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Abstract
Mining-related lead (Pb) pollution of the soil poses serious hazards to ecosystems and living organisms, including humans. 
Improved heavy metal phytoremediation efficacy, achieved by using phytostabilizing plants assisted by plant-growth-pro-
moting (PGP) microorganisms, has been presented as an effective strategy for remediating polluted soils. The objective of 
this research was to examine the response and potential of the plant-growth-promoting bacterium LMR356, a Rhodococcus 
qingshengii strain isolated from an abandoned mining soil, under lead stress conditions. Compared to non-contaminated 
culture media, the presence of lead induced a significant decrease in auxin production (from 21.17 to 2.65 μg  mL−1) and 
phosphate solubilization (from 33.60 to 8.22 mg  L−1), whereas other PGP traits increased drastically, such as 1-aminocy-
clopropane-1-carboxylic acid (ACC) deaminase activity (from 38.17 to 71.37 nmol  mg−1  h−1 α-ketobutyrate), siderophore 
production (from 69 to 83%), exopolysaccharide production (from 1952.28 to 3637.72 mg  mL−1), biofilm formation, and 
motility. We, therefore, investigated the behavior of Sulla spinosissima L. in the presence or absence of this strain under a 
variety of experimental conditions. Under hydroponic conditions, Sulla plants showed endurance to varying lead concen-
trations (500–1000 μM). Inoculation of plants with Rhodococcus qingshengii strain LMR356 enhanced plant tolerance, as 
demonstrated by the increase in plant biomass (ranging from 14.41 to 79.12%) compared to non-inoculated Pb-stressed and 
non-stressed control plants. Antioxidant enzyme activities (increasing by −42.71 to 126.8%) and chlorophyll (383.33%) 
and carotenoid (613.04%) content were also augmented. In addition to its impact on plant lead tolerance, strain LMR356 
showed a growth-promoting effect on Sulla plants when cultivated in sterilized non-contaminated sand. Parameters such 
as plant biomass (16.57%), chlorophyll (24.14%), and carotenoid (30%) contents, as well as ascorbate peroxidase (APX), 
peroxidase (POD), and catalase (CAT) activities, were all elevated compared to non-inoculated plants. Furthermore, when 
the same plant species was cultivated in highly polluted soil, inoculation increased plant biomass and improved its physi-
ological properties. These findings demonstrate that LMR356 is a phytobeneficial bacterial strain capable of enhancing Sulla 
growth under normal conditions and improving its heavy metal tolerance in multi-polluted soils. Thus, it can be considered 
a promising biofertilizer candidate for growing Sulla spinosissima L. or other selected plants intended for application in 
restoration and stabilization initiatives aimed at reviving and safeguarding environmentally compromised and polluted soils 
after mining activities.
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Introduction

Heavy metal pollution of soils as a result of anthropo-
genic activities drastically affects soil functions, microbial 
activities, biodiversity, and growth, vegetation growth, and 

biodiversity, in addition to the human food chain (Yaashi-
kaa et al. 2022; Biswal 2022; Ogundola et al. 2022). Lead 
(Pb) is one of the most toxic non-biodegradable metals; its 
presence in soil interferes with plants’ functions, including 
chlorophyll production, cell division, root elongation, seed 
germination, and plant growth. Exposure of plants to this 
metal also leads to the production of reactive oxygen spe-
cies (ROS) and lipid peroxidation, destroying the plant’s cell 
membrane and organelles. However, the effects depend on 
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Pb levels, exposure time, and plant species (Zulfiqar et al. 
2019; Dalyan et al. 2020).

Excessive lead concentration produces many chronic 
health consequences, damaging cardiovascular, brain, and 
gastrointestinal systems or even causing the mortality of 
living species via food chain pollution (Meena et al. 2020; 
Mousavi et al. 2022; Srivastava et al. 2022; Yang et al. 
2022). The bioremediation approach provides effective 
measures for the treatment of a wide range of pollutants. 
Among the several known bioremediation processes, phy-
toremediation, rhizoremediation, and bioremediation by 
microbes might be effective techniques for reducing soil 
lead contamination (Saha et al. 2021).

Inherently, contaminated regions harbor microorganisms 
with a remarkable capacity to endure a wide array of pol-
lutants (Nzila et al. 2016; Oubohssaine et al. 2022a; Chettri 
et al. 2022; Annamalai et al. 2022; Chatterjee et al. 2022). 
Specifically, Actinobacteria have been widely identified as 
potential bioremediation agents among environmental micro-
organisms. They have been shown to be common in polluted 
soils and to be capable of metabolizing pollutants to thrive, 
including pesticides and heavy metals (Mawang et al. 2021; 
Farda et al. 2022; Behera et al. 2022; Raimondo et al. 2022). 
In addition to their ability to tolerate heavy metals, they can 
also contribute to the remediation process through their plant 
growth-promoting (PGP) properties and heavy metal-induced 
stress alleviation. The implementation of useful plant growth-
promoting rhizobacteria (PGPR) in soil contributes to plant 
health, development, and nutrition by a variety of processes, 
including phosphate solubilization, nitrogen fixation, produc-
tion of phytohormones, ammonia siderophores, and 1-amino-
cyclopropane-1-carboxylic acid deaminase (ACCD) (Govin-
dasamy et al. 2022; Oubohssaine et al. 2022a). Furthermore, 
some Actinobacteria have the ability to chelate excessive Pb 
and reduce its accessibility by producing active compounds, 
such as exopolysaccharides (EPS), and forming biofilm under 
stressful conditions. All of these properties are involved in 
critical physiological processes that guarantee bacterial sur-
vival in the presence of heavy metal contamination (Li et al. 
2021a, 2021b; Homero et al. 2021).

One of the most common genera encountered in con-
taminated soils is Rhodococcus, a promising group of bac-
teria suitable for bioremediation. Rhodococci are a group 
of remarkable bacteria known for their extraordinary abil-
ity to thrive under mild, moderate, or even severe stresses 
across diverse environments. They have been discovered 
in various settings, including those characterized by harsh 
environmental conditions (Pátek et al. 2021; Oubohssaine 
et al. 2022a, 2022b). These Gram-positive, aerobic, non-
sporulating bacteria possess a high G+C content (Guevara 
et al. 2019; Donini et al. 2021) and exhibit unique cellular 
features. Their cell walls contain peptidoglycan, while their 
cell envelopes consist of arabinogalactan and a lipid bilayer 

of mycolic acids (Malas 2021). The outer mycomembrane 
plays a vital role in protecting these cells against various 
toxic compounds (de Carvalho and da Fonseca 2005; de 
Carvalho 2012).

Moreover, Rhodococcus strains possess an extensive 
array of enzymatic activities that prepare them to handle 
numerous natural and xenobiotic organic compounds, ena-
bling them to degrade substances such as alkanes, cycloal-
kanes, aromatic compounds, phenols, polycyclic aromatic 
hydrocarbons, halogenated hydrocarbons, and polychlorin-
ated phenyls (Cappelletti et al. 2019, 2020). For these rea-
sons, Rhodococcus strains are considered one of the best 
candidates for bioremediation strategies. Furthermore, it 
can be assumed that the use of tolerant Rhodococcus strains 
possessing several plant-growth-promoting mechanisms can 
have a great potential for the enhancement of the efficiency 
of heavy metal removal from contaminated soils, especially 
lead, and can serve as an intelligent and eco-friendly way for 
strategic implementation of phytoremediation interventions.

Here, we set out to examine Sulla spinosissima L.’s abil-
ity to phytoremediate heavy metals in association with a 
selected rhizospheric bacterium, Rhodococcus qingshengii 
strain LMR356, that was previously isolated from abandoned 
mining sites situated in Oujda region (Eastern Morocco). 
This plant species is a perennial native multi-tolerant leg-
ume known for its contribution to soil fertility as a result 
of its symbiotic nitrogen fixation capacity. Furthermore, 
it exhibits invasive traits as it naturally spreads within the 
previously mentioned mining sites, attributed to its remark-
able ability to withstand and accumulate heavy metals in 
its roots (Sbabou et al. 2016). Therefore, the current study 
aimed to (a) examine the plant growth-promoting (PGP) 
traits of LMR356 in the presence of lead (Pb) pollution, (b) 
investigate the effects of inoculation with this strain on the 
growth of Sulla spinosissima L., and (c) reveal its impact on 
plants growth in a contaminated soil and try to elucidate the 
mechanistic role of plant growth-promoting rhizobacteria 
(PGPRs) in enhancing phytoremediation. The final objective 
is to provide critical knowledge for the prospective scaling-
up of this technology to preserve the environment and reha-
bilitate polluted areas.

Material and methods

Origin of strain LMR356

For this study, we selected a strain isolated from the rhizo-
sphere of Acacia cyanophylla, a legume tree species intro-
duced into an abandoned mining site (Touissit) located in 
Oujda, Eastern Morocco. Oubohssaine et al. (2022a) previ-
ously reported the physico-chemical characteristics of the 
soil at this site, revealing extensive and varied contamination 
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by several heavy metals, including chromium (Cr), copper 
(Cu), lead (Pb), zinc (Zn), and arsenic (As).

Molecular identification of strain LMR356

The genomic DNA of the isolate was extracted following 
the method described by Oubohssaine et al. (2022a, 2022b). 
Subsequently, the 16S rDNA gene was amplified using the 
polymerase chain reaction (PCR) technique and specific 
primers, namely 27f (5-AGA GTT TGA TCC TGG CTC AG-3) 
and FGPS1509 (5-AAG GAG GGG ATC CAG CCG CA-3). 
The PCR products were then sent for nucleotide sequencing 
at Genoscreen in France. The obtained 16S rDNA sequences 
were subjected to BLAST analysis in the NCBI database to 
identify model strains showing high sequence homology. To 
visualize the evolutionary relationships, a phylogenetic tree 
was constructed using the MEGA X software and the neigh-
bor-joining method, with bootstrap analysis performed with 
1000 repetitions to assess the robustness of the phylogeny.

Behavior of the strain LMR356 faced with lead stress

Pb tolerance of strain LMR356

To assess the strain’s tolerance to lead, we quantified it by 
measuring the optical density (OD) at 600 nm after 6 days 
of growth at 28 °C in nutrient broth (NB) medium supple-
mented with different concentrations of lead (ranging from 
0 to 35 mM of Pb (Pb  (NO3)2)). The selection of lead con-
centrations was based on the elevated levels of this metal 
previously measured at the Touissit site (Oubohssaine et al. 
2022a).

Bioaccumulation of Pb

A volume of 100 ml of bacterial cultures, grown in tryp-
tone yeast extract (TY) medium containing 5 g tryptone, 1 
g yeast extract, and 0.65 g  CaCl2, was prepared in 250 ml 
flasks. After 48 h of incubation at 37°C, the metal (30 mM 
of Pb(NO3)2) was introduced into the bacterial cultures, 
and they were re-incubated under the same conditions. The 
cell mass was then separated from the medium through 
centrifugation (8000 rpm for 10 min at 4°C). To distin-
guish the cells (pellet) from the medium, two specimens 
of the pellet were washed twice with sterile distilled water 
(the pellets were re-suspended in sterile distilled water 
and centrifuged for 6 min at 7000 rpm), while the other 
two specimens of the pellet were washed twice with 0.25 
M of acid ethylenediaminetetraacetic (EDTA) (the pel-
lets were re-suspended in 0.25 M EDTA, left for contact 
time, and then centrifuged at 7000 rpm for 6 min). After 
centrifugation, the supernatant represented the membrane 

compartment (metals extracted from cell membranes by 
EDTA), while the pellet corresponded to the intracellular 
compartment.

The pellets of the strain cultivated in the presence of the 
metal were obtained after centrifugation and dried at 52 °C 
for 48 h. Subsequently, the dried pellets were subjected to 
analysis by Inductively coupled plasma - optical emission 
spectrometry (ICP-OES) after digestion with sulfuric acid 
 (H2SO4), nitric acid  (HNO3), and perchloric acid  (HClO4) 
following the method described by El Aafi et al. (2015).

Motility Assay

Following the protocol outlined by Turnbull and Whitch-
urch (2014), we conducted the bacterial motility assay. The 
assessment of bacterial motility was performed on a semi-
solid tryptone yeast extract (TY) (0.3%) medium under 
both normal and lead stress conditions (0–30 mM of Pb). 
The evaluation involved measuring the diameter of the halo 
formed as an indicator of bacterial motility.

Exopolysaccharide production and biofilm assay

The strain was initially cultured for 30 h at 28 °C in Man-
Rogosa and Sharpe (MRS) broth medium containing sucrose 
as the carbon source. After centrifugation at 10,000 rpm for 
20 min, the supernatant was collected and mixed with three 
times its volume of cold acetone. The mixture was left over-
night at 4 °C for precipitation, resulting in the recovery of 
the extracellular polysaccharides (EPS). The EPS obtained 
were then subjected to the phenol sulfuric acid assay to esti-
mate their quantity (DuBois et al. 1956).

To study biofilm formation, pre-sterilized 96-well plates 
were used following the procedure described by O'Toole 
(2011) and Sahal et al. (2020). A cell suspension with an 
optical density of 0.5 at 600 nm was inoculated with 10 
μl into each well containing 190 μl of Luria-Bertani (LB) 
medium, and 200 μl of autoclaved distilled water was added. 
After 16 h of growth at 37 °C, the cells were immobilized 
using 99% methanol. Following this, the plates underwent 
two washes with phosphate buffer saline and were left to 
air-dry. Subsequently, a 0.2% crystal violet solution was 
introduced into each well, and after a 5-min incubation, any 
surplus crystal violet was eliminated through two additional 
washes, followed by air-drying. To dissolve the crystal violet 
within the biofilm, 100 μl of 95% ethanol was added to each 
well, enhancing the reading sensitivity with a spectropho-
tometer. The growth of the biofilm was monitored by meas-
uring the  OD570 using a microplate reader (Rivas et al. 2007; 
Flores-Treviño et al. 2014; Shukla and Rao 2013; Shukla 
and Rao 2014).
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PGP trait evaluation under normal and lead stress 
conditions

To assess the production of indole-3-acetic acid (IAA), 
strain LMR356 was cultured in Yeast Extract Mannitol 
(YEM) medium supplemented with tryptophan (0.5 mg 
 mL−1), which serves as the precursor of IAA. The quantifi-
cation of auxin production followed the methods described 
by Gordon and Weber (1951), Sheng et al. (2008), and 
Oubohssaine et al. (2022a).

The ability of strain LMR356 to solubilize phosphate 
was evaluated using a Pikovskaya medium containing 0.5% 
insoluble phosphate, following the procedures outlined by 
Pikovskaya (1948) and Oubohssaine et al. (2022a). For the 
estimation of siderophore production, the Chrome Azurol-
S (CAS) analytical method was employed, as described by 
Modi et al. (1985), Schwyn and Neilands (1987), Man-
janatha et al. (1992), and Oubohssaine et al. (2022a).

To measure ACC deaminase activity, the ACC-deam-
inase activity assay from Penrose and Glick (2003) and 
Oubohssaine et al. (2022a) was employed. To estimate 
the ammonium production by strain LMR356, the tech-
nique described by Cappuccino and Sherman (1992) was 
employed. In triplicate, the strain was inoculated into 
peptone water broth (containing 10 g  L−1 Peptone, 5 g 
 L−1 NaCl, and pH 7.0 ± 0.2) and then incubated at 28° ± 
2°C with continuous shaking at 200 rpm. Following the 
incubation period, 1 ml of the cell-free supernatant was 
combined with 1 ml of Nessler’s reagent.

All the plant growth-promoting (PGP) traits were 
assessed under both normal and lead stress conditions (30 
mM Pb).

Sulla spinosissima experiments

Inoculum and seed preparation

An overnight inoculum of LMR356 was cultured in NB 
medium, starting with an initial  OD600 of 0.05, and incu-
bated at 28 °C with agitation at 180 rpm for 24 h. After 
incubation, the bacterial culture was harvested by cen-
trifugation at 8000 rpm at 4 °C for 10 min. Afterwards, 
the supernatant was removed, and the cell pellets were 
subjected to two washes with sterile distilled water. They 
were then re-suspended in sterile distilled water to attain 
an  OD600 of 0.1, which corresponds to approximately  108 
cells  mL−1.

Previously collected seeds of Sulla spinosissima from the 
Oujda region were manually scarified, then surface sterilized 
in 70% ethanol for 1 min, followed by five rinses with sterile 
distilled water. The treated seeds were then germinated on 
9% agar plates at 25°C in a dark environment.

Hydroponic experiments

Tolerance of Sulla spinosissima to lead

The primary objective of the initial experiment was to 
assess the tolerance level of Sulla spinosissima plants to 
lead (Pb). Uniform and aseptic pre-germinated seeds of 
Sulla spinosissima were transplanted into vessels filled 
with nutrient solution following the Hoagland and Arnon 
(1950) method. The seedlings were allowed to grow under 
normal conditions for 15 days. Subsequently, the young 
seedlings were transferred to nutrient solutions containing 
varying concentrations of Pb(NO3)2 (ranging from 500 to 
1000 μM) and were left to grow for 30 days. To ensure 
controlled growth conditions, the vessels were randomly 
arranged within a growth chamber set at a temperature 
of 25/20°C (day/night) with a photoperiod of 16 h of 
light and 8 h of darkness. To maintain optimal nutrient 
conditions, the nutrient solutions were renewed every 5 
days.

Effect of LMR356 inoculation on Sulla spinosissima

The second experiment aimed to investigate the impact 
of inoculating the Rhodococcus strain on the growth and 
development of plants under both normal and Pb-stressed 
conditions. Three distinct treatments were tested:

• Sulla plants are grown without Pb and without inocula-
tion (control).

• Inoculation with Rhodococcus under normal growth 
conditions at a rate of 108 cells per seedling.

• Rhodococcus inoculation at the same rate under the 
previously identified Pb minimal inhibitory concentra-
tion for Sulla spinosissima.

All plants were cultivated under the same conditions as 
described earlier.

Pot experiment

The seedlings were planted in earthen pots of uniform size, 
filled with sand or soil depending on the specific experi-
ment. The arrangement of the pots followed a completely 
randomized design (CRD).

Effect of inoculation with LMR356 on Sulla spinosissima 
growth under normal conditions

To evaluate the influence of the Rhodococcus inoculum on 
plant growth, the inoculated plants were grown in sand that 
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was autoclaved at 121°C for 1 h. The strain and seeds were 
prepared following the previously described method.

The plants were cultivated in pots, each containing 100 
g of sterilized sand. One plant was placed per pot, and there 
were 12 repetitions for each treatment. Each plant received 
an inoculation of 1 mL of the Rhodococcus inoculum at 
the same rate as before. Additionally, uninoculated control 
plants were also set up for comparison.

All the pots were placed in a controlled growth chamber, 
maintaining the same environmental conditions as previ-
ously mentioned. Regular watering with a nutritive mineral 
solution was provided to the plants throughout the 100-day 
duration of the experiment.

Effect of inoculation with the Rhodococcus strain on Sulla 
spinosissima growth under lead stressing conditions

In this particular experiment, we utilized the heavily lead-
contaminated soil from the Touissit site in the Oujda region, 
as previously studied by Oubohssaine et al. (2022a). Aseptic 
pre-germinated seeds were planted in pots filled with this 
soil, and the experimental conditions were kept consistent 
with the preceding assay, except for the watering process. 
In this case, the plants were watered with sterile distilled 
water instead of the mineral solution. The preparation and 
application of the bacterial inoculant were carried out in the 
same manner as in the previous experiment.

Measurements of biomass and chlorophyll/
carotenoid content

Following a growth period of 30 days for hydroponic experi-
ments and 100 days for pot assays, the Sulla plants were 
harvested, and the shoots and roots were carefully separated. 
In the soil experiment, the roots were meticulously removed 
from the soil by thorough water washing. Afterward, both 
the roots and shoots were dried with blotting paper. The 
length and biomass of the plant shoots and roots were sub-
sequently measured.

A portion of the fresh leaves was utilized to estimate the 
chlorophyll and carotenoid contents, following the method 
outlined by Mackinney (1941).

Antioxidant enzyme assays

The measurement of ascorbate peroxidase (APX), catalase 
(CAT), and peroxidase (POD) activities was conducted using 
the procedures outlined by Chen and Asada (1989), Nakano 
and Asada (1981), Aebi (1984), and Chance and Maehly 
(1955), respectively.

Statistical analysis

The data underwent analysis using the analysis of variance 
(ANOVA) statistical package within XL STAT for social 
sciences. Subsequently, multiple treatment levels were com-
pared using the Duncan significant difference test at a sig-
nificance level of P ≤ 0.05.

Results

Identification of strain LMR356

By comparison of 16S rDNA sequences in BLAST analysis, 
the strain LMR356 was shown to have 99.7% homology 
with a Rhodococcus qingshengii strain (GenBank No. 
NR_115708.1) (Fig.  1). The nucleotide sequence of 
LMR356 has been registered in the NCBI database with 
accession number OQ991161.

Rhodococcus strain lead tolerance

As shown in Fig.  2, the growth of strain LMR356 was 
reduced progressively when lead concentration in the growth 
medium increased. This strain can tolerate up to 30 mM 
of Pb, thus the minimal inhibiting concentration (CIM) of 
strain LMR356 can be established between 30 and 35 mM 
of Pb. 

Bioaccumulation of lead

The primary objective of this study was to assess the bio-
accumulation of Pb by the Rhodococcus strain, aiming to 
characterize the distribution of lead at the subcellular level 
and evaluate the strain's potential for bioremediation of 
mining sites. The results obtained showed that the strain 

Fig. 1  Neighbor-joining phylogenetic tree of partial 16S rDNA 
sequence of LMR356
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accumulated 55 ppm of Pb inside the cell, against 8490 ppm 
outside of the cell (Table 1). 

Motility test

The motility was assessed in the presence of different con-
centrations of Pb ranging between 0 and 30 mM. Halo meas-
urements indicated that the strains’ motility was significantly 
increased with the augmentation of the Pb concentration, 
and the maximum value of 35 mm was measured at 20 mM 
Pb (Fig. 3).

Exopolysaccharide production and biofilm assay

The phenol-sulphuric acid assay showed that the Rhodoc-
occus strain was able to secrete a high amount of exopoly-
saccharides under normal conditions (1952.28 mg  mL−1). 
In the presence of 30 mM of lead, EPS production was 
increased to 3637.72 mg  mL−1 (Table 2). The strain was 
also able to form a biofilm in the presence of Pb that was 
dependant on the concentration of lead in the medium (10 
mM, 20 mM, 25 mM) (Fig. 4).

Plant growth‑promoting characteristics

The amounts of IAA produced by the strain LMR356 not 
exposed and exposed to Pb stress are shown in Table 2. The 
production of IAA was drastically reduced by the incorpo-
ration of lead in the culture medium, 2.65 μg  mL−1 of IAA 
instead of 21.17 μg  mL−1. Lead also affected negatively the 

amount of phosphorus solubilized by the strain grown in 
PVK liquid medium, 8.22 mg  L−1 of P against 33.60 mg 
 L−1 in non-stressed conditions. In contrast to the two pre-
vious PGP activities, lead stimulated siderophores produc-
tion and ACC deaminase activity of the Rhodococcus strain 
tested (83.7% instead of 69% for siderophores and 71.37 
nmol  mg−1  h−1 α-ketobutyrate against 38.17 for ACC deami-
nase). Moreover, ammonium production by the strain was 
not affected by the presence of lead in the medium. Globally, 
the results of PGP activity measurements demonstrate that 
the Rhodococcus LMR356 studied may be a good candidate 
to be tested with plants growing under normal and Pb-con-
taminated conditions.

Sulla spinosissima growth under Pb stress 
in hydroponic conditions

Effect of elevated Pb concentrations on plant growth 
parameters

During this experiment, Sulla plants were exposed to various 
concentrations of Pb (500, 750, and 1000 μM) in a hydro-
ponic setup. The results presented in Fig. 5 demonstrate that 
lead had varying effects on different growth parameters of 
the plants. The control plants exhibited the highest shoot 
length, followed by the treatments with 750 μM and 1000 
μM of Pb, with shoot lengths of 125 mm  plant−1, 80 mm 
 plant−1, and 65 mm  plant−1, respectively. However, lead did 
not have a significant impact on root length, as there were no 

Table 1  Bioaccumulation of lead in Rhodococcus qingshengii LMR356 growing in tryptone yeast extract (TY) medium containing 30 mM Pb

Treatment Pb localization Amount of accumulated Pb (ppm)

LMR356 +30 mM Pb Intracellular bioaccumulation 55
Extracellular bioaccumulation 8490

Fig. 3  Motility of strain LMR356 assessed by changes in colonies’ 
size measured on soft agar (0.3 %) under different concentrations of 
lead (0–30 mM)

Fig. 2  The effect of different lead concentrations on Rhodococcus 
qingshengii LMR356 growth in nutrient broth medium
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noticeable differences observed between the control group 
and both Pb treatments (750 μM and 1000 μM). Interest-
ingly, the plants treated with only 500 μM of Pb displayed 
the lowest root and shoot lengths, indicating that they were 
most affected by lead. These results were also reflected in 
the measurements of shoot and root dry weights.

Furthermore, the impact of high Pb concentrations on 
chlorophyll content was evident, as the production of chlo-
rophyll decreased with increasing Pb concentration. On the 
other hand, the carotenoid content in the shoots showed an 
increase with rising Pb concentration, although these differ-
ences were not statistically significant.

The measurements of oxidative enzymes in the plants 
revealed notable variations. Root and leaf APX activities 
were significantly higher in Sulla plants treated with 1000 
μM of Pb, recording 10.58 U  mg−1 protein and 2.68 U  mg−1 
protein, respectively, compared to the control plants with 
3 U  mg−1 protein and 0.44 U  mg−1 protein, respectively. 
At this Pb concentration, roots’ POD activity was also sig-
nificantly higher, recording 20.21 U  mg−1 protein instead of 
3.57 U  mg−1 protein in control plants. However, in leaves, 

the maximum POD activity was recorded in plants treated 
with 750 μM of Pb, showing 1.52 U  mg−1 protein compared 
to 0.27 U  mg−1 protein in control plants. It is noteworthy that 
all the plants studied did not exhibit any CAT activity at the 
root level, but in the leaves, higher levels of CAT activity 
were recorded in plants treated with 750 μM and 1000 μM 
of lead compared to the control plants (Fig. 5).

Effect of Rhodococcus inoculation on the growth of Sulla 
spinosissima

In a controlled hydroponic environment, the inoculation of 
plants with the LMR356 strain exhibited beneficial effects 
on the plants growing under lead stress, as depicted in Fig. 6. 
The Pb-stressed inoculated plants demonstrated shoot and 
root lengths higher than non-inoculated Pb-stressed plants 
but comparable to the control plants grown under normal 
conditions. Moreover, the inoculation had a positive influ-
ence on the shoot and root dry weights of plants subjected to 
lead stress, with no significant differences observed between 
control and inoculated Pb-stressed plants. Additionally, Sulla 
plants inoculated with strain LMR356 showed partial recov-
ery in chlorophyll and carotenoid content levels compared to 
plants treated with 1000 μM of Pb, although they performed 
significantly less efficiently than non-stressed plants.

Regarding the enzymatic activities, both root and leaf 
APX activities were significantly higher in Pb-stressed 
plants inoculated with strain LMR356, measuring 10.82 
U  mg−1 protein and 4.96 U  mg−1 protein, respectively, 
compared to non-inoculated non-stressed control plants, 
which recorded 5 U  mg−1 protein and 0.96 U  mg−1 protein, 
respectively. These values were also higher than those of 
non-inoculated plants treated with 1000 μM of Pb. On the 
other hand, POD activity was substantially greater in the 
roots of plants treated with 1000 μM (4.87 U  mg−1 protein) 
compared to both control plants (0.57U  mg−1 protein) and 
those inoculated with LMR356 (2.79 U  mg−1 protein). Con-
versely, in leaves, POD activity was higher in inoculated 
plants (2.2 U  mg−1 protein) than in control plants (0.27 U 
 mg−1 protein). Moreover, CAT activity was not detectable in 
roots but was measured in leaves of inoculated plants (0.01 
U  mg−1 protein).

Table 2  PGP activities and EPS production measurements under normal and Pb stress conditions

Auxin (μg  mL−1) Ammonia produc-
tion

Siderophores 
production (%)

EPS production 
(mg  mL−1)

α-ketobutyrate 
(nmol  mg−1  h−1)

Soluble P produced (mg 
 L−1)

LMR356 21.17±1.5 + 69±0.54 1952.28±0.99 38.17±2.4 33.60±0.6
LMR356 + 30 mM 

(Pb)
2.65±0.7 + 83.7±0.9 3637.72±1.3 71.37±1.65 8.22±0.37

Fig. 4  Quantitative assessment of biofilm formation using the crystal 
violet assay
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Evaluation of the effect of LMR356 on Sulla plants 
grown in sand pots

In a controlled environment using sterilized sand, the inocu-
lation with strain LMR356 exhibited a positive influence 
on Sulla plants. This was evident by the higher shoot dry 
weights measured (68.07 mg  plant−1) compared to the con-
trol plants (58.88 mg  plant−1). However, it was noted that 
the root dry weights were lower for the inoculated plants 
in comparison to the control group. The roots of the latter 

plants were also longer than inoculated plants, but no sig-
nificant difference was recorded between the shoot lengths 
of both types of plants (60 mm  plant−1 for inoculated plants 
versus 54.28 mm  plant−1 for the control).

Pigment measurements corresponded to the aboveground 
biomass, with Sulla-inoculated plants showing higher val-
ues of chlorophyll and carotenoids. Additionally, inoculated 
plants exhibited higher root and leave APX activities (35.19 
U  mg−1 protein and 15.01 U  mg−1 protein, respectively) 
than control plants (7.82 U  mg−1 protein and 12.9 U  mg−1 

Fig. 5  Effect of lead on Sulla plants grown under hydroponic condi-
tions (growth parameters, total chlorophyll and carotenoids content, 
and antioxidant enzymes were measured). The growth parameters 
were determined by calculating the means from 10 replicates. As for 
the pigment parameters, the results are presented as means ± SE (n 

= 3). The mean values of antioxidant enzymes were calculated based 
on four replicates. Subsequently, an ANOVA test was conducted, and 
the Duncan test revealed significant differences (P < 0.05) among the 
mean values of different treatments, as denoted by distinct letters
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protein, respectively). The same tendency was observed in 
root and leaf POD activities. As for CAT activities, inocu-
lated plants displayed statistically higher values in leaves 
than control plants (0.03–0.05 U  mg−1 protein). Conversely, 
the root catalase (CAT) activities in the inoculated plants 
were found to be statistically indistinguishable from those 
in the control plants (Fig. 7).

Effect of Rhodococcus inoculation on Sulla 
spinosissima growth in a metal‑contaminated soil

The bacterial isolate LMR356 demonstrated a significant 
impact on the growth of plants in the highly contaminated 
soil, as compared to the control non-inoculated plants 
(Fig. 8). Specifically, Sulla plants inoculated with LMR356 

Fig. 6  Effect of Rhodococcus qingshengii LMR356 inoculant on 
Sulla plants grown under hydroponic conditions in the presence of 
lead (growth parameters, total chlorophyll and carotenoids content, 
and antioxidant enzymes, were measured). The growth parameters 
were determined by calculating the means from 10 replicates. As for 

the pigment parameters, the results are presented as means ± SE (n 
= 3). The mean values of antioxidant enzymes were calculated based 
on four replicates. Subsequently, an ANOVA test was conducted, and 
the Duncan test revealed significant differences (P < 0.05) among the 
mean values of different treatments, as denoted by distinct letters
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exhibited higher biomass production compared to the control 
group. This effect was also observed in terms of root bio-
mass, shoot length, and root length. Significant differences 
were observed in all growth parameters (shoot length, root 
length, root dry weight) between the control group and the 
inoculated plants, with a valid significance level of P < 0.05 
for all parameters except for shoot dry weight. Moreover, 

Sulla inoculation also resulted in a significantly higher chlo-
rophyll content (1.49 mg  g−1 FW) in comparison with con-
trol plants. Conversely, the carotenoid content of inoculated 
plants was lower than control plants.

Root and leave APX activities were noticeably lower in 
plants inoculated with LMR356 (47.4 U  mg−1 protein and 
26.13 U  mg−1 protein, respectively) than in control plants 

Fig. 7  Effect of Rhodococcus qingshengii LMR356 inoculant on 
Sulla grown in sterilized sand (growth parameters, total chlorophyll 
and carotenoids content, and antioxidant enzymes were measured). 
The growth parameters were determined by calculating the means 
from 14 replicates. As for the pigment parameters, the results are 

presented as means ± SE (n = 3). The mean values of antioxidant 
enzymes were calculated based on four replicates. Subsequently, an 
ANOVA test was conducted, and the Duncan test revealed significant 
differences (P < 0.05) among the mean values of different treatments, 
as denoted by distinct letters
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(53.8 U  mg−1 protein and 30.1 U  mg−1 protein, respec-
tively). The same trend was observed for roots and leaves 
POD activities. However, a different result was recorded 
for CAT activity, as neither inoculated nor control plants 
showed any activity in the roots. In contrast, in leaves, the 
inoculation of plants significantly lowered the CAT activity 
(0.02 U  mg−1 protein) compared with control plants (0.041 
U  mg−1 protein).

Discussion

Mining sites, whether currently operational or abandoned, 
exert significant pressure on surrounding ecosystems, lead-
ing to pollution and ecological degradation. In Morocco, for 
instance, approximately 200 abandoned mining sites stand as 
stark reminders of this environmental challenge. Addressing 
the contamination of these areas emerges as a paramount 

Fig. 8  Effect of Rhodococcus qingshengii LMR356 inoculant on 
Sulla plants grown in the heavy metal contaminated soil of Touissit 
(growth parameters, total chlorophyll and carotenoids content, and 
antioxidant enzymes were measured). The growth parameters were 
determined by calculating the means from 14 replicates. As for the 

pigment parameters, the results are presented as means ± SE (n = 3). 
The mean values of antioxidant enzymes were calculated based on 
four replicates. Subsequently, an ANOVA test was conducted, and 
the Duncan test revealed significant differences (P < 0.05) among the 
mean values of different treatments, as denoted by distinct letters
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concern for nations committed to sustainable development 
agendas. The remediation of such contaminated sites neces-
sitates robust strategies aimed at mitigating the adverse 
effects of heavy metal toxicity, thereby safeguarding eco-
systems for present and future generations. Among the array 
of remediation approaches available, biological solutions 
stand out for their effectiveness and relatively lower envi-
ronmental risks. Leveraging agro-biotechnological methods, 
which capitalize on natural processes, offers a promising 
avenue for the elimination and stabilization of toxic metals 
in polluted environments. To accomplish phytorestoration of 
contaminated sites, this bioremediation approach employs 
either microorganisms or products of their metabolism, or 
higher plants and their rhizospheric bacteria. With this goal 
in mind, the present study seeks to explore the capabilities 
of Pb-tolerant PGPR Rhodococcus qingshengii LMR356 in 
promoting the growth of Sulla spinosissima and mitigating 
the effects of Pb-induced stress.

Notably, this strain exhibits multiple characteristics asso-
ciated with plant growth promotion, enhancing its suitabil-
ity for assisting in phytoremediation endeavors. Numerous 
strains within the Rhodococcus genus have been identified as 
possessing both PGP features and resistance to heavy metals 
such as lead (Pb). Examples include Rhodococcus eryth-
ropolis AV96 (Navazas et al. 2022), Rhodococcus hoagii 
(MG432495) (Jinal et al. 2019), Rhodococcus sp. NSX2 
(Wang et al. 2020), Rhodococcus jostii B12 (Vergani et al. 
2019), and Rhodococcus sp. (González Henao and Ghneim-
Herrera 2021). These findings underscore the potential of 
Rhodococcus strains as valuable allies in the quest for sus-
tainable remediation of metal-contaminated sites.

Lead tolerance of Rhodococcus qingshengii LMR356 
and possible involved mechanisms

The strain under the current investigation exhibited pro-
nounced resistance to lead at a concentration of 30 mM. 
However, it was observed that bacterial survival declined 
progressively under the influence of lead stress, aligning 
with earlier research findings (Gikas et al. 2009). Lead is 
recognized for its capacity to instigate structural destabili-
zation of the cytoplasmic membrane, thereby leading to a 
reduction in the bacterial population. Moreover, the slowing 
of the onset of growth is a very common aspect of the effects 
of sub-lethal metal concentrations on bacteria (Aljerf 2018).

According to Li et al. (2021a, 2021b), exopolysaccharide 
(EPS) production is one of the mechanisms of heavy metal 
tolerance in bacteria. It prevents heavy metals’ entrance into 
bacterial cells through the nonspecific binding of heavy met-
als and EPS. This is the case of strain LMR356 that pro-
duced a large amount of EPS and was able to form biofilm 
at 30 mM of lead. EPS may also decrease metal toxicity in 
plants regarding the adhesive properties of EPS that assist 

bacteria in combining with soil particles and heavy metals 
(Zhang et al. 2006; Gupta and Diwan 2016; Bhagat et al. 
2021). Polysaccharides, according to BeMiller (2019), are 
acidic and have a significant affinity to particular ions. These 
EPS help to build bacterial aggregates, which improve soil 
aeration and root development (Bhagat et al. 2021).

Biofilm formation is another characteristic of the studied 
Rhodococcus strain that is important for lead resistance. In 
this respect, it was found that higher levels of Pb increased 
Rhodococcus biofilm development. Studies have reported 
that bioremediation performed by biofilm cells surpasses 
that of planktonic cells due to the biofilm cells’ ability to 
adapt and thrive in stressful conditions, being shielded 
within the matrix. This phenomenon highlights the multi-
faceted advantages conferred by biofilm in the context of 
environmental stressors such as lead contamination (Rodri-
gues and de Carvalho 2015; Adhami et al. 2017). In addition 
to EPS and biofilm formation, Pb-tolerant bacterial strains 
can employ other sophisticated distinct mechanisms to effi-
ciently survive in a Pb-contaminated environment. Several 
mechanisms have been identified for reducing Pb toxicity, 
including biosorption, Pb efflux, the formation of metal 
chelators like metallothionein and siderophores, as well as 
bioaccumulation (Najm-ul-Seher Ahmad et al. 2021; Pande 
et al. 2022). The last mechanism was estimated for strain 
LMR356, and we found that the strain has a high Pb bioac-
cumulation capacity. The metals associated with the intracel-
lular compartment (cytoplasm) were measured in bacterial 
pellets (after washing with water) and those associated with 
the extracellular compartment (membranes and polysaccha-
rides) were determined after washing with EDTA, a chelator 
that is utilized to capture and remove metallic components 
adsorbed on the surface of bacterial cells (El Aafi et al. 
2015). EDTA washing demonstrated that the overall metal 
accumulation was consistently higher than the accumulation 
inside the cell, suggesting that a significant portion of the 
metal was adsorbed onto the cell surface. This is may be 
due to the high concentration of polysaccharides produced 
by the studied strain, where the metals could be trapped and 
thus adsorbed on these polysaccharides found on the cell 
surface. El Aafi et al. (2015) reached the same conclusion. 
These results indicate that the Rhodococcus strain LMR356 
is not only capable of tolerating lead but also accumulating 
high levels of this metal, particularly on the cell surface, 
which indicates that this strain is suitable for bioremediation 
in heavy metal-contaminated soils or waters. Alternatively, 
this type of bacteria can be employed in rhizoremediation 
by inoculating them to plant roots to increase and improve 
their tolerance to polluted environments. Moreover, the 
studied Rhodococcus strain showed a chemotaxis response 
under Pb stress. Many studies showed similar results such 
as Rhodococcus sp. BAP-1 (Li et al. 2014), and Rhodoc-
occus ruber and Rhodococcus pyridinivorans (Wang et al. 
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2018). Aroney et al. (2021) reported that chemotaxis sys-
tems, which respond to abiotic stresses, tend to govern bac-
terial motility, enabling bacteria to migrate toward optimal 
environments.

Rhodococcus strains not only grew in the presence of lead 
(Pb) but also in the presence of other heavy metals. In a 
study conducted by Wevar Oller et al. (2013), Rhodococcus 
erythropolis AW3 demonstrated growth in high concentra-
tions of arsenite and arsenate. The bacterial strains exhibited 
resistance of up to 24 mM for arsenite and up to 400 mM for 
arsenate. In a related study by González Henao and Ghneim-
Herrera (2021), a Rhodococcus strain exhibited resistance to 
high concentrations of arsenite. In another study conducted 
by our team, Oubohssaine et al. (2022a, 2022b) Rhodococ-
cus strains demonstrated the ability to tolerate high concen-
trations of lead (Pb), zinc (Zn), and arsenic (As).

Plant growth‑promoting traits of Rhodococcus 
qingshengii LMR356

The strain LMR356 is able to produce significant levels 
of ammonia, IAA, and siderophores, to solubilize rock 
phosphate, and synthesize ACC deaminase. Some of these 
activities were reduced under lead stress, while others were 
increased and others were not affected.

Phosphorus is an important nutritional source for plants; 
nevertheless, P deposited in soil is generally inaccessible to 
plants (He et al. 2021). As a result, isolating bacteria that can 
use these soil P reserves is of significant interest. Bacteria 
with P-solubilization ability may solubilize soil inorganic P 
that plants are unable to utilize, which is an excellent strat-
egy to increase plant P absorption (Ahmad et al. 2022; Ade-
tunji et al. 2022). Strain LMR356 is a phosphate-solubilizing 
bacteria, but its capacity was reduced under Pb stress. Simi-
lar results were reported for a strain of Enterobacter under 
Cd stress (Li et al. 2022a). The strain LMR356 was also able 
to produce ammonia even under Pb stress. Rhizobacteria 
producing ammonia are crucial to plant’s growth and health 
and play an important role in nutrient cycling (Hayat et al. 
2010; Kumar and Verma 2018; Imran et al. 2021).

Among the PGP traits of rhizobacteria, IAA is often 
researched, especially under stressful conditions. IAA 
belongs to a significant auxin family and plays a pivotal role 
in plant root initiation, cell division, and cell enlargement 
(Borah et al. 2019; Wang et al. 2022a; Wang et al. 2022b; 
Robas Mora et al. 2022). As a result, PGPR that produces 
IAA can significantly enhance plant biomass, stimulate root-
ing and germination, and foster the growth of root hairs and 
cotyledon cells. The production of IAA is associated with 
root growth and structural changes in response to stress 
(Vacheron et al. 2013; Adeleke et al. 2022). In the current 
research, IAA secretion by strain LMR356 decreased con-
siderably at 30 mM of lead. Li et al. (2022a) elucidated that 

heightened levels of lead exposure can induce a reduction 
in the activity of the IAA synthetase system, accompanied 
by a depletion of the synthetic tryptophan pool. This dual 
effect may significantly hinder the biosynthesis of indole-
3-acetic acid (IAA), a crucial plant growth regulator. This 
finding underscores the intricate mechanisms through which 
lead exerts its inhibitory influence on IAA production, shed-
ding light on potential pathways for mitigating its adverse 
effects on plant development and physiology. Unlike IAA, 
siderophores production was promoted when Rhodococ-
cus qingshengii LMR356 was exposed to high amounts of 
Pb. Similarly, Sinha and Mukherjee (2008) discovered that 
Pseudomonas aeruginosa KUCd1 produced siderophores in 
response to high Pb exposure.

ACC deaminase activity is one of the PGP attributes that 
was enhanced strongly in LMR356 exposed to high amounts 
of lead. This activity is very important in the context of 
heavy metal stresses. PGPR isolates degrade ACC, the pre-
cursor of ethylene, into ammonia and α-ketobutyrate. As 
a result, the negative effects of ethylene are reduced, and 
germination improves, resulting in increased plant develop-
ment under lead circumstances (Glick et al. 2007; Ghosh 
et al. 2018; Haldar et al. 2022).

Thus, Rhodococcus qingshengii LMR356 shows differ-
ent PGP characteristics even when exposed to Pb, which 
provides this bacterium an edge over other competitors in 
the rhizosphere of plants (Lopez et al. 2022).

Sulla spinosissima behavior under lead stress 
in hydroponic system

In situ investigations were performed in hydroponic condi-
tions, utilizing the plant species Sulla spinosissima. This 
species was selected owing to its inherent capacity to thrive 
naturally in soils heavily contaminated with multiple heavy 
metals within the Oujda mining region.

We started by looking at how lead concentration affected 
plant growth, chlorophyll and carotenoid levels, and antioxi-
dant enzyme activities. We found that as the concentration 
of lead increased, the growth of Sulla plants decreased as 
compared to control plants and variable responses across the 
three concentrations tested (500, 750, and 1000 μM) were 
recorded for the different parameters used.

Excessive concentrations of heavy metals are widely 
recognized for their detrimental effects on plant biomass, 
exerting negative influences across various critical stages, 
including germination, growth, development, and key 
physiological processes such as photosynthesis (Yaashi-
kaa et al. 2022; Singhal et al. 2022; Podar and Maathuis 
2022). Plants’ fast and rapid synthesis of reactive oxygen 
species (ROS) following Pb exposure is regarded as an early 
defense response (Shahid et al. 2014; Berni et al. 2019). The 
development of Sulla plants can be attributed to a complex 



46015Environmental Science and Pollution Research (2024) 31:46002–46022 

interplay involving reactive oxygen species (ROS) and bio-
molecules, coupled with challenges such as inefficient water 
and nutrient absorption and electrolyte loss due to altered 
membrane permeability. The diminished chlorophyll con-
tent observed in Sulla plants may result from elevated ROS 
levels or the inactivation of enzymes crucial for chlorophyll 
synthesis (Batool et al. 2019). The presence of heavy met-
als is recognized for its impact on diminishing the levels of 
photosynthetic pigments, predominantly by influencing the 
integrity of cell walls and thylakoid membranes, and also 
through alterations in proteins and DNA caused by ROS 
interference (Ajmal et al. 2022; Noor et al. 2022; Sharma 
et al. 2022a). This intricate cascade of events underscores 
the multifaceted impact of heavy metal exposure on plant 
physiology, emphasizing the importance of understanding 
these mechanisms for devising effective strategies to miti-
gate heavy metal-induced stress in plants like Sulla. Carot-
enoids content increased in response to Pb stress, which can 
be explained by the presence of nitrogen, as reported by 
Gurpreet et al. (2012). Whereas the increase in CAT, APX, 
and POD activities may be related to the activation of plant 
defense systems that confer resistance to heavy metals stress 
in plants (Ajmal et al. 2022). These antioxidant enzymes 
catalyze free radical conversion, and their increased activity 
leads to plant bioprotection against abiotic stresses. These 
findings, together with those of Sbabou et al. (2016) and 
Lamin et al. (2020), indicate that Sulla plants are phytosta-
bilizing plants due to their root structure, which endures at 
high lead concentrations.

Rhodococcus qingshengii LMR356 effect on Sulla 
spinosissima growing under Pb stress in hydroponic

The Rhodococcus strain utilized in this study increased the 
vegetative development of Sulla plants under 1000 μM Pb 
as compared to uninoculated plants. Many possible traits 
of the strain can be implicated in such improvement, IAA 
biosynthesis, inorganic phosphate solubilization, sidero-
phores production, and others. A reduced level of IAA can 
impact the bioavailability of heavy metals (HMs) in the 
rhizosphere microenvironment, leading to an increase in 
HM absorption (Li et al. 2022a, 2022b) and a significant 
enhancement in root development (Patten and Glick 2002). 
Additionally, the application of IAA was found to elevate 
the activity of  H+-ATPase in the root plasma membrane 
of Medicago sativa L., promoting  H+ secretion from root 
tips and resulting in a lowered rhizosphere pH (Wang et al. 
2018). Moreover, P-solubilizing bacteria are involved in the 
production of organic acids, which leads to a decrease in 
pH, cation chelation, and competition with phosphate for 
soil adsorption sites (de Freitas Duarte et al. 2022; Bhard-
waj et al. 2022). Additionally, the secretion of organic acids 
by P-solubilizing bacteria was reported to play a role in 

the dissolution of HMs (Gupta and Diwan 2016). Various 
organic acids, including ketogluconic acid, gluconic acid, 
citric acid, oxalic acid, tartaric acid, succinic acid, and oth-
ers, undergo protonation and conversion into low-molecular-
weight organic acids, potentially leading to alterations in soil 
pH and redox potential, thereby promoting the dissolution of 
HMs (Li et al. 2022a). Additionally, the secretion of organic 
acids by siderophore-producing bacteria can modify the bio-
availability of heavy metals like Pb in the rhizosphere (Saha 
et al. 2016; Podar and Maathuis 2022; Pandey et al. 2022; 
Sharma et al. 2022b). Moreover, this process may facilitate 
the interaction of siderophores with heavy metal ions, form-
ing metal-siderophore chelates, which enhance heavy metal 
activity in the plant rhizosphere, consequently increasing 
their accumulation (Barman and Jha 2021; Mitra et al. 2021; 
Wang et al. 2022a). Studies by other researchers have dem-
onstrated that bacterial siderophore synthesis can mitigate 
oxidative stress and ethylene stress, while also providing 
essential mineral nutrients for plant growth and develop-
ment (Nazli et al. 2020a; Devi et al. 2022; Koza et al. 2022). 
Rhodococcus’ mobility also allows bacterial cells to escape a 
harsh environment, giving them a survival benefit. Accord-
ing to Bashan and Holguin (1994) and Williams (2011), 
motility is an active process involved in effective coloniza-
tion. Bacterial motility toward root exudates and the capacity 
to form EPS and biofilms are essential for rhizosphere and 
rhizoplane colonization (Lucero et al. 2020).

Effect of LMR356 on Sulla spinosissima growing 
in sterilized sand

Inoculation of Sulla plants growing in sterilized sand 
improved plant growth and chlorophyll and carotenoid con-
tent. These findings are consistent with the strain’s in vitro 
PGP features, in particular improved P bioavailability via 
inorganic phosphate solubilization, siderophores produc-
tion that improves plant iron uptake, and phytostimulation 
by auxin production. Plants that were inoculated displayed 
shoot lengths and dry weights comparable to those of control 
plants. The slight rise in antioxidant enzyme activities, such 
as peroxidase (POD), ascorbate peroxidase (APX), and cata-
lase (CAT), observed in certain instances might be attrib-
uted to the stimulation of plant defense mechanisms by the 
inoculated Rhodococcus strain (Oubohssaine et al. 2022b).

Impact of inoculation on Sulla spinosissima growth 
in multi‑heavy metal‑polluted soil

The Touissit mine soil used in this experiment is heavily 
contaminated with various heavy metals, particularly As 
and Pb (Oubohssaine et al. 2022a). Inoculation significantly 
enhanced shoot and root lengths, as well as the chlorophyll 
content of the plants growing in this soil. Numerous studies 
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have provided evidence that the inoculation with PGPR 
strains can elevate the concentration of photosynthetic pig-
ments under conditions of heavy metal stress (Jinal et al. 
2019; Zainab et al. 2021; Kaur et al. 2021; Navazas et al. 
2022). This effect may be attributed to increased nutrient 
absorption through phosphate solubilization by the inocu-
lated strain and the release of active substances that play a 
critical role in the production of photosynthetic pigments 
(Santoyo et al. 2021; Saeed et al. 2021; Das et al. 2022). 
Carotenoids, renowned for their ability to scavenge ROS, 
play a crucial role in shielding the plant’s photosynthetic 
machinery from photo-oxidative disruptions (Khanna et al. 
2019; García-Caparrós et al. 2021; Zandi and Schnug 2022; 
Kaur and Goyal 2022). Furthermore, characteristics such 
as phosphate solubilization, siderophore production, IAA 
(Indole-3-acetic acid) synthesis, EPS (extracellular poly-
meric substances) production, biofilm development, and 
nutrient availability contribute to strain’s capacity to support 
plant growth under heavy metal stress conditions (Khoshru 
et al. 2020; Nazli et al. 2020b; Syed et al. 2021; Zainab et al. 
2021; Singh et al. 2022).

The outstanding performance of LMR356 observed in 
different plant inoculation experiments (hydroponic or pot) 
may be attributed to its origin and properties. Being isolated 
from Touissit’s soil, the strain is well-adapted to polluted 
environments, tolerating high levels of lead. In the context 
of this investigation, the level of Pb in soils appears to be a 
crucial factor. Strain LMR356 produces IAA, ACC deami-
nase, and EPS, and it has the ability to solubilize phosphate, 
form biofilm, and exhibit mobility.

When comparing our study with others, conducted under 
multi-heavy metal-contaminated conditions of Touissit’s 
soil, the results demonstrate that plants inoculated with a Pb-
tolerant PGPR Rhodococcus strain exhibited reduced anti-
oxidant enzyme activities, especially in the aerial parts of 
the plants. It is well recognized that plants employ a detoxi-
fying antioxidative system consisting of various antioxidant 
enzymes, such as APX, CAT, and POD, to maintain an opti-
mal level of ROS. The activity of these enzymes can vary 
depending on factors such as metal concentration, exposure 
duration, metal ion, and plant species (Sharma et al. 2019; 
Raza et al. 2021; Hasanuzzaman et al. 2021).

Inoculated plants retained high levels of biomass, chloro-
phyll, and carotenoid content. Consequently, the decrease in 
antioxidant enzyme activities may be linked to the action of 
tolerant PGPR Rhodococcus in the rhizosphere in relation to 
heavy metals, as documented in a study by Li et al. (2022b). 
In recent studies, the importance of interactions between 
plants and tolerant PGPR in heavy metal-contaminated soils 
has been emphasized, as they can expedite phytoremediation 
and safeguard plants against the detrimental effects of metals 
(Deb et al. 2020; Yan et al. 2020; Zainab et al. 2020; Zainab 
et al. 2021; Oladoye et al. 2022).

In a study by Wang et al. (2022c), it was demonstrated 
that phytoextraction of cadmium (Cd), zinc (Zn), and lead 
(Pb) using Vetiveria zizanioides, Brassica juncea, Lolium 
perenne, Solanum nigrum, and Sedum alfredii was sig-
nificantly enhanced by inoculation with ABA-catabolizing 
Rhodococcus qingshengii. This strain notably improved the 
biomass of the aforementioned hyperaccumulators, thus 
markedly enhancing the capacity for remediation of Cd, Zn, 
Pb, and copper (Cu). In another study conducted by Kathi 
(2022), the phytoextraction of heavy metals and crude oil 
contaminants from the soil was assessed using the native 
grass Cynodon dactylon. The results indicated that crude oil 
contamination caused a reduction in plant biomass across all 
treatments. The degradation order of metals was found to be 
Pb, Zn, Cu, and Cd. Higher percentages of degradation of 
heavy metals and crude oil were observed in Rhodococcus 
ruber-inoculated treatments compared to other treatments, 
attributed to the effectiveness of the combination of R. ruber 
and C. dactylon in soil.

Lu et  al. (2020) also confirmed that R. qingshengii 
improved the phytoextraction efficacy of Cd, Zn, and nickel 
(Ni). Du et  al. (2022) demonstrated that Rhodococcus 
qingshengii facilitates the phytoextraction of Zn, Cd, Ni, 
and Pb from soils by Sedum alfredii Hance. Two Rhodoc-
occus erythropolis strains (S4 and S10) isolated from the 
rhizosphere of Mesembryanthemum crystallinum treated 
with 10 mM Cd confirmed their positive impact on plant 
growth and biomass yield, mainly through phosphate and 
zinc solubilization (Supel et al. 2022). All these studies col-
lectively demonstrate the ability of the genus Rhodococcus 
to remediate heavy metal-contaminated soils.

Same, our study demonstrates that inoculating with a 
locally selected Pb-tolerant PGPR Rhodococcus strain pro-
motes the growth of Sulla plants in highly polluted soil, 
suggesting it as a promising alternative for soil remedia-
tion. The inoculation of Sulla plants with this Rhodococcus 
strain counterbalanced the adverse impacts of lead stress 
and led to an increase in physiological parameters, includ-
ing chlorophyll content. These findings align with previous 
research, which demonstrated that PGPB inoculation pro-
motes enhanced chlorophyll production and accelerates plant 
growth (Oubohssaine et al. 2022b).

Conclusions

Our study presents compelling evidence of the efficacy of 
utilizing a multi PGP traits Rhodococcus strain, sourced 
from a metal-polluted habitat, as a bio-inoculant for enhanc-
ing the growth of Sulla spinosissima in heavy metal-con-
taminated soils. By demonstrating significant improvements 
in various growth parameters, including biomass produc-
tion, photosynthetic pigment levels, and antioxidant enzyme 
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activity, our findings underscore the potential of such micro-
bial interventions in facilitating phytoremediation processes. 
Moreover, our results emphasize the importance of selecting 
indigenous microbial strains that exhibit resilience to heavy 
metal stress and possess diverse phytobeneficial proper-
ties. This approach not only enhances the efficacy of bio-
inoculants but also ensures their compatibility with local 
environmental conditions, thereby promoting sustainable 
remediation practices. Furthermore, our study contributes 
to the growing body of knowledge on the application of 
plant growth-promoting rhizobacteria (PGPR) in phytoreme-
diation. By highlighting the unique capabilities of PGPR in 
mitigating heavy metal toxicity and improving plant health, 
we advocate for the integration of microbial-based strate-
gies into broader remediation initiatives. Importantly, our 
research underscores the novelty and significance of these 
findings within the context of environmental science and 
biotechnology. By elucidating the practical benefits of PGPR 
inoculation in heavy metal-contaminated soils, we offer val-
uable insights that can inform future research and guide the 
development of innovative remediation technologies.

In conclusion, our study not only advances our under-
standing of microbial-assisted phytoremediation but also 
underscores the critical role of indigenous microbial com-
munities in sustainable environmental management. By har-
nessing the potential of microbial bio-inoculants, we can 
pave the way for more effective and environmentally friendly 
approaches to soil remediation and ecosystem restoration.
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