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Abstract
The groundwater salinization process complexity and the lack of data on its controlling factors are the main challenges 
for accurate predictions and mapping of aquifer salinity. For this purpose, effective machine learning (ML) methodologies 
are employed for effective modeling and mapping of groundwater salinity (GWS) in the Mio-Pliocene aquifer in the Sidi 
Okba region, Algeria, based on limited dataset of electrical conductivity (EC) measurements and readily available digital 
elevation model (DEM) derivatives. The dataset was randomly split into training (70%) and testing (30%) sets, and three 
wrapper selection methods, recursive feature elimination (RFE), forward feature selection (FFS), and backward feature 
selection (BFS) are applied to train the data. The resulting combinations are used as inputs for five ML models, namely 
random forest (RF), hybrid neuro-fuzzy inference system (HyFIS), K-nearest neighbors (KNN), cubist regression model 
(CRM), and support vector machine (SVM). The best-performing model is identified and applied to predict and map GWS 
across the entire study area. It is highlighted that the applied methods yield input variation combinations as critical factors 
that are often overlocked by many researchers, which substantially impacts the models’ accuracy. Among different alterna-
tives the RF model emerged as the most effective for predicting and mapping GWS in the study area, which led to the high 
performance in both the training (RMSE = 1.016, R = 0.854, and MAE = 0.759) and testing (RMSE = 1.069, R = 0.831, and 
MAE = 0.921) phases. The generated digital map highlighted the alarming situation regarding excessive GWS levels in the 
study area, particularly in zones of low elevations and far from the Foum Elgherza dam and Elbiraz wadi. Overall, this study 
represents a significant advancement over previous approaches, offering enhanced predictive performance for GWS with 
the minimum number of input variables.

Keywords  Groundwater salinity · Digital elevation model · Machine learning algorithms · Random forest · Sidi Okba 
region

Introduction

In arid regions, groundwater is the principal source of irriga-
tion, drinking, and industrial use (Kawo and Karuppannan 
2018), including Sidi Okba region in Algeria. Groundwater 
provides 96% of the world’s freshwater for around 2.4 billion 

people (Duran-Llacer et al. 2022; Pandey et al. 2023). Climate 
change, expansion of agricultural areas, and the scarcity of 
precipitations led to the increasing of the number of pump-
ing wells in these regions (Hamamouche et al. 2018; Boudibi 
et al. 2021a; Li et al. 2020; Neshat and Pradhan 2017; Şen 
2019). The overexploitation, the poor farming practices, and 
ineffective management of this valuable and scarce resource 
contributed to a deterioration of groundwater quality (Aoui-
dane and Belhamra 2017; Afrasinei et al. 2017).

Groundwater salinization, expressed in terms of electri-
cal conductivity (EC), is one of the major constraints for the 
agricultural production in the study area, because saline irri-
gation water is responsible for the alteration of physicochemi-
cal properties of the soil, which causes soil salinization and 
reduction of plants productivity (Boudibi 2021; Bradaï et al. 
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2016; Pulido-Bosch et al. 2018). Currently, salinization is ris-
ing at 10% annual rate (Barbieri 2023) and it is the primary 
issue with irrigation-related groundwater quality. Aquifer 
salinity can be directly or indirectly impacted by agricultural 
activities operations. As a result, changes in salinity brought 
about by irrigation water application can be categorized as 
direct impacts and those coming from irrigation abstraction 
as indirect impacts (Pulido-Bosch et al. 2018). Thus, manag-
ing the irrigation in any region requires precise prediction 
and mapping of the aquifer’s groundwater salinity. In order to 
improve decision makers’ and land use planners’ capacity to 
accurately assess the spatial variability of GWS and to serve 
as a foundation for studies on groundwater quality risk assess-
ment in various other regions of the world, it is mandatory 
to determine the accurate machine learning (ML) technique 
to assess the risk level of groundwater salinization using the 
adequate digital elevation model (DEM) derivatives.

ML algorithms and geostatistical models are the most suit-
able methods for digital mapping (DM) (Zhang et al. 2017; 
Qu et al. 2024). Ordinary kriging (OK) and its derivatives 
such as cokriging and regression kriging are the most applied 
geostatistical methods for GWS modeling studies. In this 
study, OK is used to estimate the salinity at unsampled points 
and to get an insight into the spatial distribution of GWS. DM 
uses DEM derivatives and satellite image indices as covari-
ates based on ML, which is widely applied for modeling soil 
properties (Qu et al. 2024). To our best knowledge, the most 
recent studies are restricted to using GWS controlling factors 
(e.g., evaporation, transmissivity, water table, precipitation, 
and water cations and anions) to predict water salinity for 
areas of unknown sampling points. The application of such 
data to model GWS is not always possible because they are 
not available everywhere, costly, require extensive sampling, 
and time consuming. The major limitation associated with 
the application of DM based on ML for modeling GWS is 
the availability of the adequate covariates (inputs) such as 
DEM derivatives (e.g., elevation, slope, curvature, distance 
to rivers and streams, longitude, altitude, and aspect) (Sahour 
et al. 2020). Therefore, many scholars have applied ML tech-
niques to deal with the non-linear and complex relationships 
between the target variable and the independent variables in 
order provide accurate predictions (Xiao et al. 2023; Tran 
et al. 2021; Meyer and Pebesma 2021).

In recent years, ML techniques have demonstrated their 
potential as effective tools in predicting GWS. For instance, 
Sahour et al. (2020) applied multiple linear regression (MLR), 
deep neural network (DNN), and extreme gradient boosting 
(EGB) to estimate the GWS in a coastal aquifer of the Caspian 
Sea. It was concluded that EGB method is the optimal alterna-
tive considering its better performance on the testing phase. 
Cui et al. (2021) used Gaussian processes (GPs) for GWSpre-
diction in the NE part of South Australia. The findings sug-
gested that GPs should be promoted actively in the prediction 

of groundwater researchers. Araya et al. (2023) employed ran-
dom forest (RF) to make spatial predictions of GWS in the 
Horn of Africa. It was reported that RF is powerful tool for the 
geospatial predictive modeling. Al-Waeli et al. (2022) illus-
trated the ability of artificial neural networks (ANNs) to pre-
dict GWS at the Najaf–Kerbala plateau in Iraq using cations 
and anions as input data. Jamei et al. (2022) worked on GWS 
distribution of multi-aquifers in Bangladesh using adaptive 
neuro‑fuzzy inference system (ANFIS) and Boruta‑random 
forest (B-RF). The authors emphasized the great predictability 
of the applied methods. Lal and Datta (2020) compared the 
performance of four ML techniques, including ANNs, genetic 
programming (GP), Gaussian processes regression (GPR), 
and support vector regression (SVR), for GWS predictions 
in a coastal aquifer system and attested that GPR performed 
better than other models.

All the above previous studies have proved the high ability 
of ML algorithms to handle the complexity of GWS predic-
tion related to groundwater research studies using numerous 
controlling factors including aquifer characteristics and the 
groundwater quality elements. Unfortunately, such numerous 
data are not available in many regions in addition to time con-
suming. Accordingly, the accuracy of these predictions varies 
widely depending on the adopted technique (Muniappan et al. 
2023). Despite the high importance of the predictors’ selec-
tion and its effect on the accuracy of the ML techniques, still 
maximum number of inputs increases computation time and 
may worsen learning accuracy (Cai et al. 2018). During this 
study, it is observed that the literature lacks comprehensive 
application of relevant feature selection methods and readily 
available influencing factors for modeling GWS using vari-
ous ML technique. However, in this study the most effective 
ML method is identified as random forest (RF) with few input 
parameters, and its performance is shown numerically. Of the 
main steps in the execution of this study are (1) to map digi-
tally the GWS using readily available DEM derivatives and a 
small sample dataset of EC; (2) to compare the performance 
of five commonly used ML techniques, namely random forest 
(RF), hybrid neuro-fuzzy inference system (HyFIS), K-nearest 
neighbors (KNN), cubist regression model (CRM), and sup-
port vector machine (SVM) for spatial modeling and digital 
mapping of GWS; and (3) to explore the effect of the different 
selection feature methods and the number of candidate inputs 
on the accuracy of these modeling techniques.

Material and methods

Description of the study area

The research was carried out in the Algerian Sahara at the 
Sidi Okba region (Wilaya of Biskra), which is located 19 
km southeast of Biskra province, between 5°45′ N–6°2′ N 
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longitudes and 34°39′ E–34°52′ E latitudes with a total sur-
face area of 280 km2 and an elevation ranging from 2 m, in 
the southern part of the study zone, to 126 m in the northern 
part. It is characterized by an arid climate with cold winters 
and hot, dry summers, and annual rainfall of less than 150 
mm (Hamamouche et al. 2018). The mean annual tempera-
ture and evapotranspiration are 23 °C and 2500 mm, respec-
tively (Boudibi et al. 2021b). It is crossed by two wadis, 
namely wadi Biskra and wadi El-Biraz, which ultimately 
flow into the natural depression of Chott Melghir (Fig. 1).

Geologically, the study area is a transitional zone, char-
acterized by both structural and sedimentary features, posi-
tioned between the mountainous and folded Atlas domain 
in the north and the expansive, flat desert domain of the 
northern Sahara in the south (Abdennour et al. 2020; Cheb-
bah 2016; Ghiglieri et al. 2020). Many geologist stated that 
the sedimentary formations in this region are a succession 
of Mesozoic to Cenozoic (Guiraud and Bosworth 1997). The 
Neogene stretches over a large surface area and unevenly 
cover a range of ages’ formations, including Oligocene, 
Eocene, and Upper Cretaceous (Guiraud 1990; Ghiglieri 
et al. 2020). A large Quaternary formation discordantly 
overlies and covers these Neogene deposits (Chebbah 2016).

Hydrogeologically, the study area is recognized by the 
superposition of two main aquifer systems (Fig. 2): the conti-
nental intercalary aquifer (CIa), which is the deepest, and the 
terminal complex aquifer (CTa) (Besbes et al. 2003). These 
two aquifer systems are separated by a Cenomanian imper-
meable horizon and are a part of the North Western Sahara 
Aquifer System (NWSAS), often known as Système Aquifère 
du Sahara Septotrional (SASS), that extends over an area of 
1 million km2 shared by Libya, Tunisia, and Algeria, where 
the major part is in Algeria (about 700 000 km2) (Al-Gamal 
2011; Besser et al. 2018). The CTa comprises several minor 
aquifers extending from the Upper Cretaceous to The Mio-
Pliocene (Edmunds et al. 2003; Ghiglieri et al. 2020). The 
Mio-Pliocene (called aquifer of sands) consists of alternating 
layers of clay, sand, and gravel (Reghais et al. 2024). It is the 
primary exploited aquifer in the eastern part of Biskra prov-
ince, including Sidi-Okba region. The thickness of this aquifer 
reaches 1000 m and its depth varies from 90 to 300 m in the 
study area (Hamamouche et al. 2017; Reghais et al. 2024).

Successive droughts and the expansion of the irrigated 
agriculture that characterize Sidi Okba regions lead to inten-
sive exploitation of groundwater through deep wells tapping 
the MPa. In the last decade, groundwater of MPa became 
the main source of irrigation and drinking purposes in the 
study area (Hamamouche et al. 2015), despite the existence 
of Foum Elgherza dam that is used only to irrigate the palm 
groves of Sidi-Okba, Gharta, and Seriana Oases (Fig. 1). As 
the study area is experiencing a shortage of surface water 
from the dam, pumped groundwater is incorporated into 
the pre-existing irrigation infrastructure, resulting in the 

generation of an integrated surface and groundwater system. 
The agricultural sector is the largest groundwater consumer 
in the study area (more than 90% of the pumped groundwa-
ter) (Hamamouche et al. 2018).

Dataset acquisition and preparation

Groundwater salinity measurement

In order to acquire representative network of groundwater 
wells covering the entire study area as in Fig. 1 and captur-
ing the Mio-Pliocene aquifer in Sidi Okba region, a total 
of 56 boreholes are used for agricultural and drinking pur-
poses, and they were the subject of on-site measurements 
during Mai 2020 to obtain the electrical conductivity (EC 
in mS/cm), which is used to express the GWS. Most of the 
boreholes were operational during field sampling works. 
Otherwise, the well water was pumped for about 20 min 
before sampling to ensure that it represents the aquifer’ cur-
rent state. The EC measurements were carried out using the 
portable digital multiparameter (WTW multi 3430). The 
adopted methodology is summarized in Fig. 3.

Digital elevation model (DEM) derivatives

According to the recent studies, GWS is influenced by sev-
eral factors including climatic, topographic, hydrologic, 
geologic, land use and land cover (LULC), and aquifer 
characteristics. In this study, the focus is on the most eas-
ily accessible influencing factors, which are the DEM 
derivatives, namely the slope, flow direction (FlowD), 
elevation, curvature, aspect, topographic wetness index 
(TWI), distance to streams, and wadis (DTS and DTBW). 
It is stated by Avand et al. (2020) that these factors can 
affect GWS salinity directly or indirectly. On the other 
hand, slope, elevation, curvature, and aspect play impor-
tant roles in flushing and exporting saline materials from 
the soil into fluvial plains through transportation and 
accumulation of these materials in lowland areas (Mosavi 
et al. 2020). It is also well known that lower elevation 
areas often have higher GWS levels due to the accumula-
tion of salts from evaporative concentration. Conversely, 
higher elevations might show lower GWS levels due to 
increased groundwater recharge and less evaporation 
(Leaney et al. 2003; Mosavi et al. 2021). Aspect, which 
represents the orientation of slopes and the direction of 
water flow, indirectly affects the amount of water infiltrat-
ing into the ground by influencing land cover, wind speed, 
precipitation direction, and evapotranspiration (Benjmel 
et al. 2022). Slope and curvature influence the flow and 
accumulation of water related to the rate of groundwater 
recharge (Avand et al. 2020; Benjmel et al. 2022), thus, 
affecting the distribution and concentration of salts in 
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groundwater storage. Topographic wetness index (TWI) 
is related to soil moisture patterns (Kalantar et al. 2019). 
Areas with high TWI values indicate higher soil moisture 
and potentially influence groundwater recharge through 

the infiltration of surface water, waterlogging, and leach-
ing, which can dilute salinity levels (Mosavi et al. 2021; 
Benjmel et al. 2022). Streams and wadis play a crucial 
role in groundwater recharge within the study area. In 

Fig. 1   Location map of the study area
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addition to serving as a primary source of groundwater 
recharge, streams and wadis also significantly influence 
the mobilization and distribution of salts within the aqui-
fers (Balakrishnan et al. 2024). Geographic coordinates 
are in correlation with climatic precipitation and tempera-
ture conditions (Zhao et al. 2007), which affect groundwa-
ter recharge and evaporation rates. Longitude and latitude 
are considered due to their correlation with GWS. The 
ASTER DEM data of the study area are provided by the 
US Geological Survey (USGS) (https://​earth​explo​rer.​usgs.​
gov) at a spatial resolution of 30 m (raster cell size of 30 * 
30 m). This DEM is utilized to prepare the maps (30 × 30 
m of pixel resolution) of the 10 abovementioned deriva-
tives that are extracted and calculated using ArcGIS 10.8 
software (Fig. 4). The generated raster maps are imported 
into the R environment and run using the Raster package 
for GWS modeling in the entire study area.

Modeling procedure and performance evaluation

All the steps of the modeling process are performed in RStu-
dio/2022.12.00 software using Caret package.

Data standardization

Standardization, also known as centering and scaling, is a 
preprocessing technique commonly used in ML. This pro-
cess is typically achieved by subtracting the mean value of 
each feature from all data points and then dividing by the 
standard deviation (Müller and Guido 2016). It involves 
transforming the features of a dataset so that they have a 
mean of 0 (centering) and a standard deviation of 1 (scal-
ing) (Kraiem et al. 2024; Ouameur et al. 2020). Standardiza-
tion ensures that features are on similar scales, which can 
improve the performance of many ML algorithms, particu-
larly those sensitive to the scale of features (Shanker et al. 
1996). In this study, standardization is applied automatically 
during feature selection and model training using preProcess 
argument passed to train function in R environment.

Feature selection

Feature selection (FS) serves as a valuable tool in ML, 
offering numerous benefits such as mitigating overfitting, 
enhancing model performance, and reducing computational 

Fig. 2   Hydrogeological map of the study area
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complexity by strategically removing irrelevant or redundant 
features (Cai et al. 2018; Tran et al. 2021). FS methods can 
be divided into three principal groups, unsupervised, super-
vised, and semi-supervised alternatives (Cai et al. 2018). 
There are three primary categories of supervised feature 
selection methods: embedded methods, filters, and wrappers 
(Lualdi and Fasano 2019; Cai et al. 2018). These methods 
utilize machine learning algorithms and search strategies 
to iteratively train and test feature subsets, integrating fea-
ture selection into model training (Lualdi and Fasano 2019; 
Jamei et al. 2022). Empirical evidence favors wrappers in 
terms of performance. In this study, wrappers of FS meth-
ods, i.e., backward feature selection (BFS), forward feature 
selection (FFS), and recursive feature elimination (RFE), are 
used to pick the best candidate input combinations for the 
different ML modeling techniques.

Machine learning models

For modeling GWS, five ML models were employed, 
namely, RF, HyFIS, KNN, SVM, and CRM. A succinct 
overview of each ML model is provided below.

RF is a tree-based machine learning algorithm (Cutler 
et al. 2012) harnessing the collective strength of multiple 
decision trees. Ho (1995) developed the first such algo-
rithm, and Breiman (2001) and Cutler et al. (2012) expanded 

upon her work, refining and popularizing the algorithm for 
broader applications in predictive modeling where the fun-
damental concept is to construct numerous decision trees 
using the dataset and then amalgamate them to create a pre-
dictive model known as the random forest (Parzinger et al. 
2022; Kim et al. 2024). RF is attractive and widely applied 
by researchers due to its high accuracy and efficiency, rapid 
convergence, and exhibit lower susceptibility to overfitting 
(Wang et al. 2024; Li et al. 2021). Another notable advantage 
of this method is its high flexibility, as it does not rely on 
assumptions about data distribution or necessitate detailed 
physical models (Parzinger et al. 2022). Additionally, RF 
possesses the capability to effectively handle missing data 
and outliers, and thus can be used for tackling both clas-
sification and regression problems (Kim et al. 2024; Zhang 
et al. 2024).

HyFIS is a hybrid neuro-fuzzy system proposed by Kim 
and Kasabov (1999) for constructing and enhancing fuzzy 
models through the combination of fuzzy logic principles 
with learning capabilities of ANNs (Saleh et al. 2023). It 
is widely applied in ML, where the learning is optimized 
by hybrid learning scheme that consists of two phase: rule 
finding using knowledge acquisition module in the initial 
phase, followed by the parameter learning phase using an 
error backpropagation learning scheme for a neural fuzzy 
system (Kim and Kasabov 1999; Hassan and Arman 2023). 

Fig. 3   Flowchart methodology
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Wang and Mendel (1992) proposed a fuzzy technique for 
the extraction of fuzzy rules in the HyFIS model, which is 
a simple method that segments the input and output data 
into an optimal number of fuzzy sets, then assigns a fuzzy 
membership function (MF) to each segment (Verma et al. 
2022). The procedure is a supervised learning approach that 
employs gradient descent-based learning algorithms with a 
multilayer perceptron (Hassan and Arman 2023). In HyFIS, 
Gaussian function is applied as the MF and, subsequently, 

during the prediction stage the standard Mamdani methodol-
ogy can be employed (Ali et al. 2018).

KNN is nonparametric and lazy learning algorithm (Sil-
verman and Jones 1989) proposed by Fix and Hodges (1951) 
and expanded by Cover and Hart (1967). It is one of the 
widely employed supervised ML algorithms for forecasting, 
classification, and regression problems (Chacón et al. 2023). 
The fundamental concept behind the KNN algorithm is that 
when examining the feature space, if a significant proportion 

Fig. 4   Digital elevation model (DEM) derivatives
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of the k-nearest neighbors surrounding a particular sample 
are categorized within a specific group, then that sample is 
also categorized within that group (Liu et al. 2022; Chacón 
et al. 2023; Gomez-Gil et al. 2024). Alternatively, the KNN 
algorithm categorizes an unknown data point by selecting 
the category of the most similar data point from the train-
ing dataset, which is often determined by calculating the 
Euclidean distance between them (Motevalli et al. 2019; 
Zamri et al. 2022).

SVM is a powerful supervised ML technique developed 
by Cortes and Vapnik (1995), originally conceived for tack-
ling classification tasks (He et al. 2022), and later extended 
to solve regression problems due to its empirical success 
and application in various research areas (Onyekwena et al. 
2022). The SVM gained widespread attention in the first two 
decades of the twenty first century due to its robust statisti-
cal and mathematical foundations, supporting the principles 
of generalization, optimization, and notable characteristics 
(Wang et al. 2024; Onyekwena et al. 2022), including inde-
pendence from data distribution, straightforward algorithm 
structure, manageable computational complexity, and 
remarkable generalization capabilities (Joshi 2020). The 
SVM prioritizes fitting the best line within a specified mar-
gin over minimizing the variation between observed and pre-
dicted values (Ouameur et al. 2020). This margin delineates 
the separation between the boundary line and the hyperplane 
with the nearest data points on both sides designated as sup-
port vectors (Majumdar et al. 2023).

CRM is a rule-based model developed based on Quinlan’s 
M5 model tree (Quinlan 1992) and further it utilizes ensemble 
learning principles to enhance accuracy by combining mul-
tiple model trees (Ao et al. 2024). In the ensemble model, 
each tree mimics a regression tree but it substitutes constant 
values in terminal nodes with linear regression models (Quin-
lan 1992; Li et al. 2020). Terminal nodes represent distinct 
areas in the input space with explanatory variables included 
in linear regression models, if they significantly influence the 
response variable within those areas (Li et al. 2020). The main 
advantage of the cubist model lies in its ability to handle com-
plex non-linear relationships between the inputs (explanatory 
variables) and the output (target variable) (Ao et al. 2024).

Validation and performance criteria

Validation assesses the efficiency of the applied models. 
The models are built using the hold out method, where 70% 
of the training data sets are utilized for training, while the 
remaining 30% are reserved for testing. K-fold cross-valida-
tion is an appropriate evaluation method for a limited dataset 
(Suleymanov et al. 2023; Chacón et al. 2023). In this study, 
fivefold cross-validation (K = 5) is applied and repeated five 
times on the training set throughout all the modeling tech-
niques via Caret package.

Three performance metrics are utilized to describe the 
accuracy of the ML models, namely root mean squared error 
(RMSE), mean absolute error (MAE), and the correlation 
coefficient (R).

RMSE is defined as

MAE is defined as

R is defined as

where GWSi
O denotes the measured groundwater salinity 

at a location i, GWSi
P signifies the predicted groundwater 

salinity at a location i, and n represents the total number of 
sampling points.

Spatial interpolation of groundwater salinity using 
kriging

Spatial interpolation methods are frequently applied in vari-
ous fields to estimate values of a variable at locations lack-
ing direct measurements. Kriging is a robust geostatistical 
interpolation method founded upon the theory of regional-
ized variable (Delhomme 1978; Şen 1989; Miao and Wang 
2024). Ordinary kriging (OK) seeks to offer unbiased and 
optimal estimates of variables by examining the spatial 
relationships between data points within the analyzed area 
through semi-variance (Qu et al. 2024; Zhu et al. 2021). The 
geostatistical analyst extension of ArcGIS 10.8 is used for 
conducting OK and spatial prediction of GWS.

Results and discussion

Descriptive statistics of GWS

The descriptive statistics of GWS in terms of EC(mS/cm) are 
summarized in Table 1. The EC values range from 1.45 to 9.62 
mS/cm, with a mean value of 4.573 mS/cm. The results indi-
cate a significant variability, with a coefficient of variation of 
41.5%. The Shapiro–Wilk (SK) test is used to assess the normal 
distribution of EC. The test yielded a significant value of 0.122. 
Additionally, skewness with a value of 0.226 (near to zero) and 
kurtosis with a value of 2.239 (near to three) provide further con-
firmation for the normal distribution assumption of EC (Fig. 5).
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Spatial interpolation of groundwater salinity

In this research, OK is employed to generate the spatial dis-
tribution map of GWS using only the EC field data. The 
Shapiro–Wilk test indicated that the data of EC follow a 
normal distribution; therefore, no transformation is required. 
The primary processing step in Kriging approaches involves 
fitting a theoretical semivariogram model to the empirical 
semivariogram. Various models, such as spherical, Gauss-
ian, and exponential are tested, and the most suitable model 
is selected based on the results of cross-validation, namely 
by identifying the model with the lowest MAE and RMSE. 
The parameters of the best-fitted semivariogram are given 
in Table 2. The cross-validation results of the OK method 

show good accuracy with a low RMSE of 1.045 and MAE 
of 0.775, as well as a high R value of 0.832.

The generated map of GWS using OK as in Fig. 6 dem-
onstrates the spatial distribution of the various GWS classes 
in Sidi Okba region. According to the US Salinity Labora-
tory Staff (Richards 1954), EC (mS/cm) measurements cat-
egorize water salinity for irrigation into five classifications: 
0 ≤ low (C1) ≤ 0.25, 0.25 < medium (C2) ≤ 0.75, 0.75 < high 
(C3) ≤ 2.25, 2.25 < very high (C4) ≤ 5, and excessive 
(C5) > 5. Each category delineates the suitability of water 
for different crops and soil types, ranging from low risk of 
salinization to unsuitability for irrigation. C1 is suitable for 
most crops, while category 5 is deemed unsuitable. Catego-
ries 2 to 4 require varying degrees of caution and crop selec-
tion based on salt tolerance and drainage conditions. Ayers 
and Westcot (1988) showed through extensive experiments 
that a groundwater EC of 3 mS/cm is acceptable for irrigat-
ing most crops. In this research, since the EC values range 
from 1.45 to 9.62 mS/cm, the groundwater of the study area 
is classified into three categories: C3, C4, and C5.

From the spatial distribution map in Fig. 6 and values in 
Table 3, the dominance of groundwater is apparent as very 
high risk of salinity (C4) with 47.85% of the total surface area. 
It is localized particularly in the middle and the southern parts 
of the study area. Groundwater at excessive risk of salinity 
(C5) occupies a large part of the study area (38.57% of the total 
surface area). This class is located specifically in the north-
western part with an extension into the middle of the study 
area (Sidi Okba oasis) along the main road linking the city of 
Biskra and the town of Sidi Okba. The least saline groundwater 
(C3) is located in the northeastern part of the study area near 
the Foum El Gherza dam and the beginning of Wadi Elbiraz, 
covering 13.58% of the total surface area. According to Ayers 
and Westcot’s recommendations, only 27% of the groundwater 
in the study area is deemed acceptable for irrigation, and it is 
located in the eastern part of the study area along Wadi Elbiraz.

Digital mapping of groundwater salinity using 
machine learning techniques

Covariate selection and model performance

The results in Tables 4, 5, and 6 show the selected covariates 
using REF, FFS and BFS, respectively, as inputs to the five 
ML techniques, their tuning parameters, and performance 
statistics in terms of RMSE, R, and MAE criteria.

Table 1   Descriptive statistics of EC (mS/cm)

Statistical parameters EC (mS/cm)

Number of samples 56
Mean 4.573
Median 4.645
Minimum 1.450
Maximum 9.620
Variance 3.602
Standard deviation 1.897
Coefficient of variation (%) 41.5
Skewness 0.226
Kurtosis 2.539
Shapiro–Wilk test (p-value) 0.122

Fig. 5   QQ plot of EC distribution

Table 2   Parameters of the best fitted semivariogram

Kriging method Anisotropy Best model Direction 
(degrees)

Nugget effect 
(mS/cm)2

Partial sill (mS/
cm)2

Major range 
(m)

Minor range 
(m)

Lag size (m)

OK True Gaussian 144.84 0.75 3.55 12,456.87 6531.9 1038.07
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For REF selection method (Table 4), among the original 
ten candidates, only five covariates were selected as inputs to 
the RF, HyFIS, KNN, CRM, and SVM modeling techniques 
using REF. From the most important to the least important, 
they are the distance to Elbiraz Wadi (DTBW), longitude 
(X), elevation, distance to streams (DTS), and aspect. Dur-
ing the training phase, the SVM model achieved slightly 
better predictions of GWS with RMSE = 1.010, R = 0.865, 
and MAE = 0.750 compared to the RF model, CRM model, 
KNN model, and HyFIS model. During the testing phase, 
the RF model demonstrated superior predictions of GWS 

with RMSE = 1.069, R = 0.831, and MAE = 0.921 compared 
to the SVM model. However, both the SVM and RF models 
outperformed the CRM model, the HyFIS model, and the 
KNN model.

For the FFS selection method as shown in Table 5, nine 
out of 10 covariates (Y, TWI, slope, curvature, elevation, 
aspect, FlowD, DTBW, and DTS) were selected as inputs 
for different ML techniques. During the modeling process, 
RF model outperformed all other models in both the training 
and testing phases. The performance metrics were signifi-
cantly better in the training phase with an RMSE of 1.113, 

Fig. 6   EC spatial distribution map using OK

Table 3   Surface areas of different classes predicted using OK and RF

OK RF

Classes EC (mS/cm) Area (ha) Area (%) Area (ha) Area (%)

C1 0 < EC ≥ 0.25 0 0 0 0
C2 0.25 < EC ≥ 0.75 0 0 0 0
C3 0.75 < EC ≥ 2.25 3806.22 13.58 1974.64 7.04
C4 2.25 < EC ≥ 5 13,414.08 47.85 12,974.26 46.28
C5 EC > 5 10,813.55 38.57 13,084.96 46.68
Ayers and Scott 

threshold
EC ≤ 3 7668.40 27.35 3974.68 14.18
EC > 3 20,365.45 72.65 24,059.17 85.82
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an R-value of 0.817, and a MAE of 0.903. In the testing 
phase, the RF model continued to perform well, with an 
RMSE of 1.150, an R-value of 0.862, and a MAE of 0.878. 
In addition, the CRM model, which is the second-best per-
former, demonstrated superior performance compared to 
SVM and other models.

For the BFS method results in Table 6, all the covari-
ates including Y, X, TWI, slope, curvature, elevation, aspect, 
FlowD, DTBW, and DTS were used as inputs for the various 
ML techniques. The RF model is still the best performer, 
outperforming all other models with higher performance 
metrics. In the training phase, the RF model achieved an 
RMSE of 1.171, an R-value of 0.812, and a MAE of 0.958. 
In the testing phase, the RF model attained an RMSE of 
1.163, an R-value of 0.858, and a MAE of 0.918. These 
results indicate the strong performance of the RF model in 
both phases. Additionally, the CRM model exhibited supe-
riority over the remaining models by achieving the lowest 

RMSE and MAE, as well as the highest R-value in both 
phases.

How well the model fits the training dataset perform 
during the training phase measure? However, this measure 
alone does not evaluate the model’s prediction and gener-
alization abilities (Tran et al. 2021). In contrast, the model’s 
predictive performance, which evaluates its accuracy during 
the testing phase, better demonstrates its ability to predict 
outcomes reliably (Rahmati et al. 2019; Tran et al. 2021). 
Therefore, the optimal model to predict GWS in the study 
area was selected by evaluating both its goodness-of-fit per-
formance during the training phase and its generalization 
capabilities as demonstrated by its prediction performance 
during the testing phase.

The chosen model for predicting and mapping GWS in 
the study area is the RF alternative that uses DTBW, X, ele-
vation, DTS, and aspect as inputs selected through the REF 
selection method. This model exhibited the lowest RMSE 

Table 4   Model performance metrics for GWS prediction using REF selection method

Selection method Variables Model Tuning parameter Training Testing

RMSE R MAE RMSE R MAE

REF DTBW, X, Elevation
DTS,
Aspect

RF mtry = 4 1.016 0.854 0.759 1.069 0.831 0.921
HyFIS Num. labels = 5, max. iter. = 10 1.193 0.821 0.999 1.557 0.727 1.237
KNN K = 5 1.078 0.858 0.851 1.649 0.612 1.304
CRM Committees = 1, Neighbors = 9 1.042 0.861 0.874 1.322 0.771 0.937
SVM Kernel: RBF, Sigma = 0.378, C = 1 1.010 0.865 0.750 1.129 0.859 0.878

Table 5   Model performance metrics for GWS prediction using FFS selection method

Selection method Variables Model Tuning parameter Training Testing

RMSE R MAE RMSE R MAE

FFS Y, TWI, Slope, Curvature, Eleva-
tion, Aspect, FlowD, DTBW, 
DTS

RF Mtry = 8 1.113 0.817 0.903 1.150 0.862 0.878
HyFIS Num. labels = 9, max. iter. = 10 1.752 0.501 1.377 1.480 0.701 1.245
KNN K = 9 1.446 0.708 1.121 1.537 0.722 1.293
CRM Committees = 1, Neighbors = 9 1.160 0.840 0.885 1.331 0.777 0.961
SVM Kernel: RBF, Sigma = 0.068, 

C = 1
1.290 0.775 0.964 1.464 0.742 1.188

Table 6   Model performance metrics for GWS prediction using BFS selection method

Selection method Variables Model Tuning parameter Training Testing

RMSE R MAE RMSE R MAE

BFS Y, X, TWI, Slope, Curvature, 
Elevation, Asp, FlowD, DTBW, 
DTS

RF Mtry = 6 1.171 0.812 0.958 1.163 0.858 0.918
HyFIS Num. labels = 5, max. iter. = 10 1.677 0.629 1.181 1.566 0.670 1.250
KNN K = 9 1.387 0.693 1.116 1.560 0.678 1.264
CRM Committees = 10, Neighbors = 5 1.193 0.810 0.936 1.172 0.826 0.936
SVM Kernel: RBF, Sigma = 0.089, 

C = 1
1.232 0.796 0.986 1.393 0.771 1.128
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(1.016 and 1.069) and MAE (0.759 and 0.831), as well as 
the highest R-value (0.854 and 0.831) for the training and 
testing phases, respectively.

Groundwater salinity map

While all input variables are available in continuous ras-
ter maps across the entire study area, the representation of 
GWS in terms of EC (mS/cm) is limited to specific samples 
distributed within it. However, the selected best model is 
applied to generate a digital map of GWS (Fig. 7) across the 
entire Sidi Okba region. This generated GWS map is entered 
in ArcMap for classification and layout.

The GWS classes of the digital map generated using RF 
are consistent with those of the spatial distribution map from 
OK, displaying the same general structure and distribution. 
The difference lies in the extension of each class with vari-
ations in their extent. This congruence enhances the reli-
ability of the modeling results. The surface areas of each 
class are presented in Table 3. Analysis of Fig. 7 and this 
table reveals that RF model tends to underestimate the salin-
ity class with high risk (C4), accounting for 7.04% of the 
entire surface area. Conversely, RF tends to overestimate the 
salinity class with excessive levels (C5), covering 46.68% 

of the total surface area. Additionally, 46.28% of the land is 
covered by groundwater within the C3 category, indicating 
a very high salinity level. According to Ayers and Westcot’s 
threshold, acceptable groundwater for irrigation covers less 
than 15% of the entire research area.

Discussions and predictor variables’ importance

The type and number of input combinations play a crucial 
role in the accuracy of ML techniques as demonstrated by 
the results of three selection methods (REF, FFS, and BFS) 
applied in this study to identify appropriate predictors (DEM 
derivatives) of GWS in the Sidi Okba region. The results 
revealed that the selection methods can yield different input 
combinations as aspect often overlooked by researchers. This 
finding is consistent with the results of Theng and Bhoyar 
(2024), who concluded that the presence of redundant and 
irrelevant features can lead to less effective ML algorithms 
as in several research papers in the literature. The REF selec-
tion method identified five DEM derivatives as top predic-
tors as shown in Table 4, while the FFS selection method 
identified nine variables as in Table 5, and BFS considered 
all variables as top predictors (Table 6). The application 
of these various input combinations to five ML modeling 

Fig. 7   Digital map of GWS in terms of EC generated using RF
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techniques (RF, HyFIS, KNN, CRM, and SVM) demon-
strated that utilizing only the five most important predictors 
consistently yielded the highest accuracy across all models 
during both the training and testing phases. This result is 
also supported by the comprehensive survey conducted by Li 
et al. (2017), which provides empirical evidence that fewer 
features often lead to better model performance, especially 
in terms of accuracy and generalization. This is the case also 
in this paper.

The results of this research indicated that RF is the most 
effective modeling technique for predicting GWS using 
distance to Elbiraz wadi (DTBW), X, elevation, distance to 
streams (DTS), and aspect as input variables. The best RF 
model was employed to generalize prediction results across 
the entire study area and generate the digital map of GWS 
using raster formats of the five best predictors. The current 
result is aligned with recent research displaying the effec-
tiveness and superior predictive capability of RF compared 
to other ML methods in predicting groundwater quality 
parameters such as groundwater nitrate pollution (Oue-
draogo et al. 2019), groundwater contamination by ammonia 
concentration (Madani et al. 2022), and groundwater arsenic 
contamination (Guo et al. 2023; Iqbal et al. 2024).

The feature importance analysis indicated that the dis-
tance to Elbiraz wadi, which is fed by releases from the 
Foum Elgherza dam and other tributaries, is the most 
impactful variable for predicting GWS in the Mio-Pliocene 
aquifer in the Sidi Okba region, with a variable importance 
score (VIS) of 16.37 (see Fig. 8). The digital map clearly 
shows that as we move further away from the Foum Elgh-
erza dam and Elbiraz wadi, groundwater salinity (GWS) 
increases. This increase is likely due to the reduced recharge 
of the aquifer as one moves away from the wadi. In this 
context, Balakrishnan et al. (2024) confirmed the essential 
role of streams and wadis not only in groundwater recharge 
but also in the dissolution, mobilization, and distribution of 
salts within the aquifers. Longitude (X) is the second most 
important variable affecting the accuracy of the prediction 
results (VIS = 10.93). This is due to its strong negative cor-
relation with the direction of GWS salinity changes, which 
generally decrease from the western to the eastern parts of 
the study area. Moreover, the northeastern part of the study 
area, which is characterized by lower GWS, is associated 
with higher elevation areas. In contrast, the northwestern and 
southeastern parts, which display excessive GWS salinity 
levels, are associated with lower elevation areas. Elevation 
(VIS = 8.91) can influence groundwater flow paths as water 
typically flows from higher to lower elevations transporting 
minerals and salts along the way. This process can increase 
salinity in lower elevation areas. Similar observations were 
made by Mosavi et al. (2020), who indicated that lower 
elevation areas in Sarvastan plain (Iran) are highly suscep-
tible to GWS evolution. The middle of the study area, which 

exhibits excessive GWS, is linked to areas with the greatest 
DTS and is the fourth most important variable (VIS = 6.45). 
This can be attributed to the low recharge rates in the mid-
dle of the study area, which is characterized by intensive 
agriculture and a high number of wells. Due to these cir-
cumstances, the overexploitation of groundwater contrib-
utes to the increase of GWS. Pulido-Bosch et al. (2018) and 
Foster et al. (2018) indicated that poor irrigation practices 
can intensify GWS by soil salts leaching into groundwater, 
and thus leading to further groundwater salinity increases. 
The aspect, which refers to the orientation of slope, is iden-
tified as the last significant predictor of GWS in the study 
area with the lowest VIS of 0.75. It affects GWS dynamics 
through its impact on precipitation patterns and runoff direc-
tion influencing the movement of water and salts within the 
landscape (Benjmel et al. 2022).

The GWS classes on the digital map generated using RF 
align with those on the spatial distribution map from OK, 
sharing the same general structure and distribution. This 
congruence enhances the reliability of the modeling results. 
However, there are variations in the extent of each class 
because the RF model tends to moderately underestimate 
the high-risk salinity class (C4) and slightly overestimate 
the excessive salinity class (C5). The final digital map of 
GWS illustrates the alarming state of groundwater quality 
in the study area. The high levels of GWS may lead to sig-
nificant environmental problems and economic costs pos-
ing a substantial risk to global health (Jamei et al. 2022), 
emphasizing the urgent need for intervention and remedial 
measures. Despite this alarming situation, farmers in the 
study area continue to use groundwater for irrigation with-
out implementing sufficient measures to mitigate the ongoing 
deterioration situation of groundwater quality. Authorities 
and policymakers must adapt to increased groundwater salin-
ity, by taking some urgent interventions, including careful 
freshwater resource management and planning, (e.g., Foum 

Fig. 8   Predictor variables’ importance
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Elgherza dam); communicate with public, especially farmers, 
the need to prevent overexploitation, and contamination of 
groundwater resources due to anthropogenic activities; raise 
farmers’ awareness of the saline water hazards for irrigation 
and support the implementation of effective methods such 
as leaching, drainage systems, reverse osmosis desalination 
of groundwater, and fertigation using modern technologies 
to prevent the infiltration of saltwater back into the aquifer 
and the subsequent increase of GWS; and cease pumping 
from groundwater wells that are no longer suitable for irri-
gation due to excessive groundwater salinity. After all what 
have been explained, comparison of the main observations 
in this study with similar groundwater salinity (GWS) mod-
eling studies in various regions worldwide, such as Bangla-
desh (Jamei et al. 2022), Vietnam (Tran et al. 2021), Algeria 
(Tachi et al. 2023), and Iran (Gharechaee et al. 2024), dem-
onstrates that the combination of appropriate machine learn-
ing techniques and the effective selection of readily available 
digital elevation model (DEM) derivatives can result in accu-
rate GWS predictions, even in the absence of specific aquifer 
parameters, which are costly and not available everywhere.

Conclusion

Although modeling and mapping of groundwater salinity 
(GWS) procedures are essential for groundwater resources 
management in any region but especially in arid regions, five 
machine learning (ML) techniques are used in this study based 
on electrical conductivity measures and digital elevation model 
(DEM) derivatives for GWS mapping in the Sidi Okba region. 
A limited number of strategically positioned wells and 10 DEM 
derivatives are used with input parameter combinations through 
RFE, FFS, and BFS methods. The ML models (RF, HyFIS, 
Knn, CRM, and SVM) are evaluated using RMSE, R, and MAE 
error measurement metrics. The following points are among the 
main key interpretations obtained from this study.

•	 It is explained that the type and number of input combi-
nations significantly influence the accuracy of machine 
learning (ML) techniques. Three of these methods (RFE, 
FFS, and BFS) are used in the study to identify differ-
ent sets of predictors (DEM derivatives) for GWS in the 
Sidi Okba region based on fewer strategically selected 
features leading to better model performance.

•	 The random forest (RF) model with five key predic-
tors (distance to Elbiraz wadi, X, elevation, distance to 
streams, and aspect) is found as the most effective alter-
native for GWS prediction. This model outperformed 
other ML techniques and therefore, it is used to generate 
a digital map of GWS in the study area.

•	 The most impactful variables for predicting GWS are 
identified as the distance to Elbiraz wadi, longitude (X), 

and elevation. These variables are significantly influ-
enced by the spatial distribution of GWS, especially in 
higher salinity levels further away from the wadi and in 
lower elevation areas.

•	 The study emphasizes the need for authorities and policy-
makers to implement interventions such as careful ground-
water resource management as fresh water resource cou-
pled with public awareness campaigns, and the adoption 
of effective irrigation practices to mitigate the ongoing 
deterioration of groundwater quality due to salinity.

For the future research directions, this study has some limita-
tions such as the dataset used is relatively small and the resolu-
tion of the DEM derivatives is limited to 30 × 30 m. Expand-
ing the dataset to include more groundwater wells covering 
the entire Mio-Pliocene aquifer in the region can enhance the 
accuracy and reliability of GWS predictions in order to obtain 
higher resolution remote sensing derivatives. As another alter-
native future study, a long-term monitoring and temporal analy-
sis of groundwater salinity are necessary to assess changes and 
salinity trends over time. Despite these limitations, the results of 
this study mark a notable accomplishment and carry substantial 
significance for groundwater managers in the study area, as 
well as researchers globally engaged in similar investigations.
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