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Abstract

The current work investigated emerging fields for generating and consuming hydrogen and synthetic Fischer-Tropsch (FT)
fuels, especially from detrimental greenhouse gases, CO, and CH,. Technologies for syngas generation ranging from partial
oxidation, auto-thermal, dry, photothermal and wet or steam reforming of methane were adequately reviewed alongside
biomass valorisation for hydrogen generation, water electrolysis and climate challenges due to methane flaring, production,
storage, transportation, challenges and opportunities in CO, and CH, utilisation. Under the same conditions, dry reforming
produces more coke than steam reforming. However, combining the two techniques produces syngas with a high H,/CO ratio,
which is suitable for producing long-chain hydrocarbons. Although the steam methane reforming (SMR) process has been
industrialised, it is well known to consume significant energy. However, coke production via catalytic methane decomposi-
tion, the prime hindrance to large-scale implementation of these techniques for hydrogen production, could be addressed by
coupling CO with CO, conversion to alter the H,/CO ratio of syngas, increasing the reaction temperatures in dry reforming,
or increasing the steam content fed in steam reforming. Optimised hydrogen production and generation of green fuels from
CO, and CH, can be achieved by implementing these strategies.

Keywords Dry reforming - Steam reforming - Partial oxidation - Auto-thermal reforming - Photothermal conversion -
Fischer-Tropsch synthesis
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CSDRM Combined steam and dry reforming of
methane

DME Dimethyl ether

DR Dry reforming

DRM Dry reforming of methane

ECR Electrochemical catalytic reforming

EHCs Energetic hot carriers

FR Fuel reactor

FT Fischer-Tropsch

GTC Gas to chemicals

GTL Gas to liquids

GTP Gas to power

H, Hydrogen

H,0 Water

ICI Incipient impregnation

M Impregnation

IWI Incipient wet impregnation

kJ mol ™! Kilo Joule per mole

MR Methane reforming

ocC Oxygen carrier

PAHs Polycyclic aromatic hydrocarbons

PCP Precipitation

PH Post-hydrolysis

POX Partial oxidation

POXM Partial oxidation of methane

PSA Primary swing adsorption

PTR Photothermal reforming of methane

RFG Recycled flue gas

RWGS Reverse water gas shift

SI Sequential impregnation

SOFC Solid oxide fuel cell

SR Steam reforming

SRE Steam reactor

SRM Steam reforming of methane

TOF Turnover frequency

WGS Water gas shift

WI Wet impregnation

Introduction

The world’s population continues to expand at a rapid rate,
leading to a significant increase in energy demands. This
demand is even higher than the population growth itself
(Abdelkareem et al. 2022). The depletion of fossil fuels,
which is influenced by factors such as geographical distri-
bution and extraction accessibility, adds to the challenge
(Sagar et al. 2024). Moreover, heavy reliance on fossil fuels
contributes to the accumulation of greenhouse gases like
carbon (IV) oxide (CO,) in the atmosphere, which is the
primary cause of global warming. Consequently, there is an
urgent need to explore alternative, environmentally sustain-
able energy sources (Cao et al. 2024). Given this pressing

need, there is a growing interest in alternative energy sources
driven by both the rising global energy demand and concerns
about the carbon footprint of fossil fuels (Lara Sandoval
et al. 2024). Amongst the potential options, hydrogen stands
out as a promising and environmentally friendly fuel source
(Singh et al. 2017; Abdelkareem et al. 2022). Projections
indicate that global demand for hydrogen energy across vari-
ous industries will increase by approximately 400 Mt/year
over the next five decades (Ighalo and Amama 2024).

Syngas (a mixture of hydrogen (H,) and carbon monox-
ide (CO)) is an intermediate feedstock used to produce a
variety of fuels and chemicals, including H,, methanol, FT
fuels, dimethyl ether (DME) and ethanol (Pefia et al. 1996;
Elvidge et al. 2015; Taherian et al. 2021; Jin et al. 2021). Its
efficient commercialisation is gaining significant attention
worldwide. H, is the perfect upcoming clean energy alterna-
tive (Puangpetch et al. 2009; Kong et al. 2019; Araiza et al.
2021; Li et al. 2022). Over the past few decades, emissions
from burning fossil fuels like coal, oil, CO, and natural gas
have contributed to a steady, rapid increase in global warm-
ing, resulting in severe environmental pollution (Wang et al.
2018b; Qingli et al. 2021; Nabgan et al. 2022; Sasidhar et al.
2022). A fossil fuel-based source of energy is non-renewa-
ble (Qingli et al. 2021); therefore, the search for alternative,
cleaner and eco-friendlier forms of energy has gained sig-
nificant attention in recent years (Makertiharta et al. 2017,
Alhassan et al. 2022; Lee et al. 2022).

Biodiesel is an excellent choice for utilising the potential
of biomass. Globally, more than 27 million metric tonnes
of biodiesel are generated each year. Glycerine (10% of
which is a by-product) may contain water, free fatty acids,
manufacturing residues and trace amounts of heavy metals,
impacting its purity and suitability for specific uses. Before
being used, the crude glycerine must be refined. To produce
hydrogen from biomass, two thermochemical processes are
available. The first is biomass gasification, while the sec-
ond is catalytic steam reforming of biomass pyrolysis oil
(also known as bio-oil) (Wang et al. 2014). Biomass steam
reforming (SR) via pyrolysis, the second method, which
involves hydrogen production via biomass pyrolysis (SR of
bio-oil), is a more cost-effective alternative due to the high
bio-oil yield and mobility. Nonetheless, the challenge of
purification associated with the techniques results in a sig-
nificant price increase (Wang et al. 2014; Chen et al. 2017;
Yi et al. 2023).

Most of the nearly 210 billion Nm? of coke oven gas
(COG) by-products from the metallurgical sector are
either burned directly as fuel or discharged directly into
the atmosphere, squandering energy and harming the envi-
ronment. Due to its high hydrogen content (48-55 mol %
H,), it has been described as one of the raw materials most
likely to attain large-scale commercial H, production in the
short and medium terms. Physical separation technologies
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like pressure swing adsorption (PSA) are used to extract
H, from COG. Still, this process also removes other com-
ponents like CO, methane (CH,), tar and hydrocarbons
like polycyclic aromatic hydrocarbons (PAHs), xylene and
toluene, whose further separation takes up large amounts
of ammonia and contaminates water sources (Xie et al.
2017).

It has been proposed that chemical looping hydrogen
(CLH) technology is an innovative and viable method of
manufacturing H, incorporating CO, segregation, good
product quality and high efficiency. The steam or fuel reac-
tor (SRE/ FR) and the air reactor (AR) are the most common
reactors in a CLH. In the steam reactor (SR), steam oxidises
the reduced oxygen carrier (OC) to produce high-purity
H,. The challenges for the process include fuel conversion,
steam conversion, heat duty and the optimum ratios of OC
to COG, steam to OC and air to OC (Xiang and Zhao 2018).
The splitting of water into H, and oxygen (O,, using solar
energy is another possibility being considered since H, gas
is a powerful energy source because of its high gravitational
energy density and is environmentally benign via near-zero
greenhouse gas production (Tolod et al. 2016).

Typically, large-scale H, generation is mainly accom-
plished via fossil fuel reforming and water electrolysis, even
though this latter technique accounts for just 5 % of total H,
production (Meloni et al. 2020). Photocatalytic water split-
ting is amongst the most recent techniques for generating H,.
It allows the conversion of solar energy to chemical energy,
enabling the use of solar energy and water. This is a viable
approach for moving from a fossil fuel economy to a green,
hydrogen-powered one (Puangpetch et al. 2009; Sayed et al.
2019). The SR of CH, (SRM), partial oxidation (POX), dry
reforming (DRM) and auto-thermal reforming (ATR) are
examples of fuel reforming processes. SRM is the oldest and
most practical method for converting CH, to H, amongst the
reforming processes. It is typically described as the conse-
quence of (Eq. (1)) and (Eq. (2)) and has a high H,/CO ratio
of 3:1; working temperatures over 700 °C are needed for this
reforming reaction, and steam-to-methane ratios of 2.5 to
3.0 are often used to minimise coke formation (Matas Giiell
et al. 2011; Yentekakis et al. 2021).

According to a recent report by Meloni and co-research-
ers (Meloni et al. 2020), the most used catalyst for SRM
is Ni supported over ceramic oxides or oxides of metallic
or metalloid elements. Other group VIII metals are active,
although they have specific disadvantages; for instance, Fe
oxidises rapidly, Co cannot survive steam partial pressures,
and precious metals (Rh, Ru, Pt and Pd) are outrageously
costly for practical use. Supports often employed include
alumina (Zhang et al. 2017; Pirshahid et al. 2023), magne-
sia (Bian et al. 2016; Alabi et al. 2020), calcium aluminate
(Batuecas et al. 2021; Zhang et al. 2024) and magnesium
aluminate (Alabi et al. 2020).
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The catalytic POX is more energy efficient due to its
rapid kinetics and exothermic nature, eliminating the need
for huge reactors and significant quantities of superheated
steam. Furthermore, the stoichiometry of POX (6) pro-
duces a synthesis gas with an H,/CO ratio of 2:1, allowing
its direct use for methanol or FT synthesis without further
adjustment. However, the need for pure O, and the risk of
explosion are associated problems in addition to the seldom-
required adjustment of the product ratio (Arku et al. 2018;
Chen et al. 2020).

Because of its capacity to absorb two greenhouse gases,
hydrogen generation from DRM has garnered a lot of inter-
est in recent years. CH, and CO, (Eq. (1)) generate lucra-
tive feedstocks (syngas) with a better H,/CO ratio, which
is required as a highly valued feedstock for FT synthesis
and methanol production (Afzal et al. 2020; Li et al. 2021,
Ibrahim et al. 2022). Again, nickel catalysts supported by
various metal oxides like ZrO,, Al,05;, MgO, CeO, or La,0,
have been widely used in DRM due to their relatively high
catalytic activity and low cost (Charisiou et al. 2016; Goula
et al. 2017; Chaudhary et al. 2020; Ibrahim et al. 2022).

The ATR method for figuring out the value of methane is
an important part of making syngas by combining adiabatic
(SR) and non-catalytic (POX) processes. As a result of the
sintering, production and deposition of coke, the activity of
Ni catalysts, which are frequently used in this process, is
diminished. Consequently, they require support from metal
oxides such as CeO, (Song et al. 2016; Araiza et al. 2021;
Zhang et al. 2023) and SiO, (Nath et al. 2022; Alhassan
et al. 2024).

This review compares the various natural gas reforming
processes, especially the potential for their implementa-
tion on an industrial scale for valuable feedstock, energy
and hydrogen production; discusses the need for hydrogen-
driven energy processes, utilisation, storage and transporta-
tion of CO,; and the impacts of flared natural gas. Cutting
the 300 to 400 million tonnes of CO, released by methane
flaring is also addressed here. Novelties at each methane
reforming method are well summarised, and a combina-
tion of wet and dry reforming perspectives, world energy
supply and fuel-gasifier interaction from combustion, gas-
ification, pyrolysis and drying zones was classified into
oxidation, methanation, non-coke side reactions and coke
side reactions.

Review novelty and objective

Considering the various challenges associated with CO,
emissions, numerous research institutions have recently
focused on valorising CO, into fuels and chemicals, com-
monly called carbon capture and utilisation (CCU). This
approach is recognised as a multidimensional method. In
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addition to its environmental and health advantages, the
process of CO, upgrading holds promise for addressing the
challenges associated with depleting energy resources and
uneven distribution. The main objectives of this study were
to comprehensively assess and examine recent advance-
ments in catalytic technologies employed for converting
CH, and CO, into chemically useful compounds and energy
resources. Hydrogen emissions are environmentally bene-
ficial because, when combined with oxygen in fuel cells,
they only produce water vapour. The production of hydrogen
through electrolysis, which is powered by renewable energy,
offers a carbon-free process. Hydrogen has a wide range of
applications and can replace fossil fuels in transportation,
manufacturing and energy storage. This provides a promis-
ing solution to the environmental problems caused by con-
ventional fuels.

Sources types and technologies to produce
hydrogen

Hydrogen is an efficient energy type and has now been
identified as an energy carrier that can be obtained from
both renewable and non-renewable sources. However, over
70% of existing technologies to produce H, are based on
reforming natural gas. However, reports from (Taylor and
Balat 2008; Howarth and Jacobson 2021) argue that, thus
far, hydrocarbon reformation, specifically methane, produces
more than 96 % of H, from fossil fuels like coal, natural gas
and petroleum. Hydrogen can dramatically lessen the envi-
ronmental damage caused by fossil fuels compared to other
fuels (Avci and 6nsan 2018).

Figure 1 provides a comprehensive overview of energy
production processes and technologies that are essential
for sustainable energy transitions. Figure 1A to D provide
existing data regarding fuel energy demand, biomass energy
demand and total energy makeup, while section E is divided
into three main parts that cover pathways involving fossil
fuel resources, biomass/waste utilisation and water splitting
for hydrogen production. The section (1E) focuses on the
utilisation of fossil fuel resources. It showcases methods
such as natural gas conversion and coal gasification with
carbon capture, utilisation and storage (CCUS). These tech-
nologies highlight strategies for mitigating carbon emissions
while making use of existing fossil fuel infrastructure. The
next segment highlights biomass and waste utilisation. It
illustrates pathways for converting organic materials into
energy sources. Technologies such as biomass conversion
and waste-to-energy processes demonstrate the potential to
reduce dependency on fossil fuels while addressing waste
management challenges.

Finally, the section explains various techniques for
hydrogen production through water splitting. These

techniques include direct water splitting, high-temperature
electrolysis and low-temperature electrolysis, each offer-
ing unique advantages and contributing to the develop-
ment of sustainable hydrogen economies. Production of
H, has been reported via numerous routes, amongst those
presented in Fig. 1E: (i) low-carbon pathways utilising a
variety of domestic resources, including fossil fuels; bio-
mass conversion and waste to energy technologies, which
mostly require biological processes such as anaerobic
digestion and the action of microorganisms; (ii) CCUS and
(iii) photoelectrochemical splitting of water into hydro-
gen and oxygen using either nuclear energy or renewable
sources such as wind, solar, geothermal and hydroelectric
power (Dutta and Vaidyalingam 2003; Lu et al. 2017; Sit-
tipunsakda et al. 2021).

Amongst the production technologies, biomass conver-
sion in anaerobic digesters is less efficient as they consume
more time, require extensive infrastructure and inevitably
must be subjected to several cleaning processes. Even
though producing green hydrogen requires a feedstock that
is entirely renewable and has as little carbon footprint as
feasible, there are evident records in the literature (Cuél-
lar-Franca and Azapagic 2015; Arku et al. 2018; Xu et al.
2020) that declare that the combined impact of the method
for fuel production and the extent of waste generation are
critical factors for its classification. Accordingly, based
on the source of production and method of separation, H,
may be classified as brown or black (produced via pyroly-
sis and gasification of carbonaceous materials like coal,
etc.); green (produced majorly from wind, solar, tidal, or
via electrolysis, water splitting, stored as an energy vec-
tor, transferrable in space and time); blue ( a low-carbon
H, produced mainly via SR with an effective cost-benefit,
product storage via CCS and minimisation of pollution);
grey (in resemblance to the blue hydrogen, but where
emissions from the process are released directly into the
atmosphere) and turquoise in which case, CH, is cracked
from a temperature above 600 °C to about 1200-1400 °C,
generating solid coke and H, gas (Menon and Selvakumar
2017; Howarth and Jacobson 2021).

As reported by (Osman et al. 2022) and shown in
Fig. 2, the production, safety, storage, utilisation and
upgrading of H, were highlighted. Fuel production for
transportation, power generation, the production of nitro-
gen fertiliser by the Odda process and NH; production,
industrial metallurgical processes and the production of
hydrocarbon fuels have been amongst the most significant
uses of hydrogen. Importantly, hydrotreating processes
get rid of the stubborn carcinogenic heteroatoms (N, O, S,
F, etc.) in the oil pool. For example, denitrogenation gets
rid of the extra nitrogen molecules that stop the acidic
sites on conversion catalyst molecules from working,
which makes the crude oil fractions undesirable. There
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are corrosive nitrogen compounds; hence, natural oils
above 0.25 wt % are removed during refining. Hydro-
deoxygenation and hydrodesulphurisation are other indus-
trial processes that take up a lot of H,. Hydrotreatment
also ensures the removal of inherent carcinogenic and
toxic compounds of sulphur, which cause the sourness
of crude. Sulphur is removed from fuels during refin-
ing to comply with laws to decrease sulphur-related air
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pollution. Water, minerals and other pollutants are also
found in crude oil. If not removed, these salts and heavy
metals produce acids, corroding downstream process
equipment when heated. Oxygen dispersion in petroleum
fractions induces gum development in different reactors
and pipelines in refinery operations, resulting in clogging
and loss of equipment efficiency (Verstraete et al. 2007;
Ahmad et al. 2011; Sbaaei and Ahmed 2018).
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sion

Highlight of published data, author keywords
and hydrogen production

The prevalence of techniques in the literature emphasizing
the need for a switch to more green energy sources with less
negative potential for the environment cannot be overem-
phasised (Aw et al. 2014; Papageridis et al. 2016; Alhassan
et al. 2019; Ahmed et al. 2020). Unarguably, sufficient data
has been published addressing the critical issues of pro-
duction, safety, storage, utilisation, photoproduction, CH,
pyrolysis, SR and other related terms, which are presented in
Fig. 3. The search terms “hydrogen production” and “energy
generation” were typed in the search box on the Web of
Science (WoS) interface under all fields. The outcome was
used to generate the plain text file from which the cluster
shown in Fig. 3 was generated. The author keywords of 1000

publications were refined to 15 or more appearances, indicat-
ing that only the keywords that satisfy the threshold appear
in the cluster. Interestingly, the closest terms to H, produc-
tion are CH, conversion, thermal decomposition, energy
generation, biomass gas systems, visible light and water gas
from the top; storage, kinetics, electrolysis, catalysts and
temperature from the left; and evolution, decomposition,
optimisation, visible light irradiation and photo-fermentation
from the bottom.

Hydrogen production for energy and natural gas conver-
sion has been a serious and important aspect over the last 2
decades. Based on an explanation for similar clusters in the
studies (Alhassan et al. 2022; Hatta et al. 2023), the figure
emphasised that photo-fermentation has not been established
in the literature as much as the methane conversion route.
This is evident from the text size of the keyword and its
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Fig.3 Cluster displaying the
relationship between the strong-
est author keywords. Generated
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closeness to the other keywords. Astonishingly, the genera-
tion of natural gas as an energy alternative from food waste,
especially via the incorporation of the action of microorgan-
isms, is also shown by the appearance of fermentation, food
waste and renewable H, in the cluster.

Opportunities and challenges in CO,
utilisation for green fuels

Increased CO, emissions are the principal cause of global
warming, an unavoidable threat that has attracted interna-
tional attention (Bruhn et al. 2016; He and Liu 2017). Car-
bon cycles exist in bulk between the continental environ-
ment and the ocean. Global CO, emissions surpassed 9.68
billion metric tonnes in 2014, 60% of which remained in
the atmosphere, according to BP world energy data (British
Petroleum 2021). CO, output must be reduced by 60-70% to
ensure equilibrium as nature absorbs 3 billion metric tonnes
of carbon every year. As of October 2021, the average CO,
concentration had shot up to roughly 414 ppm, an increase
of approximately 47.86% relative to pre-industrial revolution
levels (280 ppm). This dramatic increase in CO, concentra-
tion led to further global climate change. According to the
Goddard Centre for Space Studies, the land-ocean tempera-
ture index (°C) has grown from — 0.16 °C in 1880 to 1.02
°C in 2020 (Chai et al. 2022).

Supercritical CO, functions in polymerisation, refriger-
ation and as a working fluid. Subsequently, the absorption,
utilisation and valorisation of CO, are needed to combat
pollution and global warming caused by their expanding
sources. By 2030, process advancements should cut post-
combustion capture costs from 52 to around 25-30 USD/
tonne (Valluri et al. 2022). Similarly, its application in iron
and steel production includes iron ore extraction, usually
improved by flotation or magnetic separation, pelletisation
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for transport into the blast boiler, reduction into pig iron
and steel refining using a basic oxygen boiler or electric
arc boiler. Figure 4 depicts CO, separation and capture
technologies in a contemporary system. Modern CCU
technologies abate CO, by absorbing air supply, isolating
CO, (although in reduced concentration) and diluting it in
N, and NOx molecules (post-combustion). The fundamen-
tal concept behind the pre-combustion approach is gasifi-
cation, which occurs when carbonaceous biomass and coal
are pyrolysed at high temperatures to form syngas, which
results in the creation of H,, CO and CO,, particularly
at high reaction temperatures (Valluri et al. 2022). The
oxy-combustion technique burns fuel in recycled flue gas
(RFG) with a proportion of oxygen rather than pure air
(in conventional post-combustion). A considerable propor-
tion of CO, gas and minute amounts of water vapour are
produced; these gases are separated by adding a desiccant
(such as SiO,) that can absorb the moisture, yielding CO,
with a purity of between 80 and 90% and O, with a purity
of 95%, respectively. During the chemical looping process,
an O, carrier transfers the necessary O, for combustion
from the combustion air to the fuel, typically an oxidised
metal. Alternating between the fluidised bed for air and
the one for fuel is the oxygen carrier (metal oxide). After
mixing with the fuel, the MeO produces water vapour and
carbon monoxide as exhaust gas (Rajabloo et al. 2023).

The carbon cycle process has a significant impact on envi-
ronmental, climate and energy production. Energy efficiency
and carbon efficiency for the FT synthesis have respectively
increased by 18.4% and 86.9% compared to conventional
coal-liquid and by 15% and 100% for methanol production
systems, based on the report of Chen (Chen et al. 2016).
Another prime contributor to CO, emissions is the heat from
fossil fuels, which accounts for 70% of the global electricity
supply, around 50% of which is obtained from the combus-
tion of coal (Chen et al. 2016).
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Methane flaring and climate change

The world’s energy consumption is thriving. The accom-
plishment of manufacturing civilisation, the expansion of
the economy and the population’s standard of living depend
on energy usage. Consequently, the global energy consump-
tion of all fuel sources has increased substantially. The usage
of fossil sources (petroleum, coal and natural gas) is still
dominant. It will continue to be essential soon, despite the
year-by-year development of renewable energy sources
(Sujianto 2020; Hatta et al. 2021). Global energy consump-
tion, 1971-2019, displayed in Fig. 5a, highlights the six pri-
mary world energy sources, ranging from coal, oil, biofuels,
hydro, natural gas and nuclear (This data is subject to the
IEA’s terms and conditions: https://www.iea.org/t_c/terms
and conditions/. Natural gas is one of the most effective and
considerable energy sources on the planet today. Due to its
reliability and relatively high fuel economy, it remains an
attractive option for the industrial and electric power sectors
(Hatta et al. 2021). The worldwide usage of natural gas has
increased during the previous two decades. According to
(British Petroleum 2021, 2022), global natural gas consump-
tion in 2021 was approximately 4.04 trillion cubic meters.
The United States and Russian Federation are the most sig-
nificant producers, accounting for almost 42% of the world’s
total natural gas, while in Fig. 5b, the various stages of raw
biogas treatment to obtain clean biomethane are presented.
Although natural gas is an excellent fossil fuel and
strategies to utilise the excess are ongoing, the scientific

membrane
separation

<— Combustion turbine
0,, Fuel, Heat - \

/

CO, Capture,
Storage,
Transportation a
Utilization

H,0 (g) + CO; (9)

community agrees that anthropogenic greenhouse gas gen-
eration has consequently affected the global climate and
that drastic reductions in these emissions are necessary to
mitigate its adverse effects on climate change. Fossil fuel
combustion, widely used for electricity, heat and transpor-
tation, is the primary source of emissions globally. Natural
gas flaring releases approximately 300-400 million metric
tonnes of CO, annually (Saidi 2018). The most common fos-
sil fuels are coal, petroleum and natural gas. However, one
common disposal method is flaring when there is inadequate
infrastructure to use the gas locally, store it for energy, or
transfer it via pipelines to market (Farniaei et al. 2014).
Most flared gas is CH,, with minor amounts of volatile
organic chemicals and inorganic molecules, such as CO,,
N, and water. There are two different types of gas flaring;
associated flaring, which takes place in oil and gas (associ-
ated) reservoirs during exploration processes, and non-asso-
ciated flaring, in which accumulated gas from refineries and
petrochemical plants is flared for safety reasons, especially
during normal routine operation. The volume and content
of these gases vary depending on their production regions,
as well as the temperature and pressure of the underground
reservoirs from which they are extracted. Although no clear
experimental data regarding the composition of the flared
gas is available within our reach, in approximation, 80% of
related gas flares are due to economic and technical con-
straints. According to a recent study by (Elvidge et al. 2015),
upstream exploration and extraction facilities produce 90 %
of flared gas globally. In recent years, extraction companies,
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Fig.5 A World total energy

supply (by source), plotted
based on data adapted from
https://www.iea.org/t_c/terms
andconditions/ with creative
common’s licence (“Key World
Energy Statistics 2021”); B
biogas cleaning/upgrading pro-
cesses. Reused with permission
from Rafiee et al. (2021)
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pushed by environmental regulations and financial indica-
tions, have studied several options to reduce the quantity of
flared gas. Collecting and transporting the gas to the mar-
ket, converting it to a liquid fuel similar to gasoline, using
it for electricity and heat generation, using it as a fuel for
onsite needs, reinjection into underground strata to improve
oil and gas extraction and the production of syngas are all
methods for reducing gas flaring in addition to dry reforming
processes (Orosa and Zardoya 2022; Tahmasebzadehbaie
and Sayyaadi 2022; Owgi et al. 2023b), as summarised in
Fig. 6. In a report published by (Fisher and Wooster 2019),
gas flaring was mentioned amongst environmental catastro-
phes, potential global environmental crises and problems
requiring attention.

Injection involves capturing flare gas emitted during flar-
ing and reinjecting it into underground formations, such as

@ Springer

depleted oil or gas reservoirs. This utilises the natural porous
structure of the formations for storage. The technique allows
for the storage of flare gas, which has the potential to reduce
GHG emissions associated with flaring (Dinani et al. 2023).
It also makes use of existing infrastructure, such as wells and
pipelines. However, the effectiveness of injection depends
on the geological characteristics of the storage formations.
There may also be regulatory and operational challenges to
overcome, such as obtaining permits and ensuring proper
well integrity (Zayer Kabeh et al. 2023; Dinani et al. 2023).
Despite these challenges, injection serves not only to miti-
gate emissions but also to enhance oil or gas recovery. It can
be used in a variety of industries for emissions reduction
and storage.

The gas to liquid/chemical (GTL/GTC) processes con-
vert flare gas into liquid fuels or chemical products. This


https://www.iea.org/t_c/termsandconditions/
https://www.iea.org/t_c/termsandconditions/

Environmental Science and Pollution Research (2024) 31:42640-42671

Fig.6 Strategies for flare gas
recovery and utilisation

Flare Gas

is achieved through methods like FT synthesis or steam
reforming. The processes yield valuable products, includ-
ing DME, methanol, ethylene, ammonia and hydrogen.
These technologies provide a way to monetise flare gas
by producing higher-value products. They also offer alter-
natives to traditional fossil fuels and help diversify the
energy mix (Orisaremi et al. 2023). However, GTL and
GTC processes often require significant capital invest-
ment and complex infrastructure. They also have high
energy and resource requirements, which can impact
efficiency and the environmental footprint. Despite these
challenges, GTL and GTC technologies offer solutions
for emissions reduction and provide valuable products for
various industrial applications (Dinani et al. 2023). They
contribute to the transition towards sustainable energy
systems.

Gas-to-power technologies efficiently convert flare
gas into electricity using various methods, such as gas
turbines, engines, combined cycle systems and solid
oxide fuel cells (SOFCs). These technologies allow for
the immediate utilisation of flare gas for onsite or grid-
connected power generation (Orisaremi et al. 2023).
While gas-to-power technologies can reduce flaring-
related emissions and enhance energy efficiency, their
deployment may require upfront investment in equipment
and infrastructure. Additionally, efficiency and emissions
performance can vary depending on the selected technol-
ogy and operational conditions. Despite these challenges,
gas-to-power technologies offer versatile solutions for
using flare gas in various applications. This includes
industrial operations, grid-connected power generation
and off-grid power supply. They contribute to energy
security and emissions reduction objectives (Orisaremi
et al. 2023).
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Strategies for mitigating methane prevalence

Generally, the strategies to modify methane reforming as
the potential for mitigating pollution and energy genera-
tion have been in-depth, especially in recent years (Gao
et al. 2018; Bahaghighat et al. 2019; Gao et al. 2021,
Hatta et al. 2021; Yentekakis et al. 2021; He et al. 2022).
The primary source from which methane is obtained is
the associated and non-associated reservoirs (Muraza and
Galadima 2015). As presented in Fig. 7, the most prevalent
techniques range from the generation of synthetic gas from
reforming such as auto-thermal, POX, dry and SR to other
CH, and CO, conversion, utilisation and storage processes.

Dry reforming of methane (DRM)

The catalytic DRM (Eq. (1)) has attracted a lot of interest
lately. This reaction produces syngas from two harmful
greenhouse gases, CH, and CO,. In addition to this benefit,
the syngas is suitable for a variety of industrial processes,
such as the production of higher hydrocarbons and oxy-
genated derivatives (such as methanol), because the molar
ratio of H, to CO in the syngas is approximately equal to 1
(Radlik et al. 2015; Ibrahim et al. 2019; Kim et al. 2019).

CH, + CO, — 2CO + 2H,AH  yoq , = 24TkJmol™" (1)

The prime problems associated with DRM are exces-
sive coke formation associated with the catalysts, the high
temperature for the reaction and side reactions such as
RWGSR (2), CH, cracking (3) and Boudouard reaction
(BR) or CO disproportionation (4) (Schulz et al. 2015; Das
et al. 2017; Bahari et al. 2021).
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Fig.7 Methane reforming
perspectives. Generated using
R-studio from plaintext file
extracted from WoS

autothermal reforming

methanegseforming

natural-gas
steam rgformin
E hydii@gen
artiali@xidation
P w hydrogengproduction
ni catalysts V=S
catalyst
me&lane
steam
synthgsis gas carbonsdioxide
refofhing
dry reforming conversion
catalysts
o2
ch4

5%5 VOSviewer

CO+H,0 = CO,+ H, AH®,oq o = —41.1 kJmol™

2
CH, = C +2H, AH,oq = T5kJmol™!

3
2C0 = C + CO, AH yo5 = —172kJmol™!

@)

Equations (1) and (3) can favour the forward reaction by
applying Le Chatelier’s principle, increasing the reaction’s
temperature, removing the products as they form and intro-
ducing more moles of the reactants. In contrast, the reverse
processes apply to Egs. (2) and (4). Therefore, the RWGS
and CO disproportionation prevail at low reaction tempera-
tures, thereby depositing coke and generating CO,.

Auto-thermal reforming (ATR)

The stand-alone technology capable of converting the entire
methane in one reactor in the presence of fusion between
exothermic POX and endothermic SR mechanisms is known
as auto-thermal reforming (ATR). Catalytic ATR technology
requires three critical reagents; CH,, H,O (steam) and air
(O,) to generate value-added syngas, as expressed in Eq. (5).
This technology usually performs at a lower pressure than
the POX process and has a low methane slip. The findings
in the literature reported that the value of H,/CO generated
via catalytic ATR CH, is typically within the range of 1-2.
Generally, the aim of combining POX and SR routes is to
conserve energy since it does not require an external heat
source. Indeed, catalytic ATR may boost the thermal conver-
sion efficiency of H, generation and save operating expenses.
However, the drawback of ATR CH, is the higher explosion
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risks due to the employment of oxygen as one of the neces-
sary reactants. Besides, since this technology requires pure
O,, an expensive and complex O, separation unit must be
installed in the system (Chong et al. 2019; Alhassan et al.
2023).

CH, +0.25 0, + 0.5 H,O0 - 2.5H, + CO (5)

Like other CH, reforming processes, ideal catalyst selec-
tion contributes significantly to guaranteeing conversion and
limiting coke accumulation during ATR since each type of
catalyst can stimulate the reforming reaction through distinct
pathways. Various catalysts in the literature have been used
in ATR CH,, including noble metal-based, non-noble metal-
based and bimetallic catalysts (as summarised in Table 1). Li
et al. compared the temperature profiles and the ATR perfor-
mance of several noble metals (Pt, Rh and Pd) supported by
spherical Al,O; (Li et al. 2004) Amongst the employed sys-
tems, the Rh/A1203 catalyst demonstrated superior methane
conversion (~ 100%) with a lower feed temperature than Pt
and Pd-based catalysts. It was claimed that the metal parti-
cle distribution influenced the performance since the result
of catalyst characterisation proved that Rh metal particles
have better distributions, followed by Pt and Pd, in line with
reforming activity. Indeed, the lower feed temperature exhib-
ited by Rh/Al,O; proved that the combustion reaction zone
coincides with the reforming zone, which led to the heat
transfer enrichment towards the endothermic section from
the exothermic section.

In different studies, Ni et al. (2014) examined the impact
of Ce-based oxides (Ce-LaO,, Ce-GdO,, Ce-SmO, and
Ce-ZrO,) introduction over noble metal Rh supported
with Al,O; in CH, ATR. The authors also investigated the
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Table 1 Summary of various catalyst systems utilised in CH, ATR

Catalyst Synthesis Conditions Performance Ref
Rh/ALO, IM* T=1123K Xepa =~ 100% (Li et al. 2004)
W/F = 0.4 g h mol™! H,/CO =2.3
PY/ALO, P=0.1 MPa Xcps = ~ 99%
CH,/H,0/0,/Ar = 20/10/20/50 H,/CO =22
Pd/Al,0; Xewa =~78%
H,/CO=0.8
Rh/Ce 5Zr,, sO,/Al,04 IWI* T =1003-1073 K Xepa = 60-73% (Ni et al. 2014)
GHSV = 20,000 h™*
CH,/H,0/0, = 1/2/0.46
Ni/SiO, (4.5 nm) IM* T=973K Xens =77.0% (Hou et al. 2007)
GHSV = 18,000 h! Cd = 12.9 mmol/gcat
Ni/SiO, (45.0 nm) Xena =472%
Cd = 12.9 mmol/gcat
NiCe/Al WI* T=1123K Xena = ~ 100% (Kim et al. 2013)
GHSV = 24,000 h™! H,/CO =23
CH,/H,0/0,/Ar = 2/1/1/1 Cd=0
Ni/a-Al,O;4 IWr* T=1023K Xepa = ~56.0-18.3 % (Lisboa et al. 2011)
Ni/Cey 7521 50, CH,/H,0/0, = 2/0.4/1 Xepa = ~55.0%
Pt/6-Al,0; IWr* T=923K Xepa = ~46.6 % (Karakaya et al. 2013)
Pt-Rh/5-A1,0, CH,/H,0/0,/Ar = 2.12/6.36/1.0/5.36 Xepa=~512%
NiPd/Ce, sZr, s0,/Al,04 Nk T =1023-1223 K Xepa = 95.0% (Ismagilov et al. 2014)
CH,/H,0/0,/Ar = 1/1/0.75/2.5 H,/CO=24

IM impregnation, WI wet impregnation, /WI incipient wet impregnation, S/ sequential impregnation

effectiveness of alkaline-earth metal oxides like K, Ca and
Mg incorporation on the stability and coke resistance of
Rh/Al,0O;. The authors confirmed that the incorporation of
Ce-ZrOx effectively lessens the CO generated during the
reaction, resulting in a high H,/CO ratio compared to other
Ce-based oxides. Besides, keeping the atomic ratio between
Ce and Zr nearly 1 to 1 was the ideal amount to improve the
catalyst’s thermal stability and catalytic activity efficiently.
Alkaline-earth metal oxides were added, but no coke was
deposited; yet, adding MgO showed a more stable perfor-
mance than Rh-based catalysts combined with K and Ca
metals.

Since precious metals are so costly and challenging,
researchers have started looking into using cheaper, more
abundant metals like nickel instead. On the other hand,
nickel is frequently associated with deactivation due to
coke deposition and sintering difficulties. The effect of Ni
particle size on Ni-based catalyst deactivation in CH, ATR
was examined by Shi et al. (2021). The researchers found
that, in CH, ATR, smaller Ni-based catalyst particles were
more active and stable than bigger ones, particularly at space
velocities below 54,000 h™'. They further clarified that the
slower rate of side reaction (CH, decomposition) is respon-
sible for coke deactivation compared to the rate of oxidative
removal of surface carbons, causing the incomplete conver-
sion of O,. This phenomenon triggers Ni oxidation and leads
to Ni deactivation.

Concerning deactivation matter, considerable effort has
been made in the literature in modifying Ni-based catalysts
for auto-thermal reforming CH,. Kim and co-researchers
(Kim et al. 2013) incorporated cerium oxide as the promoter
for nickel-supported y-alumina to tackle the deactivation and
unstable issue due to coke accumulation. It was found that
adding cerium oxide effectively enhanced the performance
of the Ni-supported y-alumina by recording ~ 100% of CH,
conversion with no coke accumulation for 100-h reforming
activity. The authors claimed that the CeAlO; phase forma-
tion within this catalyst structure accelerated the oxidation
of coke and CO, affecting the catalytic stability and lower-
ing CO selectivity. Indeed, an H,/CO molar ratio of about
1.9 was generated from this process, lower than the typical
ratio generated via POX and SR of CH, due to the unfavour-
able water-gas shift. In a different approach, Lisboa et al.
(2011) employed Ni supported over Ce-ZrO, for the ATR
of CH,. The superior reforming activity (CH, conversion
= ~ 55.0%) and stability compared to 10% Ni/a-Al,O, was
achieved by Ni/Ce ;5Zr,, ,50, within 25 h, assigned to the
helpful between the metallic surface area and O, storage
capacity and metallic surface area. It was noticed that O,
generated during the dissociation of CO, assists in re-oxidise
the support to stimulate a redox mechanism for continuous
coke cleaning.

Besides developing monometallic catalysts, bimetal-
lic catalysts have been successfully utilised in ATR CH4.
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The impact of monometallic and bimetallic catalyst con-
figurations using noble metals for the ATR of CH4 was
compared by (Karakaya et al. 2013). Their work reported
that the bimetallic Rh-Pt catalyst generated via incipient-
to-wetness impregnation depicted an excellent conversion
of CH, (31.0-51.2%) compared to monometallic catalysts
(12.8-46.6%) regardless of reaction temperature (773-923
K). This trend resulted from the effective Pt-Rh interaction,
which generated a synergetic effect that triggers higher
conversion and reaction rates. A similar excellent cata-
lytic performance of bimetallic catalysts was experienced
by Ismagilov et al. using the Ni-Pd combination supported
with Ce sZr, sO,/Al,0; via sequential impregnation tech-
nique (Ismagilov et al. 2014). Within the temperature range
of 1023-1223 K, the authors reported an acquired 95% CH,
conversion and ~ 75% H, yield attributed to the catalyst’s
reducibility and dispersion enhancement.

Partial oxidation (POX) of methane

Catalytic POX CH, (Eq. (6)) is another promising alterna-
tive for generating syngas from CH, for downstream process
requirements. This route typically operates at a high temper-
ature (1473-1773 K) in the absence of a catalyst and a mod-
erate temperature (1023—-1173 K) with catalysts, along with
utilising a non-stoichiometric ratio of CH,/O, as necessary
reactants (Zhan et al. 2010; Velasco et al. 2014). Since this
route is considered a mildly exothermic reaction, it offers
a more economically feasible process as it consumes less
energy than highly endothermic SR. Additionally, the syn-
thesis gas generated via this technology typically consists of
an H,/CO ratio of 2, appropriate for downstream processes
like FT and methanol synthesis without further adjustment.
Remarkably, the generated undesired gases along this route
also contain extremely low undesirable CO, compared to
others, which must be eliminated before employing syngas
in downstream reactions. Although the POX route offers
advantages in terms of energy efficiency, the requirement
of O, separation and desulphurisation units involves expen-
sive operational costs, limiting this technology’s extensive
implementation for industrial applications (Elbadawi et al.
2021). Indeed, due to the rapid reaction steps, it is challeng-
ing to eliminate the heat generated within the system, which
is risky and could even trigger explosions.

CH,+ '/,0, - CO+2H, AH®,4q = 36kJmol™
(6)

In 1929, Liander and co-researchers initiated the POXM
for syngas production (Liander 1929). They claimed that
high yields of syngas were only attained at temperatures
around 1123 K, while non-equilibrium product distributions

were acquired at a temperature lower than 1123 K. Since
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then, various catalysts, including supported noble and non-
noble metal oxides as well as bimetallic catalysts, have been
utilised for the catalytic methane POX. Table 2 summarises
several common catalysts that have been used in the POXM.

Noble metals are known for their better performance in
the catalytic oxidation of methane in terms of activity and
resistance to coke formation. The performance of a range
of noble catalysts supported by Al-Mg (Pt, Ir, Pd, Rh and
Ru) synthesised via impregnation was evaluated by Khaje-
noori et al. (2013) for catalytic POXM at 973 K and CH,/
O, ratio of 2. Amongst the tested catalysts, Rh and Ru were
found to be the most active, with about ~ 73—-74.0% CH,
conversion, close to the thermodynamic equilibrium val-
ues (76.3%) for the catalytic oxidation of CH,, followed
by Ir (72.1%), Pt (68.4%) and Pd (59.0%). This trend cor-
responded to the excellent metal distribution with a small
crystallite size (5 nm) on the Al-Mg support. Additionally,
the H,/CO ratios for all the catalysts were obtained close
to equilibrium levels (2.11), at about 1.8—-1.9. However,
because of the reverse water gas shift, the more significant
value of H,/CO (2.4-5.8) was obtained at low tempera-
tures (923 K). Amazingly, none of the tested noble cata-
lysts showed any signs of deactivation after 50 h of stable
functioning. Ahn and co-workers also reported a similar
outstanding performance on noble metals during the com-
parative evaluation of CeO,-supported metallic catalysts
(Pt, I, Pd, Ru, Ni and Rh), accredited to smaller particle
size, excellent metal distribution and intense metal support
interaction (Ahn et al. 2011). Nevertheless, the expensive
cost and minimal reserves of these types of noble metals
shifted the attention of researchers towards non-noble metals
like Ni and Co, which are more attractive and practical for
commercialisation.

Swaan et al. (1997) compared Ni- and Co-based cata-
lysts for the POXM to syngas at 873—1173 K with a feeding
ratio of CH,/O,/He/N, about 10/5/80/5. They found that Ni-
based catalysts were superior in activity and selectivity in the
POXM, although Co-based catalysts were very reactive for
the combustion of CH, to CO,. Since then, massive efforts on
Ni-based catalyst development for POXM have been reported
in the literature. Liu et al. evaluated the performances of Ni-
supported catalysts by distinct alumina species, including
a-Al,0;, y-Al,O; and 6-Al,0; in the POXM (Liu et al. 2002).
It was evidenced that Ni supported on y-Al,0O5 exhibited supe-
rior CH, conversion ~ 89.0% and stable within 24 h compared
to Ni/6-AL,O; (~ 86.2%) and Ni/a-Al,O; (~ 78.3%), owing to
the inferior size of Ni particles (7.8 nm) and vast surface area
(191 m? g™"). The high CH, conversion (90.5-94.7%) and CO
selectivity (93.9-96.8%) were also experienced by Lu et al.
during the employment of Ni/y-Al,O; catalysts, regardless of
reduction temperature (873-973 K) and GHSV of (612-1152
L g 'h™) (Luetal. 1998).
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Table 2 Summary of catalysts reported for the partial oxidation of methane

Catalyst Synthesis Conditions Performance Ref
Pt/Al-Mg IM* T=973K Xcns = 68.4% (Khajenoori et al. 2013)
GHSV = 16,000 ml h~' g~ H,/CO = 1.93
Ir/Al-Mg CH,/0, =12 Xepa = 72.1%
H,/CO = 1.86
Rh/AI-Mg Xepa = 74.1%
H,/CO = 1.89
Ru/Al-Mg Xepa = 73.1%
H,/CO = 1.92
- g = . 0
Pd/Al-M 4= 59.0%
H,/CO = 1.94
Ir/CeO, IM* T=1023K Xepa = 97.0% (Ahn et al. 2011)
CH,/O,/He = 2/1/10 H,/CO = ~2
Ru/CeO, Xepa = 96.2%
H,/CO = ~2
€ = .2 70
Pd/CeO, Xoma = 90.2%
H,/CO=~2
Ni/CeO, Xepa = 99.1%
H,/CO = ~2
Pt/CeO, Xepa = 93.2%
H,/CO = ~2
Rh/CeO =84.6%
2 H4
H,/CO=~2
Ni/a-Al,0, M* T =1018-1033 K Xepa =~ 78.3% (Liu et al. 2002)
GHSV = 27,600 ml h™' g, ™! Sco=89.1%
Ni/y-ALO, CH,/O, = 1.95/1 X = 89.0%
Sco=95.3%
Ni/6-Al,0; Xepa = 86.2%
Sco=95.2%
Ni/y-ALO, IM* T=873K Xepa = 90.5-94.7% (Lu et al. 1998)
GHSV =612-11521h7" g, Sco = 93.9-96.8% Sy, =
CH,/0, =2/1 97.8-99.0%
H,/CO = 2.04-2.08
Ni-Al PH* T=973K Xepa = 73.4% (Kim et al. 2004)
Ni-IMP M %48/92;) i/ 1 Xepa = 67.3%
Tr-Ni PCP* T=1023K Xens = 46.3% (Lucrédio et al. 2007)
CH,/0, =2/1 Yo = 0.79 mol
Ae-LaNi AE* TOS=6h Xepa = 43.7%
Yco =0.95
Ae-CeNi =48.1%
XCH4
Yo = 0.92
Ni/SBA-16 IM* T=1023 K Xens =92.0% (Shokoohi Shooli et al. 2018)
GHSV = 18,000 ml h™! g, 7! H,/CO = 1.51
Cu-Ni/SBA-16 CH,/0, =2/1 Xepa = 89.8%
H,/CO =1.49
Ce-Ni//SBA-16 =93.0%
H4
H,/CO =1.66
Ni/SBA-15 IM* T=1023K Xepa = 92.0% (Habimana et al. 2009)
GHSV = 18,000 ml h™' g, ™! Sco = 94.6%
CH,/0, = 1.9/1 Su = 95.0%
Ni/Cu/SBA-15 SI* =95.0%
H4
Sco=94.1%
Sy =972%
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Table 2 (continued)

Catalyst Synthesis Conditions

Performance Ref

ICIM* T=1073K
GHSV = 80,000 h™!

CH,/0,=19/1

Ni/MgO-Al,0,

NiCeCa/MgO-Al,0,

Ni/y-Al,0, M CH,/0, =2/1
Ni/La,04/y-Al,O,

Ni/CaO/y-ALO,

Ni/CeO,/y-AL O,

Ni/y-Al,O, M T=873-973K

CH,/0, =2/1

Re/y-Al,05

Re-Ni/y-ALO,

Ni/CeO, BM* T=3823K
GHSV = 12,000 h™!
CH,/0, = 1.73/1

Pd-Ni/CeO,

Ni/ZnO-NPr WI* T=1123K

CH,/0, =2/1

Ni-Co/ZnO-NPr

Xy = 5.6% (Qiu et al. 2007)
Sco = 55.3%

S, = 50.0%

Xy = 75.1%
Sco = 82.1%
Sy = 85.0%

Xepa = 78.2%
Sco = 93.5%
X = 80.2%
Sco = 94.8%

Xy = 77.9%
Sco = 92.7%

Xy = 80.3%
Sco = 95.4%

Xepa = 28.2%
Yoo = 15.7%
Yy, = 153%

Xeps = 6.7%
Yoo =1.1%
Yy =2.5%
X = 100%
Yeo = 87.4%
Yy, =92.8%

Xepa = 22.0%
Sco = 0%

Sy = 0%
X = 71.8%
Sco =21.7%
Sy = 65.5%

Xepa = 92.7%
Sco =23.0%
Sy = 44.8%
X = 98.0%
Sco=22.1%
Sy = 42.3%

(Wang et al. 2004)

(Cheephat et al. 2018)

(Fazlikeshteli et al. 2021)

(Javed et al. 2021)

Sco,Sy, = selectivity of CO and H, respectively; Yco, Yy= yield of CO and H, respectively; XCH, = conversion of CH,; BM ball milling, WI
wet impregnation, PH post-hydrolysis, PCP precipitation, AE anionic exchange, S/ sequential impregnation, /CI incipient impregnation, PCP

precipitation

Although Ni-based catalysts demonstrated comparable
activities with noble metals, this material is known for their
sintering and coke issues which contribute to deactiva-
tion. Several approaches have been implemented to over-
come these drawbacks, ranging from support selection and
modification to incorporating second metals as promoters
or forming bimetallic catalysts. Mesoporous alumina syn-
thesised via the post-hydrolysis method, according to Kim
et al., improved Ni activity and lowered the coke accumula-
tion during POXM (Kim et al. 2004). The authors stated
that the incorporation of mesoporous alumina with Ni (Ni/
Al ratio 1:10) led to intense Ni-Al interaction, causing the
excellent distribution of Ni particles. Indeed, the relatively
huge surface area (282.4 m? g~!) and pore volume (0.26 cm?
g~ 1) with a narrow pore size distribution (3.3 nm) explained

@ Springer

the superior activity (73.4%) and were more resilient to coke
accumulation than the Ni catalyst impregnated on commer-
cial alumina (Ni-IMP) during 20 h of reaction.

Lucrédio and colleagues tackled the coking nature of
Ni-based catalysts in POXM by introducing lanthanum and
cerium via the anion exchange technique (Lucrédio et al.
2007). It was noticed that interaction between Ni supports
was considerably improved after both promoters’ incor-
poration, attributed to enhancements in Ni active species
distribution on the support surface. Although there was no
significant improvement in CH, conversion after incorpo-
rating lanthanum and cerium, the authors observed stable
conversion activity with enrichment in CO yield within 6 h
on the stream. The authors justified that adding those pro-
moters favoured the adsorption and decomposition of O, on
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the catalyst’s surface, thus assisting the carbon gasification
process. Similar findings were reported in the literature with
the incorporation of various kinds of promoters, including
Cu (Habimana et al. 2009; Shokoohi Shooli et al. 2018), Ca
(Qiu et al. 2007; Habimana et al. 2009) and Mg (Ma et al.
2019).

Besides monometallic catalysts, several series of bime-
tallic commonly consisting of Ni-based have been widely
utilised in the POXM since these combinations can
improve catalytic activity, stability, selectivity and coke
resistance. Cheephat et al. (2018) synthesised Re-Ni bime-
tallic catalyst via impregnation and tested it in POX within
673-973 K (Cheephat et al. 2018). The authors found that
Re-Ni bimetallic catalyst with a Re:Ni ratio of 3:7 depicted
superior CH, conversion (~ 100) and product yields (CO
= 92.8 %, H, = 87.4%) at temperature 973 K compared
to monometallic Ni/y-Al,O; and Re/y-Al,O;. Bimetallic
catalysts did exhibit remarkable catalytic stability with a
very small deactivation of H, production (7.4%), whereas
monometallic Ni/y-Al,O; and Re/y-Al,O5 experienced
enormous catalyst deactivation of about 63.9% and 19.1%,
respectively. This more excellent outcome was attributed
to a better distribution of Ni after combining with Re spe-
cies. Fazlikeshteli et al. (2021) and Javed et al. (2021) also
reported comparable findings after forming bimetallic
catalysts between Co-Ni and Pd-Ni species. Both authors
justified that the bimetallic combination approach effec-
tively improved the dispersion metal and metal support
interaction, causing the increment in the accessible active
site and coke resistance, thus, leading to excellent catalytic
activity and stability.

Steam reforming of methane (SRM)

The first attempt to investigate the reaction between CH, and
steam in the industry was done and published by Neumann
and Jacob in 1924 (Ighalo and Amama 2024). SRM is con-
cerned with the thermo-catalytic transformation of natural
gas (mainly CH,) into syngas and pure H,. This material is
a valuable feedstock for a variety of high-value petrochemi-
cals. However, due to its high heating value of roughly 140
kJ/g and the creation of carbon-free H,, it appears to be an
appealing energy option and hence a critical starting point
in the emerging H, economy (Ali et al. 2023). The SRM
involves three bidirectional reactions depicted above in Eqgs.
(2), (7) and (8), respectively. Two of the reactions (Egs. (7)
and (8) are endothermic, whereas the water gas shift pro-
cess (Eq. (2)) is exothermic (Guo et al. 2012; Seelam 2013;
Boretti and Dorrington 2013). Conditions of reactions,
steam-to-methane ratio and important findings from related
works in steam reforming (SR) are presented in Table 3.

CH,+ H,0 = CO + 3H, AH® 5o ¢ = +206kJmol™!
(7
AH®,oq x = +165kJmol™!
(®)
Catalyst deactivation occurs majorly by coke formation
due to CH, cracking (Eq. (3)) and the BR, also known as the
CO disproportionation (Eq. (4)).

CH, +2H,0 = CO, + 4H,

Photothermal Reforming (PTRM)

Solar energy could replace fossil fuels well because it is
clean, widespread and never runs out. The notion of photo-
thermal catalysis and its use in DRM processes was recently
published. In line with the literature, photothermal catalytic
DRM may significantly increase syngas production com-
pared to a single thermal condition by combining infrared
light’s thermal action with ultraviolet light’s photoelectric
impact. For the above reasons, photothermal catalysis is
developing into a competitive and promising technology.
Based on publicly available research studies, Ni-based pho-
tothermal catalysts have high DRM catalytic activity (Zhong
et al. 2022). Solar energy can be used to electrify, fuel, heat
and cool buildings using photovoltaics, concentrated solar
heating/power, photo/thermal chemical conversion and
so on (Chen et al. 2022; Zheng et al. 2022). Amongst the
different solar-to-chemical conversion technologies, solar-
to-chemical conversion is both challenging and intriguing
since it can alleviate two contemporary human problems: the
energy crisis and environmental pollution. Since CO, and
CH, are both greenhouse gases and relatively stable (C—O
bond energy is 750 kJ/mol, C—H bond energy is 430 kJ/mol),
solar-powered DRM would yield syngas, which can be easily
recycled, more energy-saving with reduced emissions and
enhanced storage potential.

Zhang et al. (2019) and Araiza et al. (2021) conducted
in situ diffuse reflectance infrared Fourier transform spectros-
copy (DRIFTS) at various temperatures with and without light
irradiation to gain a better knowledge of the thermal influence
on energetic hot carriers (EHC) (Fig. 8). At the furnace tem-
perature of 150 °C, no indication of DRM initiation can be
seen in the absence of light irradiation. The presence of HCO,
indicates that both CO, and CH, were activated in the presence
of light (1685/1420 cm™"), CO3™ (1557 cm™"), COOH (1653
cm™!) and CHX (2824/1440 cm™) species. This demonstrates
unequivocally that the EHC may surmount the DRM thermo-
dynamic barrier. The EHC uses two routes in photocatalytic
DRM: (i) converting CO, to CO right away with CO; as an
intermediate; (ii) reducing C 0%‘ to COOH as an intermediate
and subsequently to CO. In the second process, water can be
produced as a by-product. The majority of EHCs opt to choose
the second route, which lowers the H,/CO ratio because there

@ Springer
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Fig.8 In situ DRIFTS spectra with and without illumination for
a DRM and b CO, reduction with H,. ¢ Improved TOF with EHC
and thermally assisted TOF at varying temperatures in DRM. d
Increased electron transfer with EHC and thermally assisted TOF at

are fewer EHCs at normal temperatures that have the energy
to overcome the higher redox potentials of reactants. When the
temperature is increased to 150 ~C in photothermal catalytic
DRM, the CO, peak becomes stronger. In contrast, the peaks
of other intermediates in the second pathway weaken, indi-
cating that the two routes are augmented by increased photo-
induced EHC and decreased CO,/CO reduction potential,
resulting in an elevated H,/CO ratio.

Heterogeneous dissociation of CH, in the presence of
a photocatalyst might occur due to the presence of a local

different temperatures in the CO, reduction process. € Improved TOF
with EHC at varying temperatures on P25-supported Pt NPs of vary-
ing sizes, and f a schematic of the thermal suppress effect on EHC
(adapted with copyright permission from (Zhang et al. 2022a))

electric field. The catalyst’s ability to transport electrons is
most likely a critical factor in the activation of CH, and the
formation of methyl radicals (He et al. 2022). As a result,
lowering the activation energy barrier effectively may be
accomplished by CH, catalytic conversion. Therefore, devel-
oping more cost-effective and effective CH, utilisation meth-
ods with catalyst support is extremely important. During
the light-off operation, the temperature decreased quickly,
stabilising the heat release and dissipating the photothermal
storage capacity of ATR@PCM and ATF@PCM, which first

@ Springer
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Table 6 Outcomes and confrontation of the various reforming equations

Reforming equations

Description/challenges

Ref

SRM
CH,+H,0 —3H, +CO

DRM
CH,+C0O, —2H, +2C0

CSDRM

3CH,+ CO,+2H,0—8H, +4CO

Ideal syngas ratio for FT long-chain hydrocar-
bons; less coke formation compared to other
reforming processes; product ratio easily
controlled by maintaining optimum steam to
methane ratio; need for highest air emissions,
more expensive than ATR and POX.

Almost 100% CO, conversion, Consumption
of GHG: CH, and CO,, generation of syngas
with suitable FT ratio although the high tem-
perature of reaction causes agglomeration,
coke formation and plugging of the reactor.

Significant coke reduction; best syngas ratio
for liquid fuels production; unreacted CH,

CH,+ !/5C0, + */3H,0 —» ¥/ H, + %/ CO needs to be separated; installation cost.

POXM
CH,+ '/,0, » CO +2H,

Coke-forming Side reactions
CO, /CO hydrogenation
CO,+2H,<>2H,0+C,
CO+H,<>H,0+C,

CH, cracking
CH, <2H,+C,

Coke hydration/syngas substitution
C+H,0 < H,+CO

CO disproportionation/ BR
2C0<>CO,+C,
C+ '/, 0, CO

Non-coke-forming side reactions

WGS reaction
CO+H,0 —CO,+H,

RWGS reaction
CO,+H,<> CO+H,0

Relatively, low syngas ratio; high reaction
temperature (1100-1500); needs pure oxygen
plant; no need for sulphur removal from the
feedstock.

Ideal for the generation of syngas, aromatics,
value-added chemicals, olefins and methanol
intermediates. Depending on hydrogen and
oxygen availability in the system, hydrogena-
tion (up to Cs), C-C coupling, acid-catalyzed
reactions aromatisation, oligomerisation and
isomerisation may take place. In all cases,
coke is deposited.

The prime endothermic side reaction during
CH, valuation where the C-H (strong) bond
breaks to generate H, gas and deposit coke
(C) in the presence of catalysts, the reaction
may surface in the range 450-750 °C while
may extend above 1200 °C in uncatalyzed
reactions.

The reaction progresses with a 1:1 ratio either
way. However, the forward reaction is more
economical and profitable being more
inclined towards FT syngas ratio and less
coke formation.

A reversible char-gasification where CO, is
reduced by the deposit of coke in the reaction
to generate CO and vice-versa. Below 1000
K, the char-gasification rate is insignificant,
therefore the CO disproportionation is more
favoured at these temperatures.

A moderately exothermic, kinetically limited
below 250 °C equilibrium limited high-
temperature reaction, for the manufacture
of hydrocarbons, methanol, ammonia and
hydrogen. It contains over 20% by volume
hydrogen and water vapour > 6% by volume.

A feasible reaction to produce CO and steam
from CO, and hydrogen. It could be a profit-
able technique for the generation of oxygen
alongside water electrolysis

(de Rezende et al. 2015; Xu et al. 2022)

(Olah et al. 2013; Serrano-Lotina and Daza
2014; Cunha et al. 2020; Dan et al. 2021)

(Gangadharan et al. 2012)

(Al-Nakoua and El-Naas 2012; Carapellucci
and Giordano 2020)

(Borisut and Nuchitprasittichai 2019)

(Alves et al. 2021)

(Basu 2018)

(Horlyck et al. 2018; Azancot et al. 2021)

(Dybkjer and Christensen 2001; Kurdi et al.
2022)

(Pastor-Pérez et al. 2017)

@ Springer
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Table 6 (continued)

Reforming equations Description/challenges Ref
Oxidation reactions
C+0,—CO, Mostly endothermic reactions, requiring heat ~ (Basu 2018)

c+,0,- Co,
CH,+20, <>C0,+2H,0
H,+0,<> H,0

supply, drying and pyrolysis, which produces
the fuel gas CO, and around 111 kJ mol~! of
heat. Contact with oxygen produces either

the predominant CO, gas, steam or a mixture

of both.
Methanation reactions
2CO+2H,<> CH,+CO,
CO+3H,<> CH,+H,0
CO,+4H,<> CH,+2H,0

More toxic and less stable CO could be hydro-
genated to produce a mixture of methane and
steam, or CO,. The storage of CH, is one of

(Wang et al. 2018a; Hatta et al. 2021; Hussain
et al. 2022)

the major challenges and transportation cost.

increased quickly before decreasing to a constant state. The
thermal and energy storage efficiencies were computed using
heat loss, which is minimal at low temperatures, and phase
transition enthalpy, which increases storage efficiency when
solar energy is absorbed (Peng et al. 2022). A summary of
findings reported on the recent photothermal conversion of
methane is presented in Table 4.

Dual methane reforming (bi-reforming)

The production of syngas through combined steam and dry
methane reformation (CSDRM), known as bi-reforming,
seems to be a highly promising CO, valorisation process, pro-
viding metgas (CO + 2H,) with an H,/CO molar ratio close to
2 (Jabbour et al. 2017). This intuitive way (Eq. (9)) achieves a
syngas with a desired H,/CO ratio and combines both DRM
(Eq. (1)) and SRM (Eq. (7)) processes (Singh et al. 2017; Jab-
bour 2020). For example, specific FT procedures are designed
to prepare long hydrocarbon chains, while they may be utilised
directly in methanol (Hatta et al. 2023) or dimethyl ether (Owgi
et al. 2023a; Nabgan et al. 2023) synthesis. Conventional DRM
(Eq. (1)) and SRM (Eq. (7)) give an H,/CO ratio of almost 1
(too low) or nearly 3 (too high), requiring additional cycles
(often expensive) if the product ratio needs to be changed to
be around 2 for the following stages of the process.

3CH, +CO,+2H,0 — 8H,+4CO AH’,y

1 &)
= 4220 kJmol

From a practical standpoint, the CSDRM process has the
added benefit of utilising CH,, CO,, and water as its prin-
cipal reactants. These gases can also be present in biogas,
a fuel that does not derive from fossil fuels. As a result, the
approach’s complex development provides a way for creating
metgas from renewable energy sources without using addi-
tional separation and purifying processes. Recent progress in
the field emphasises more on combined reforming because it
consumes more CH, than conventional reforming processes

in which water has been reported to ignite side reactions.
When DRM and SRM are combined with water, as in (Eq.
(9)) above, less carbon may accumulate on the catalyst sur-
face and more H, will be produced, resulting in syngas with
the ideal composition for synthetic fuels (Dan et al. 2021).
Table 5 summarises performing conditions, methods and
catalyst systems in combined reforming reactions.

The fate of captured gaseous species (based
on previous investigations)

Gasifier updraft stages include combustion, gasification, pyrol-
ysis and drying zones. In the drying zone, the product gas is
liberated and burns with the fuels; in the pyrolysis zone, dry
fuel (char + volatiles) is produced; and the gasification zone
involves the conversion of coke and CO based on the reactions:

C+CO,= 2C0 (10)
C+H,0= CO+H, an
C+2H,= CH, (12)
CO+H,0= CO,+H, (13)

In the combustion zone, CO and CO, are made when
partial and complete coke oxidation happens. Table 6 shows
the different reactions of gaseous species.

Future prospective
Finding more efficient ways to produce syngas has received

a lot of attention recently since it is a necessary intermediary
in producing several chemicals and fuels, including dimethyl

@ Springer
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Fig.9 The challenges and potential paths for reformer development are based on the progress and status of various reformer technologies in
related studies (reused with permission from the reference (Bolivar Caballero et al. 2022))

ether, methanol, propylene, ethylene and FT fuels. Using
waste CO,, DRM transforms natural gas into syngas. For
some years, the industry has used a mix of steam and dry
methane reforming (SMR + DRM) instead of DRM, which
has yet to be fully industrialised (Bahari et al. 2022; Owgi
et al. 2023b).

Maximizing reaction temperatures is crucial for enhanc-
ing product conversions, especially in the context of DRM,
a process essential for reducing GHG emissions. However,
increased temperatures also result in enhanced conversion
rates, highlighting the potential for improved efficiency in
hydrogen and synfuel production. It is important to note
the challenges associated with lower DRM temperatures,
such as the production of high-water content streams and
the promotion of endothermic processes like RWGS.

@ Springer

While DRM and RWGS methods are important for hydro-
gen and synfuel production, there is a growing recognition
of the significance of other reforming processes, such as
SR and carbon gasification. These processes require sig-
nificant amounts of water but provide alternative methods
for synthesising products and enhance the overall adapt-
ability of hydrogen and synfuel generation.

Despite the benefits of higher temperatures and diverse
reforming procedures, achieving high selectivity for
hydrogen production remains challenging, especially when
the CO,/CH, ratio exceeds 1. The predominance of the
RWGS reaction in these circumstances leads to reduced
specificity for hydrogen, highlighting the need for inno-
vative approaches to enhance product distribution. The
emergence of triple-methane reforming reactors represents
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significant progress in addressing the challenges associ-
ated with conventional reforming procedures. These reac-
tors utilise steam, oxygen and photothermal DRM systems
to overcome issues such as excessive coking, agglomera-
tion and uneven distribution of reactants and products.
Moreover, current research efforts focus on optimis-
ing reactor design to increase efficiency, reduce energy
demands and improve overall process control.

The development and improvement of catalysts are
also crucial areas of focus for future studies. Durable,
efficient and cost-effective catalysts are necessary for
the generation of valuable chemicals from CH, and CO,.
Through current characterisation and computational mod-
elling techniques, researchers aim to understand catalyst
performance better. Further research and innovation are
needed to fully harness the potential of hydrogen and syn-
fuel generation. By strategically incorporating emerging
trends, employing advanced methodologies and foster-
ing interdisciplinary collaboration, it is possible to effec-
tively tackle existing challenges and establish a resilient
and sustainable energy future. Figure 9 presents the
challenges and potential paths for the development of
reformer technologies, based on the progress and status of
various reformer technologies reviewed in related studies.

Conclusion

This article has covered all the many methods for valuing
methane, including dry, auto-thermal, steam, photothermal
and partial oxidation techniques. Carbon capture and uti-
lisation (CCU) and carbon capture and storage (CCS) are
two carbon management mechanisms that have recently
received a lot of attention from researchers concerned
about the effects of human-caused emissions of green-
house gases on the environment.

Methane reforming via water electrolysis, a method that
currently accounts for a mere 5% of the overall production
of hydrogen, has been an area of considerable discourse.
Although the process of converting CO, into fuels and
compounds shows potential for a future without carbon
emissions, the complete eradication of carbon-based prod-
ucts continues to present difficulties. As a result, it is criti-
cal to embrace a well-rounded strategy that combines the
use of carbon-based resources with the conscientious man-
agement of atmospheric CO, through the establishment of
a human carbon cycle. Chemical hydrogen looping, bio-
mass pyrolysis and coke oven gas utilisation are just a few
of the novel approaches that have recently emerged and
show promise as a means of producing energy sustainably.
However, it is critical to address the energy requirements
associated with methane abatement, as well as problems
related to storage, transportation and manufacturing.

Future studies should focus on making methane valori-
sation technologies more efficient and scalable. Motivat-
ing the adoption of carbon-neutral practices and promoting
the integration of renewable energy sources into existing
infrastructure should be the focus of collaborative initia-
tives including academia, industry and policymakers. To
further drive innovation in this crucial sector, interdiscipli-
nary techniques that utilise materials science, chemistry and
engineering insights are necessary. Through the progression
of knowledge regarding methane valorisation and carbon
management, it is possible to establish a pathway towards
an energy future that is more resilient and sustainable, all
while alleviating the detrimental effects of greenhouse gas
emissions on both the environment and human health.
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