated research.
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Introduction

Assessing environmental exposure to air, water, and soil 
contamination is a significant challenge in public health 
risk prevention. This assessment enables the identification 
of populations at risk and estimation of the environment’s 
contribution to the occurrence and aggravation of chronic 
diseases. However, the scientific community faces difficul-
ties in precisely measuring the population’s exposure to all 
environmental pollutants in large areas. In situ characteriza-
tion of environmental mixtures is challenging due to high 
costs, logistics, and spatiotemporal representativeness of 
the measurement. New technologies such as micro-sensors 
or spatial modeling (dispersion, interpolation, or land use 
regression models) can provide measurements or estimates 
of some pollutants.
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Geographic Information Systems (GIS) have expanded 
the capacity to assist the scientific community in developing 
exposure proxies. Proximity or distance-based models are 
widely used in exposure modeling, helping to assess and pri-
oritize multiple environmental contaminations (typologies, 
pollutant families, sources, and potential exposure path-
ways) instead of measuring a specific pollutant in a specific 
medium (Hoek et al. 2018). According to Tobler’s first law 
of geography (Tobler 1970), these models assume that levels 
of pollution tend to decline with distance from the source, 
and people living near emission sources are usually more 
highly exposed than those living further away. Proximity to 
emission sources has been used as a proxy for exposure since 
the mid-1990s and appears to offer a simple, rapid, easy-
to-use, and cost-effective measure, especially in a context 
where GIS has become a widespread tool among both the 
scientific and management communities (Han et al. 2017).

Most studies employing proximity methods referenced 
in the literature are based on the buffer methodology (Zou 
et al. 2009; Chakraborty et al. 2011; Pascal et al. 2013). 
This method involves defining a concentric surface of 
variable size that represents the contaminated area around 
sources or the populations’ environment. However, several 
drawbacks have been identified, which could result in high-
exposure misclassification (Chakraborty et al. 2011; Pascal 
et al. 2013; Tenailleau et al. 2015). The main limitation of 
buffers is the creation of an artificial boundary effect. The 
buffer method requires setting a distance from the source 
within which people are considered exposed, while those 
outside are not. This creates an artificial boundary that does 
not accurately reflect the gradient of exposure and can result 
in significant misclassification. The second limitation is the 
lack of standardization. There is no standardized directive 
or consensus on setting an efficient threshold for buffer dis-
tances. This often leads to arbitrary decisions, making com-
parisons between studies difficult and reducing the reliability 
of exposure assessments. Finally, there is the homogeneity 
assumption. Buffers assume homogeneous exposure within 
the defined area, ignoring variations in pollutant dispersion 
influenced by distance and other factors such as topography, 
weather conditions, and source characteristics.

To overcome this limitation, utilizing the continuous 
Euclidean distance between a source and the target popula-
tion is an appealing alternative to the qualitative measure 
derived from buffers (Chakraborty et al. 2011). Current 
geographic and epidemiological practices define targets as 
individual households, while at an ecological level, it may be 
the centroid or boundary of official spatial units or popula-
tion grids. Distance indicators used in the literature can vary 
greatly, such as the distance to the nearest source, the mean 
distance to all sources within the territory, or the mean dis-
tance from all sources within a set radius (Kihal-Talantikite 
et al. 2017). However, these various practices have not been 

the subject of fundamental questions such regarding their 
association with environmental contamination.

Which distance indicator is more relevant—the clos-
est source, the average/median distance to all sources in 
the study area, or the average/median distance to several 
nearby sources? We hypothesize that neither the distance to 
the closest source nor the average distance to all sources in 
the territory are the most suitable indicators. In this context, 
what is the optimal number of sources to consider? Moreo-
ver, do these distance indicators highlight differences in the 
contribution of various sources to environmental contami-
nation in a study area? Specifically, we seek to understand 
if the spatial distribution of contamination is more closely 
associated with the distance indicator for a particular type 
of source (industrial, road, rail, agricultural).

In this study, Euclidean distance indicators (considered 
a vector of atmospheric exposure) were computed between 
population grids (the targets) and various sources of air pol-
lutant emissions. The correlation between these indicators 
and the level of environmental contamination for several 
pollutants modeled in the same grids was then evaluated. 
These issues were investigated in the specific context of the 
Dunkirk area in the North of France, where populations are 
exposed to multiple emission sources and a strong industrial 
influence.

Material and methods

Studied location

The Dunkerque Urban Community (CUD) is an urban area 
consisting of 17 municipalities located on the northern coast 
of France (Fig. 1). It is a medium-sized urban area with a 
population of 198,000 inhabitants and is home to several 
heavy industries (such as petrochemicals, chemicals, metal-
lurgy, and energy production) that contribute to high levels 
of air pollution (Lanier et al. 2019). The average annual pol-
lution levels for  PM10 (particulate matter with an aerody-
namic diameter ≤ 10 μm) and  NO2 are 22 µg/m3 and 16 µg/
m3, respectively, and have decreased over the past 10 years 
(Atmo Hauts-de-France 2019). Most of the industrial activi-
ties are concentrated in a central industrial zone along the 
coastline, which is surrounded by a densely populated urban 
area where socioeconomically disadvantaged populations 
have lived for generations (Occelli et al. 2016). This indus-
trial area is served by numerous roads and railways used 
for freight and cargo transportation. A main highway runs 
through the urban area from east to west, and two others 
from north to south. There are several agricultural areas 
along the city border, used to cultivate wheat (~ 30%), pota-
toes (~ 10%), beets (~ 8%), linen (~ 6%), and various other 
crops. Approximately 30% of the agricultural land is used as 
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fallow and buffer zones between crops and industrial activi-
ties. Detailed information was not available on the environ-
mental contamination from crop protection products.

Data origins

Pollution sources data

Industrial sources Spatial distribution of industrial sources 
in the CUD area was obtained from the Géorisques database 
(Transition and écologique et de la Cohésion des territoires 
2021). This open database registers all French Installations 
“Classified for the Protection of the Environment” (ICPE), 
which are major industrial sites considered to pose a poten-
tial threat to public health or environmental quality due to 
the nature of their activities (e.g., petrochemistry, chemistry, 
metallurgy, or energy production). In the CUD area, there 
were 158 industrial sites. The point location was used for 
each activity.

Railway sources Two types of railway sources were con-
sidered, both obtained from the French National Institute 
for Geographic and Forest Information (IGN) BDTOPO® 
database (IGN 2021a). The choice was made to separate rail 

sources between (i) linear sources, which are mostly heavy-
duty railways used by diesel freight trains, and (ii) surface 
sources which are rail stations and sorting/parking areas 
where trains are maintained and cargos are loaded. This rep-
resents different situations either where trains are moving at 
medium to high speed with a hot engine or where they are 
parked and running with cold and low-speed engines, pos-
sibly resulting in different emissions situations. The loading 
of materials, such as ores, is also a source of dust emissions. 
There were 1255 railway segments and 19 rail areas in the 
CUD area.

Road sources Road sources are of two types: road crossings 
and highway segments. Road crossings are considered to 
be indicators of intra-urban road-traffic emissions, where 
vehicles, mostly private cars, are traveling at medium or 
low speeds with frequent stops or slowdowns due to traffic 
congestion. Highway segments represent high traffic emis-
sions that may be produced by both private cars and heavy 
vehicles traveling at high speeds in free-flowing traffic. Both 
sources of data were obtained from the IGN BDTOPO® 
database which provides road types and spatial distribution 
across the country. Highway segments were selected as all 
roads with an “importance” value < 3. The “Importance” 
attribute materializes a hierarchy of the road network, based 

Fig. 1  The Dunkerque Urban Community area: spatial distribution of population grids and pollution sources
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on the importance of road sections for road traffic. Grades 
1–3 correspond to the major routes between big cities. Road-
way crossings were generated from the spatial distribution 
for all road types. The ESRI ArcGIS 10.7 software (ESRI 
2021) was used to identify the intersection points where 
three or more road segments met. Overpasses were deleted 
thanks to the difference of elevation level. In the CUD area, 
there were 14,548 intersections and 930 main road segments.

Agricultural sources Agricultural sources were obtained 
from the IGN Agricultural Patch Registry (IGN 2021b) 
which geolocates agricultural patches (crops polygons) 
across the country. All the 7737 patches located inside the 
CUD were retained.

Population (target) data

The National Institute for Statistical and Economic Studies 
(INSEE) population grid (INSEE 2021) was used to pro-
vide target population data. This grid divides the county into 
200 × 200 m cells and provides socio-occupational informa-
tion on the population whose housing is located inside said 
cells. The centroid of each grid whose population was above 
zero was computed and used as a target for calculating the 
distance to pollutant emission sources. In the CUD area, 
there were 3163 target cells (Supplementary Results: SR1).

Environmental contamination data

Air pollution data were obtained from the local official asso-
ciation for air pollution monitoring Atmo Hauts-de-France 
(Atmo Hauts-de-France 2014). These data were computed 
by the latter following standardized protocols using official 
building and industrial emissions, and local traffic counts, as 
inputs in ADMS-urban software (CERC 2022). Yearly aver-
age  PM10 and  NO2 concentrations were calculated for the year 
2014, at 2 m above ground, following a 25 × 25 m grid resolu-
tion. Contamination of target population cells (200 × 200 m) 
was evaluated for each pollutant as the average value of all 
25 × 25 m cells below. Due to the spatial coverage of available 
models, only 2751 population cells received  NO2 and  PM10 
contamination values (Supplementary Results: SR2 & SR3). 
The uncovered cells correspond to the extreme west of the 
study area, mostly occupied by a nature reserve. Both pollut-
ants show a similar distribution in the urban area and a high 
correlation (Spearman’s rho = 0.88, p < 0.01).

Metal contamination has been evaluated using data 
obtained from a 60-point lichen-gathering campaign con-
ducted in 2009 (Occelli et al. 2014). Total concentrations 
of 18 trace elements were evaluated and used to compute a 
multimetallic contamination index: the mean impregnation 
ratio (MIR) (Occelli et al. 2016). In this study, the MIR value 
at the target population cell was evaluated using empirical 

Bayesian kriging computed in ESRI ArcGIS 10.7 Geosta-
tistical Analyst tool (Krivoruchko 2012). Due to the spatial 
distribution of sampled values, only 2917 cells received MIR 
values (Supplementary Results: SR4). The uncovered cells 
also correspond to the extreme west of the study area. Metal-
lic and atmospheric contamination in the metropolitan area 
shows some similarity and a good correlation (SR = 0.71 and 
p < 0.01 for both  NO2 and  PM10).

Distance indicators

Euclidian distance between each target (population grid cen-
troid) and each source was computed using ESRI ArcGIS 
10.7 Spatial Analyst tools. Three distance-based indicators 
were then computed for each target using R-statistics 3.5.1 
(Posit 2022): the distance to the first/closest source (DMin); 
the average distance to all sources (DAvg); the median dis-
tance to all sources (DMed). Distance indicators were com-
puted independently for all six types of sources (industries, 
railways, rail areas, roadways, road crossings, and agricul-
tural patches). To study the impact of the number of consid-
ered sources on indicator quality, DAvg and DMed indica-
tors were computed for the first to the N sources, where N is 
the maximum number of available sources in the area.

Indicators’ evaluation and validation

To assess the relationship between distance indicators and 
environmental contamination, Spearman’s rho (SR) and 
R-statistics 3.5.1 were used to compare DMin, DAvg, or 
DMed with  NO2,  PM10, or multi-metal contamination for 
each target grid centroid. As contamination levels are gen-
erally higher in the proximity of sources and decrease over 
distance, a negative correlation between pollution and dis-
tance to sources was expected.

To examine the correlation dynamics, graphs depicting the 
SRs for DMin, DAvg, and DMed were generated as a function 
of the number of sources considered. As DMin represents 
the distance to the nearest source, its correlation with pollu-
tion remained the same regardless of the number of sources 
included in the calculation. However, the average and median 
distance indicators, and therefore their correlation with pol-
lutants, are expected to vary based on the number of nearby 
sources taken into account. Knee points, indicating a signifi-
cant change in the curve dynamics, were identified.

To determine the best distance indicator, the SRs were 
then compared according to four conditions:

 (i) First source: the distance to the closest source 
(DMin).

 (ii) All sources: the average (DAvg) or median (Dmed) 
distance to all sources observed in the territory.
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 (iii) Plateau: the average (DAvg) or median (Dmed) dis-
tance to the n (from 1 to N) nearby sources for which 
the highest SR value was observed.

 (iv) Optimal point: the average (DAvg) or median (Dmed) 
distance to the n (from 1 to N) nearby sources for 
which a high SR value was observed for a minimum 
number of nearby sources. This was graphicly deter-
mined using the Pythagorean theorem (a2 + b2 = c2), as 
the nearest point from the coordinate [0; − 1] observed 
on the graph. We considered a the number of sources 
considered on the abscissa axis, b the value corre-
sponding to (− 1) – SR on the ordinate axis, and c the 
hypotenuse, i.e., the distance between the point [a;b] 
and the coordinate [0; − 1]. The Optimal point cor-
responds to the lowest value observed for c.

Results

Dynamic of correlations between distance 
indicators and environmental contamination

Our first results indicated that all three distance-based indi-
cators were strongly correlated to environmental contami-
nation and that the SR values varied significantly depend-
ing on the number of nearby sources considered (Fig. 2 and 
Table 1), except for the DMin indicator. Since the DMin 
indicator (orange line) represents the distance to the closest 
source, the SR did not change regardless of the number of 
sources considered. The DAvg (green line) and the DMed 
(blue line) indicators both behaved similarly: the level of 
correlation increased with the number of sources until it 
reached a first knee point or a succession of knee points, then 
a plateau beyond which correlation levels tended to slowly 
decrease (Fig. 2).

Results also indicated that the observed dynamic was 
similar for all three concerned contaminations, with simi-
lar curves (Fig. 2). SR values ranged from − 0.45 to − 0.84 
for  NO2, from − 0.42 to − 0.85 for  PM10, and from − 0.35 
to − 0.85 for MIR when considering industrial, road, and rail 
sources (Table 1). When considering agricultural sources, 
they ranged from − 0.13 to + 0.70 for  NO2, − 0.05 to + 0.77 
for  PM10, and − 0.19 to + 0.61 for MIR.

While a single knee point was observed for distances 
to industries, intersections, and rail areas (point or surface 
sources), multiple knee points were seen for distances to 
main roads and railways (line sources). Here again, both 
DAvg and DMed behaved similarly. The DMoy and DMed 
curves for agricultural patches contrasted with the other 
sources. The positive correlation shifted towards negative 
as the proportion of sources increased. As the CUD is an 
industrial area, air emissions due to local agricultural activi-
ties seem to be in the minority compared to the others. This 

accounts for only 3% of particulate emissions (Zhang et al. 
2019). Thus, further results regarding agricultural sources 
will not be presented.

A slight difference between DAvg and DMed was 
observed. This varied depending on the type of source 
considered.

Industrial activities (n = 158 plants) A difference of the SR 
was observed for a small number of sources (less than 15 
industrial plants), then a convergence from 20 to 30 nearby 
sources. This may be explained by two different patterns 
of the geographical distribution between industries and 
inhabited areas on the CUD territory (Fig. 1). The first 
pattern corresponds to population grids located very close 
to a high density of industrial plants (less than 2 km). Two 
major industrial areas surround the main urban area (30% of 
the population grids): on the seafront in the north housing 
40% of the plants with steelworks and petrochemicals 
activities; in the center of the area corresponding to 20% 
of the plants involving diversified activities such as waste, 
food processing, construction, and other manufacturing 
activities. A third comparable area stands out in the 
northwest and corresponds to 10% of the population grids, 
and 20% of the industrial plants with nuclear power plants, 
steelworks, and food processing activities. The second 
pattern (50% of the grids) corresponds to grids located in 
towns and villages further away from the major industrial 
zones. The distance to the nearest plant is less than 3 km but 
could be much higher (5–10 km) for the other sites. DAvg 
was more strongly impacted by high distance values than 
DMed, so it may have seemed more representative of both 
profile categories.

Railways (n = 1255 segments) As railways are strongly 
linked to the economic activity in this area, their spatial dis-
tribution is close to industrial activities, and similar behav-
iors of SRs were observed.

Rail areas (n = 19 areas) SRs were close for DAvg and DMed 
up to 20% of the sources (three to four areas). Beyond this 
threshold, slight differences were observed. This could be 
explained by the small number of such sources and their 
strong clustering in the major industrial areas on the sea-
front, the center, and the east. This also explains the small 
difference with DMin. We also noted that the graph for rail 
areas and MIR corresponded to the only condition for which 
DMin performs better than DAvg and DMed.

Intersections (n = 14,548 points) and main roads (n = 930 seg‑
ments) DAvg and DMed showed similar behavior up to 50% 
of nearby intersections, which corresponded to a distance 
of more than 15 km, and up to 15% of nearby main roads, 
which corresponded to a distance of about 6 km. This small 
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difference may be related to the more continuous distribu-
tion of roads and intersections over the territory, in contrast 
to the other types of sources for which there are hotspots. 
Beyond these thresholds, it is difficult to explain the different 

behaviors of the two indicators. The differences observed 
between DAvg and DMed for 15–35% of main roads, corre-
sponding to a distance of 7–8 km, could reflect the distances 
between the main cities of the territory.

Fig. 2  Graphic matrix (six types of sources × three environmental contamination). Each graph shows Spearman’s rho evolution according to the 
proportion of considered sources (from the closest to 100%)
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The optimal number of considered sources

Our findings indicated that the best representation of envi-
ronmental contamination was neither obtained by consider-
ing all sources nor the closest (Table 2). For both DAvg and 
DMed, the correlation was always higher for the optimal 
point and for the plateau than when considering the closest 

source or all sources. SR values observed for the optimal 
point and the plateau were identical or very close in nearly 
all situations, with usually a 0.01 difference in favor of the 
plateau. Only main road sources showed slightly higher dif-
ferences between the optimal point and plateau (SR were 
respectively − 0.72 and − 0.83 for  NO2; − 0.77 and − 0.81 for 
 PM10; and − 0.72 and − 0.76 for MIR). As the number of 

Table 1  Range (min–max) of statistical correlations (Spearman’s rho) between observed environmental contamination and distance-based indi-
cators per type of sources

Distance indicator Industries Main roads Intersections Railways Rail areas Agricultural patches

Modelled  NO2

DMin  − 0.551 to − 0.551  − 0.579 to − 0.579  − 0.446 to − 0.446  − 0.631 to − 0.631  − 0.692 to − 0.692 0.625 to 0.625
DAvg  − 0.840 to − 0.551  − 0.833 to − 0.579  − 0.827 to − 0.446  − 0.836 to − 0.631  − 0.824 to − 0.692  − 0.125 to 0.696
DMed  − 0.824 to − 0.551  − 0.803 to − 0.579  − 0.820 to − 0.446  − 0.825 to − 0.631  − 0.828 to − 0.692  − 0.066 to 0.698
Modelled  PM10

DMin  − 0.480 to − 0.480  − 0.419 to − 0.419  − 0.511 to − 0.511  − 0.624 to − 0.624  − 0.714 to − 0.714 0.705 to 0.705
DAvg  − 0.806 to − 0.480  − 0.808 to − 0.419  − 0.852 to − 0.511  − 0.845 to − 0.624  − 0.836 to − 0.714  − 0.047 to 0.769
DMed  − 0.804 to − 0.480  − 0.791 to − 0.419  − 0.839 to − 0.511  − 0.835 to − 0.624  − 0.831 to − 0.714 0.023 to 0.769
Multimetallic contamination (MIR)
DMin  − 0.479 to − 0.479  − 0.411 to − 0.411  − 0.347 to − 0.347  − 0.509 to − 0.509  − 0.817 to − 0.817 0.495 to 0.495
DAvg  − 0.762 to − 0.479  − 0.762 to − 0.411  − 0.738 to − 0.347  − 0.814 to − 0.509  − 0.848 to − 0.707  − 0.186 to 0.605
DMed  − 0.772 to − 0.479  − 0.746 to − 0.411  − 0.745 to − 0.347  − 0.829 to − 0.509  − 0.848 to − 0.677  − 0.099 to 0.608

Table 2  Evolution of the statistical correlations (Spearman’s rho) 
for a different proportion of sources included in the computation: 
the nearest source, the optimal point (determined as the nearest point 

from the coordinate [0; − 1]), the plateau, and all the sources. Data 
presented for DAvg only to optimize table readability

NO2 PM10 MIR

% sources DAvg Rho % sources Davg Rho % sources Davg Rho

Industries 1st source 1 1338 m  − 0.55 1 1338 m  − 0.48 1 1338 m  − 0.48
Optimal point 10 (6%) 4852 m  − 0.84 11 (7%) 5037 m  − 0.80 11 (7%) 5037 m  − 0.76
Plateau 10 (6%) 4852 m  − 0.84 14 (9%) 5485 m  − 0.81 13 (9%) 5317 m  − 0.76
All sources 158 29,373 m  − 0.73 158 29,373 m  − 0.72 158 29,373 m  − 0.68

Main roads 1st source 1 1278 m  − 0.58 1 1278 m  − 0.42 1 1278 m  − 0.41
Optimal point 52 (6%) 3173 m  − 0.72 199 (21%) 6690 m  − 0.77 220 (24%) 7053 m  − 0.72
Plateau 297 (32%) 8273 m  − 0.83 309 (33%) 8589 m  − 0.81 310 (33%) 8610 m  − 0.76
All sources 930 30,991 m  − 0.72 930 30,991 m  − 0.71 930 30,991 m  − 0.67

Intersections 1st source 1 209 m  − 0.45 1 209 m  − 0.51 1 209 m  − 0.35
Optimal point 1247 (9%) 8627 m  − 0.81 504 (3%) 5792 m  − 0.85 1560 (11%) 9427 m  − 0.73
Plateau 2653 (18%) 12,354 m  − 0.83 1947 (13%) 10,430 m  − 0.85 2201 (15%) 11,075 m  − 0.74
All sources 14548 62,251 m  − 0.74 14548 62,251 m  − 0.75 14548 62,251 m  − 0.67

Railways 1st source 1 1796 m  − 0.63 1 1796 m  − 0.62 1 1796 m  − 0.51
Optimal point 13 (1%) 3058 m  − 0.80 108 (9%) 5961 m  − 0.84 26 (2%) 3562 m  − 0.81
Plateau 242 (19%) 8380 m  − 0.82 158 (13%) 6928 m  − 0.85 26 (2%) 3562 m  − 0.81
All sources 1255 28,530 m  − 0.76 1255 28,530 m  − 0.76 1255 28,530 m  − 0.70

Rail areas 1st source 1 3625 m  − 0.69 1 3625 m  − 0.71 1 3625 m  − 0.82
Optimal point 2 (11%) 5469 m  − 0.81 2 (11%) 5469 m  − 0.82 2 (11%) 5469 m  − 0.85
Plateau 3 (16%) 7458 m  − 0.82 3 (16%) 7458 m  − 0.84 2 (11%) 5469 m  − 0.85
All sources 19 22,713 m  − 0.76 19 22,713 m  − 0.76 19 22,713 m  − 0.71
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sources used to achieve the optimal point and the plateau 
may increase from single to double without a significant 
increase in SR value, we could consider that the optimal 
point was an efficient way to identify the number of closest 
sources that should be used to provide the best representa-
tion of environmental contamination.

Both optimal point and plateau were obtained for the 
10–14 closest industrial activities (6 to 9% of the over-
all sources), located in a 4.9- to 5.5-km radius. A similar 
dynamic could be observed for the rail areas, with two to 
three mostly influential sources (11 to 16%) located on an 
average 5.4- to 7.4-km radius.

For the main roads, the intersections, and the railways, 
we could however see that the optimal points were obtained 
with a slightly lower number of sources than for the plateau 
and that this number varies depending on the selected pol-
lutant. For the main roads, the optimal point was obtained 
for 52 (6%, 3.1 km), 199 (21%, 6.7 km), and 220 segments 
(24%, 7.1 km) for  NO2,  PM10, and MIR respectively. For the 
intersections, it was obtained for 1247 (9%, 8.6 km), 504 
(3%, 5.8 km), and 1560 (11%, 9.4 km) elements respectively. 
For railways, it was obtained for 13 (1%, 3,1 km), 108 (9%, 
5.9 km), and 26 elements (2%, 3.5 km).

It thus appeared that, in Dunkerque, the optimal represen-
tation of the contamination was obtained when accounting 
for all sources of pollutants within a 3.0 to 9.4 km radius 
from a targeted cell. When excluding intersections and rail 
areas, the radius dropped from 3.0 to 7.1 km. The maps of 
the DAvg indicator calculated for the optimal point are given 
in supplementary data (Supplementary Results: SR5).

Finally, the differences in SR values for DAvg at 
the optimal point were small and ranged from − 0.72 
(corresponding to the correlation between MIR or  NO2, 
and intersections) to − 0.85 (corresponding to the correlation 
between  PM10 and intersections or between MIR and rail 
areas). Nevertheless, the correlations appeared to be 
globally higher for  PM10 and lower for MIR. The most 
influential sources seemed to be industrial activities and 
rail freight. Despite these observations, we could not 
identify the contribution of each type of source to the local 
contamination. The studied area is strongly influenced by 
industrial activities, which also implies the presence of other 
linked sources, such as the motorway and railway network.

Discussion

This study examines the relationship between the 
distance to nearby sources and the modeled levels of 
environmental contamination, including  NO2,  PM10, and 
multimetal concentrations. Three commonly used distance-
based indicators were evaluated to determine how their 
behavior and correlation were influenced by the type 

and number of nearby sources considered. The results 
indicate that the indicators are effective proxies for all 
three types of environmental contamination, and that their 
representativeness is similarly affected by the number of 
nearby sources. The best representation of environmental 
contamination is achieved by considering not the closest 
or all sources, but rather approximately 5–10% of nearby 
sources, or those within a radius of about 3–6 km.

Detailed analysis of the results

Effect of source typology on pollutants studied

Negative correlations are observed between environmental 
contamination and distance to industrial activities, main 
roads, intersections, railways, and rail areas, while SR val-
ues are mostly positive for agricultural patches. The strong 
industrial and urban influence on  NO2,  PM10, and trace ele-
ment emissions in the territory generated a positive corre-
lation between the distance to agricultural patches and the 
contamination considered in this study. The further away 
from agricultural areas (and the closer to industrial and 
urban areas), the higher the contamination.

Similar correlations were found between the environmen-
tal indicators and the distance indicators, regardless of the 
type of source (SR for optimal points ranged from − 0.72 
to − 0.85). Environmental trace element concentrations were 
indeed influenced by industrial activities, as evidenced by 
major contaminated lands, but were also influenced by road 
and rail sources. Silva et al. (2021) recently demonstrated 
that the use of logarithm of distance to highways or primary 
roads is a good proxy for traffic-related multimetallic air pol-
lution assessment, and Contardo et al. (2020) highlighted the 
influence of brake abrasion from railways on trace elements 
concentrations in lichens.

Very good levels of correlation are observed between 
 PM10 concentrations and all sources, clearly showing their 
multiple origins. This may seem more surprising for  NO2, 
for which road sources should be predominant. In France, 
more than 50% of  NO2 emissions are due to transport 
(CITEPA 2022). However, the CUD is an industrial-port 
zone, so the majority of sources focus on this zone.

The choice of distance indicator is critical

Our secondary results indicate that the performance of the 
indicator varies depending on the number of considered 
sources. On the three selected indicators, we could see that 
both the DAvg and the DMed indicators exhibited similar 
dynamics in the SR values, whereas the DMin indicator 
remained linear due to its nature. This behavior was 
expected, and the decision to include DMin as an indicator 
was based on its common usage in distance-based studies 
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(Maheswaran and Elliott 2003; Dadvand et al. 2014; De 
Roos et al. 2014; Buteau et al. 2018; Heydari et al. 2021) 
and its intuitive appeal as a good proxy for environmental 
contamination. However, results indicate that DMin is not 
the best indicator, as it fails to account for many contributive 
sources.

Regarding the dynamics of correlations, it appears more 
effective to use DAvg or even DMed, respectively, the aver-
age and the median distance between the target and nearby 
sources as proxies for environmental contamination. Notable 
differences in SR values were observed between DMin and 
DAvg at the optimal point: approximately 0.3 for industrial 
sources, 0.35 for main roads (except for  NO2, which showed 
a difference of 0.14, likely due to significant influence of 
the closest road compared to other nearby roads), 0.35 for 
intersections, 0.25 for railways, and 0.1 for rail areas. These 
differences suggest that while DMin might be useful for a 
limited number of sources or when sources are spatially 
clustered (e.g., rail areas), it does not adequately represent 
the environmental burden when the number, diversity, and 
spatial distribution of sources are more complex.

The number of closest sources to consider

Moreover, our results indicate that in Dunkerque, the opti-
mal representation of the contamination is not achieved by 
considering all sources, but by accounting for approximately 
5–10% of nearby sources. This corresponds to all sources of 
emissions within a 3- to 6-km radius around targeted cells. 
Even though the optimal point for main roads is obtained 
for around 20% of nearby sources, the first knee point is also 
observed at approximately 6%.

The presence of multiple knee points when studying 
the distance to road sources may be linked to the nature 
of the study area. The significant industrial and harbor 
activities in Dunkerque (the 3rd most important French 
port and the 7th biggest port on the North Sea) create a 
unique local topography. The CUD is characterized by a 
major industrial core in the north, surrounding the harbor, 
and two parallel high-traffic motorways crossing the 
studied area from the southwest to the northeast, following 
the coastline. Populated areas are mostly located between 
those two motorways, in Dunkerque city and other smaller 
municipalities. While port and industrial sources constitute 
the majority of atmospheric emissions in the CUD (Atmo 
Nord-Pas de Calais 2015), the motorway’s contribution 
should not be overlooked, especially considering the large 
number of commercial trucks and the daily mobility of peri-
urban worker.

This underscores the need for a thorough understanding 
of the local topography and dynamics to accurately use 
distance-based indicators. The indicator used in this study 
combines the distance to sources in all possible directions 

around the target. For specific environmental conditions, 
it may be appropriate to calculate indicators with greater 
weighting in certain directions. This would help to account 
for differences in landscape or prevailing winds, which could 
be important factors in pollutant dispersion. Complementary 
studies should be conducted to explore the influence of local 
structuration on the use of such indicators.

Strengths and limits of the study

Pollution sources data

The data used to characterize sources of pollutant emissions 
have certain limitations. The primary limitation is treating 
each source as equivalent to the others. Consequently, the 
actual emissions and sizes of individual industrial activities 
could not be considered. For road data, traffic data were not 
accessible. Additionally, sources located outside the study 
area were not considered, which may result in a boundary 
effect. Finally, each source-target relationship was evaluated 
independently rather than in combination. Such an approach 
would likely require weighting each type of source according 
to its contribution to emissions.

ADMS model for  NO2 and  PM10

Environmental contamination levels used to evaluate indica-
tors performance were obtained from two different types of 
models representing two of the most common way to pro-
duce fine-scale environmental contamination data. A better 
evaluation of the indicator’s performance would have been 
achieved by computing correlations with actual field-sam-
pled contamination values on targeted cells instead of model 
outputs. This approach, however, was not feasible for the 
same reasons that led us to conduct this study.

Firstly, the absence of high-quality, fine-scaled, and 
updated database on environmental contamination in France 
prevented us from easily accessing such information. More 
recent data were not freely accessible. Secondly, conducting 
a sufficiently large field sampling campaign was impossible 
due to monetary and logistical constraints. However, mod-
eled data were already available in the studied area, and the 
choice was thus made to use them for comparison. This also 
adds interest to the study, as modeled values are now widely 
considered a common and efficient basis for environmental 
studies.

Air pollution  (PM10 and  NO2) is indeed framed by 
law in France and routinely monitored at a large scale 
by local services. Our data were obtained from the fine-
scale models produced annually by these services, which 
are commonly used for information, urban planning, or 
environmental health studies (Tenailleau et al. 2015, 2016; 
Riant et al. 2018; Havet et al. 2020). Those models are 



50651Environmental Science and Pollution Research (2024) 31:50642–50653 

produced following standardized protocols (Tenailleau 
et al. 2015; European Environment Agency. 2019). Officially 
validated data including local topography, meteorology, 
and emissions from roads, buildings, and industries have 
been introduced into ADMS-urban software (CERC 2022), 
and obtained models were validated using a field-sampling 
campaign conducted by the local association for air pollution 
monitoring. Some of the sources considered in our study 
(especially roadways) are used to compute pollutant 
diffusion in ADMS-urban. It is therefore rather reassuring 
that the distance indicators are strongly correlated with this 
data, but this probably mechanically increases the intensity 
of observed correlations.

In this study, the mean value of the 25 × 25 m models was 
used to estimate the contamination within the 200 × 200 m 
grids. This spatial aggregation likely reduces variability and 
may have an impact on the observed correlations.

Kriging the multimetallic concentrations in lichens

On the other hand, metallic pollutants are not all framed by 
law in France, and thus are not subject to fine-scale spatial 
representation. The MIR model was produced from field-
sampled multimetallic contamination in lichens obtained 
from previous studies on the CUD area (Occelli et al. 2014, 
2016; Lanier et al. 2019). The accumulation of persistent 
pollutants in lichens, such as trace elements, is known to 
reflect bulk deposition (Loppi and Paoli 2015). These data 
have been generalized to targeted cells using empirical 
Bayesian kriging (Krivoruchko 2012), and as such are 
independent of the source’s location. Observed correlations 
between our indicators and MIR are usually as good as with 
 NO2 and  PM10, which leads us to consider that obtained 
results for the latter are strong despite the comparison 
to modeled values instead of sampled values. This also 
demonstrates the value of distance indicators for pollutants 
that are not routinely measured or modeled, or possibly 
for emerging pollutants whose sources are identified. 
Complementary studies would be needed to identify with 
more detail the limitation of this proxy, and its usefulness 
to represent specific pollutants such as secondary pollutants, 
or long-distance pollution.

The benefits of distance‑based indicator 
for environmental health research

The concept that the proximity of sources has a direct impact 
on contamination levels is not a novel idea (Chakraborty 
et al. 2011). It underlies most of the modeling tools currently 
used in environmental contamination studies, such as spatial 
interpolation, dispersion modeling, and land use regression 
(Nieuwenhuijsen 2015). The strong correlation observed 

between selected distance-based indicators and evaluated 
environmental contamination at targeted population cells is 
not surprising. However, it does confirm the effectiveness of 
distance-based indicators as a simple and effective proxy for 
environmental contamination at a metropolitan scale (Jerrett 
et al. 2005; Zou et al. 2009).

Access to environmental contamination data remains a 
persistent issue in environmental management and health 
studies worldwide (Nieuwenhuijsen 2015; aus der Beek 
et al. 2016; Hoek et al. 2018). Distance-based indicators 
can serve as a useful proxy for environmental contamination 
data, especially when acquiring such data is difficult due 
to infrastructure or budgetary constraints, which makes 
it impossible to produce spatial models with high levels 
of accuracy (Gulliver et  al. 2011). This is particularly 
true for specific pollutants, such as pesticides, metals, or 
organic compounds, where monitoring and standardized 
modeling techniques are limited. Furthermore, distance-
based approaches in environmental epidemiology can help 
explore the “geophysical plausibility” of a source-pathway 
hypothesis when dealing with unknown health outcomes 
(Nuckols et al. 2004). Despite its limitations, Hoek et al. 
(2018) argued that proximity indicators should be used in 
future environmental exposure assessments, particularly with 
continuous distance-based metrics. The use of Euclidean 
distance, rather than a buffer, has the advantage of not 
setting an arbitrary distance beyond which it is considered 
that the population is not exposed. These distance indicators 
can be generated at different levels of spatial precision, such 
as home or work address, the centroid of a population grid, 
or the administrative unit, by calculating an average value 
from a grid.

The population residing in the CUD has a worse health 
status than the French national average. In the canton of 
Dunkerque, the risk of premature mortality is 50% higher 
than that in metropolitan France. Additionally, the risk 
of death due to cancer or cardiovascular disease is 25% 
higher (Région Hauts-de-France 2022). However, we could 
not identify the most vulnerable areas within this territory 
as fine-scale health data is not available. Environmental 
inequalities have already been identified in this region, 
with the most deprived populations living in areas closest 
to major emission sources, making them more exposed 
to air pollution (Occelli et  al. 2016; Brousmiche et  al. 
2023). However, simply considering the geographical 
distribution of pollution sources is not sufficient for 
healthy urban planning. To provide decision-makers with 
relevant information, it is necessary to adopt a more holistic 
approach that considers other sources of environmental 
burdens, as well as environmental amenities, territorial 
services, and the economic and social profiles of the 
population (Brousmiche et al. 2021).
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Conclusion

Assessing environmental exposure to multiple air pol-
lutants in large areas is a major challenge for preventing 
health risks. Distance-based indicators can be useful in sit-
uations where logistical and financial constraints are sig-
nificant, and continuous distance-based metrics are a better 
proxy than buffers. Although the distance to the closest 
source and the average distance to all nearby sources are 
frequently used, they are not the most effective indicators 
for measuring environmental exposure. Our study suggests 
that considering the average distance to a limited num-
ber of nearby sources provides a better approximation of 
environmental contamination. In our case study, we found 
that the best representation of environmental contamina-
tion was obtained by considering around 5–10% of nearby 
sources, or sources within a 3–6-km radius.

However, it is important to note that distance indica-
tors are good proxies for contamination depending on the 
geographical context. The presence of sources linked to 
industrial activities in the CUD territory shows a strong 
correlation with particulate, nitrogenous, and multimetal-
lic pollution, while they are weakly dependent on agricul-
tural sources. Similar investigations should be conducted 
in various territories, such as urban or agricultural areas, 
or more heterogeneous areas with a more random distribu-
tion of air emission sources.

We still recommend using distance-based indicators, 
especially Euclidean distance, in environmental health stud-
ies. When combined with other environmental or socioeco-
nomic indicators, they are useful for investigating territorial 
inequalities and guiding urban planning. Moreover, they are 
cost-effective for assessing environmental exposure as an 
exploratory analysis before more sophisticated research.
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