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Abstract
The insufficient hazard thresholds of specific individual aromatic hydrocarbon compounds (AHCs) with diverse structures 
limit their ecological risk assessment. Thus, herein, quantitative structure–activity relationship (QSAR) models for estimat-
ing the hazard threshold of AHCs were developed based on the hazardous concentration for 5% of species  (HC5) determined 
using the optimal species sensitivity distribution models and on the molecular descriptors calculated via the PADEL software 
and ORCA software. Results revealed that the optimal QSAR model, which involved eight descriptors, namely, Zagreb, 
GATS2m, VR3_Dzs, AATSC2s, GATS2c, ATSC2i, ω, and Vm, displayed excellent performance, as reflected by an optimal 
goodness of fit (R2

adj = 0.918), robustness (Q2
LOO = 0.869), and external prediction ability (Q2

F1 = 0.760, Q2
F2 = 0.782, and 

Q2
F3 = 0.774). The hazard thresholds estimated using the optimal QSAR model were approximately close to the published 

water quality criteria developed by different countries and regions. The quantitative structure–toxicity relationship demon-
strated that the molecular descriptors associated with electrophilicity and topological and electrotopological properties were 
important factors that affected the risks of AHCs. A new and reliable approach to estimate the hazard threshold of ecological 
risk assessment for various aromatic hydrocarbon pollutants was provided in this study, which can be widely popularised to 
similar contaminants with diverse structures.

Keywords Aromatic hydrocarbon · Species sensitivity distribution · Effective hazardous concentration · Quantitative 
structure–activity relationship · Molecular descriptor

Introduction

Unreasonable petrochemical pollutant discharge, frequent 
oil spill accidents, and biomass fuel combustion have 
caused serious ecological losses from petroleum hydrocar-
bon pollutants during the rapid development of industriali-
sation and urbanisation (Boehm and Page 2007; Margesin 

and Schinner 2001; Othman et al. 2023; Zhao et al. 2020). 
Among these oil pollutants, aromatic hydrocarbon com-
pounds (AHCs) have attracted widespread attention owing 
to their high biotoxicity, severe negative biological effects, 
and strong persistence in the environment (Abdel-Shafy 
and Mansour 2016; Head et al. 2006; Liu et al. 2022). 
AHCs affect the physiological processes and biological 
functions of environmental organisms through various 
methods such as volatilisation, migration, ingestion, and 
breathing, causing serious damages to their biological 
organs and tissues and thus disturbing endocrine, nerv-
ous, reproductive, and other metabolic processes (Cousin 
and Cachot 2014; Diggs et al. 2011; Gamboa et al. 2008; 
Lewtas 2007; Lotufo and Fleeger 1997; Zhao et al. 2020). 
Thus, it is imperative to accurately and rapidly assess the 
ecological risks of AHCs. However, the accurate eco-
logical risk assessment (ERA) of AHCs remains a chal-
lenge owing to the lack of hazard thresholds of specific 
individual AHCs because of their abundance and diverse 
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structures in the environment. Therefore, it would be an 
effective solution to develop a reliable approach to directly 
estimate the hazard thresholds of AHCs to improve the 
ERA for AHCs.

Biotoxicity is an important and immediate indicator of 
ERA, as recommended by numerous authoritative interna-
tional environmental organisations such as Organisation for 
Economic Co-operation and Development (OECD), Euro-
pean Centre for Ecotoxicology and Toxicology of Chemi-
cals (ECETOC), and United States Environmental Protection 
Agency (US EPA) (ECETOC 1993; OECD 1992; USEPA 
1992). However, biotoxicity testing procedures are usually 
complicated, expensive, and time-consuming (OECD 1984a, 
1984b) and often cause potential debate concerning animal 
ethics, especially for threatened and endangered species 
(Ha et al. 2019; Wang et al. 2014; Zvinavashe et al. 2008). 
Quantitative structure–activity relationship (QSAR) can 
serve as an important alternative for biotoxicity testing, as 
it can establish mathematical models for biotoxicity estima-
tion based on the quantitative relations between molecular 
structure and biotoxicity (Bo et al. 2023; Hamadache et al. 
2016; Redl et al. 1974; Tropsha 2010). In the past decades, 
the associations between toxicity effects and molecular 
structures have been examined for various pollutants using 
QSAR models, which have been proved as an effective 
solution for biotoxicity estimation. Various mathematical 
and statistical techniques, including multiple linear regres-
sion (MLR), artificial neural network, and support vector 
machine, have been applied in the QSAR development 
(Lei and Shiverdecker 2019; Liu and Long 2009; Xu et al. 
2011). A series of molecular descriptors have been success-
fully used to develop QSAR models for toxicity estimation 
(Cao et al. 2018; Hao et al. 2019, 2020; Singh et al. 2023), 
such as the octanol–water partition coefficient (Log Kow), 
energy of the highest/lowest unoccupied molecular orbital 
(Ehomo/Elumo), electrophilicity index (ω), and average centred 
Broto–Moreau autocorrelation index (AATSC0p), that relate 
to lipophilicity and electronic and topological properties, 
which have been identified as important factors affecting 
biotoxicity (Pandey et al. 2020; Wang et al. 2023; Yang 
et al. 2020). High-quality QSAR models have been applied 
to correctly estimate the toxicity of polycyclic aromatic 
hydrocarbons (PAHs) in rats (Rattus norvegicus) (Sun et al. 
2021), benzo-triazoles in fish (Oncorhynchus mykiss) (Cas-
sani et al. 2013), pesticides in honeybees (Apis mellifera L.) 
(Hamadache et al. 2018), and algae (Skeletonema costatum) 
(Yang et al. 2021) and emerging contaminants such as phar-
maceuticals and personal care products and endocrine-dis-
rupting chemicals in crustaceans (Dugesia japonica) (Önlü 
and Saçan 2018). Most of the existing QSAR models were 
developed based on acute or chronic toxicity endpoints such 
as  LC50,  EC50,  LD50, and NOEC of individual species. How-
ever, it remains a challenge to develop QSAR models to 

directly obtain the hazard threshold concentration of pollut-
ants with diverse structures.

Defining appropriate hazard threshold is critical for the 
accurate risk assessment of pollutants. The hazardous con-
centration for 5% of species  (HC5) derived from the species 
sensitivity distribution (SSD) models was often used to char-
acterise the allowable hazard threshold to protect 95% of spe-
cies in a community from the significant impacts of pollutants 
(Aldenberg and Slob 1993; Maltby et al. 2005; Posthuma et al. 
2002; Vighi et al. 2006).  HC5 describes the biological effects 
at a community or ecosystem level rather than at an individual 
level and can aid in forming a rapid response of early warn-
ing to organismal damages, thereby providing adequate safety 
information for an ecosystem (Ding et al. 2018; Fedorenkova 
et al. 2010; Maltby et al. 2009).  HC5 has become an important 
and sensitive indicator for establishing environmental hazard 
thresholds and assessing the ecological risks of pollutants in 
numerous countries and regions (Luit et al. 2003; Margesin 
and Schinner 2001; USEPA 1985). For example, the effec-
tive acute  HC5 was successfully applied in proposing the 
sediment quality criteria for nonionic organic chemicals (Di 
Toro and McGrath 2000; USEPA 1993) and the acute water 
quality criteria for dibutyltin dilaurate (Zhang et al. 2017). 
The  HC5 derived from chronic toxicity data was also used to 
quantitatively characterise the ecological risk of nonylphenol 
in coastal waters of China using the assessment factor and risk 
quotient methods (Gao et al. 2014). However, little attention 
was paid to investigate the quantitative relationship between 
the molecular structures and hazard thresholds of AHCs and 
develop QSAR models for the direct estimation of the hazard 
thresholds (such as  HC5).

Herein, QSAR models between the molecular structures 
and hazard threshold concentrations of AHCs were initially 
developed based on the  HC5 derived using the SSD models 
and the molecular structure quantified via the PADEL soft-
ware (Yap 2011) and ORCA software (Neese 2022). Then, 
the hazard threshold concentrations estimated using the 
developed QSAR models were compared with the published 
water quality criteria. The objectives of this study were as 
follows: (1) to develop QSAR models with high accuracy 
in directly estimating the hazard threshold of AHCs for risk 
assessment improvement and (2) to investigate the quan-
titative relationship between the molecular structures and 
hazard thresholds of AHCs for an in-depth understanding 
of the toxicity mechanism.

Materials and methods

Toxicity data collection of AHCs

Herein, all the existing acute toxicity concentrations of all 
the studied toxicity endpoints (e.g. inhibition of growth, 
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reproduction and development, dysfunction of physiology 
and biochemistry, and mortality) of AHCs, including the 
median lethal concentration  (LC50) and median effective 
concentration  (EC50), were collected from ECOTOX knowl-
edgebase (https:// cfpub. epa. gov/ ecotox/ index. cfm) and other 
published literatures. The collected toxicity data involved 
multiple toxicity test organisms, such as various aquatic 
and terrestrial toxicity organisms at multiple trophic levels, 
including phytoplankton, crustaceans, fish, worms, mol-
luscs, and insects/spiders (Table S1). The collected toxicity 
data were used to derive  HC5 concentration in this study, as 
shown in Table 1.

A wide variety of AHCs with diverse structures includ-
ing benzenoid aromatic hydrocarbons (monocyclic, polycy-
clic and biphenyl), non-benzenoid aromatic hydrocarbons 
(pyridine, quinolone, dibenzofuran and acridine), and their 
derivatives were involved in this study. Detailed chemical 
information including chemical names, abbreviations, CAS 
numbers, and chemical formulas of these AHCs are shown 
in Table S2, while their molecular structures are shown in 
Fig. 1.

HC5 of AHCs

HC5 is usually used to characterise the allowable hazard 
threshold to protect 95% of species in the ecosystem from 
significant negative impacts, characterising the sensitivity 
of biological communities to chemicals (Traas et al. 2002; 
Korsman et al. 2016; Jesus et al. 2022). It has provided an 
important basis for establishing the environmental limits 
of pollutants in numerous countries and regions, such as 
Europe, USA, and China (Eduljee 2000; Kemmlein et al. 
2009; Wu et al. 2015). Herein, the  HC5 of AHCs was derived 
using the SSD models, and it covered at least three trophic 
levels, including primary consumers, secondary consumers, 
and producers, as per the US EPA requirements for an excel-
lent SSD model (Lu et al. 2020, 2018; Wang et al. 2021). 
To improve the accuracy of  HC5, the toxicity concentrations 
of different endpoints that meet the requirements were used 
to build the SSD models (USEPA 1985). The SSD curve of 
AHCs was fitted considering the logarithm of the toxicity 
concentration as the dependent variable and the cumula-
tive probability as the independent variable using six prior 
distribution models (normal, logistic, triangular, Gumbel, 
Weibull, and Burr) and four fitting methods (maximum like-
lihood [ML], moment estimators [MO], linearisation [GR], 
and metropolis hastings [MH]) through the SSD Toolbox 
software. The proportion of the simulated discrepancy statis-
tics (P) was used to evaluate the quality of the SSD models, 
which described the goodness of fit between the empirical 
and parametric cumulative distribution functions. The closer 
the P-value is to 1, the better the goodness of fit (Posthuma 
et al. 2002). The  HC5 of the AHCs was finally obtained from 

their optimal SSD curve with the best goodness of fit. The 
obtained  HC5 were subsequently log-normalised to facilitate 
statistical analysis, which were negatively correlated with 
the risk of AHCs.

Molecular structure quantification of AHCs

In total, 1468 molecular descriptors were used to char-
acterise the molecular structure of the AHCs. First, the 
two-dimensional molecular structures of the AHCs were 
determined using ChemDraw 20.0 (Fig. 1) and initial geo-
metric optimisations were performed based on the molecu-
lar mechanics method to minimise to their lowest energy 
conformation using Chem3D 20.0. Then, 1440 molecular 
descriptors (e.g. autocorrelation descriptors, constitutional 
descriptors, and topological descriptors) were obtained using 
the PADEL software. Twenty quantum chemical descrip-
tors (e.g. electrical descriptors and thermodynamic descrip-
tors) were directly acquired using the ORCA software at the 
B3LYP/6-311G +  + (d, p) level based on the density func-
tional theory. χ, η, S, ω, α, and Qii were calculated according 
to the formulas shown in Table S3. Octanol–water partition 
coefficient (Log Kow) and molecular weight (MW) of AHCs 
were directly calculated using the EPI Suite 4.1 according 
to their isomeric SMILES and CAS number.

QSAR model development and validation

Herein, QSAR models were developed using MLR analysis 
based on ordinary least squares approach and principal com-
ponent regression (PCR) analysis via the Statistical Package 
for the Social Sciences (SPSS) 26 software. MLR is com-
monly used in QSAR linear modelling which is applicable 
for a small amount of data. Before QSAR model develop-
ment, a screening process was conducted for all the obtained 
molecular descriptors to remove the inter-correlated ones, 
avoiding overfitting in the QSAR modelling. First, the 
molecular descriptors with missing values were manually 
excluded. Then, the Pearson correlation coefficients between 
the remaining molecular descriptors were analysed using 
the SPSS 26 software and the molecular descriptors with an 
absolute value of Pearson correlation coefficient of > 0.95 
were removed to eliminate multicollinearity (Cai et al. 2022; 
Hamadache et al. 2016). After screening, 238 molecular 
descriptors (212 PADEL descriptors and 26 quantum chemi-
cal descriptors) that characterised the electrical effects, geo-
metric structures, and thermodynamic properties of AHCs 
were used to develop the QSAR models (Table S4). The 
specific modelling procedures were as follows.

First, the  logHC5 of the AHCs were divided into train-
ing set and testing sets with a best ratio of 4:1 after mod-
elling exercises with different proportion divisions using 
a random distribution approach. This ensures the uniform 

https://cfpub.epa.gov/ecotox/index.cfm
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Table 1  LC50 or  EC50 
concentrations of 40 AHCs 
(mg/L)

The data in bold are the maximum and minimum values of the  LC50 or  EC50 concentrations
a Algae
b Crustaceans
c Instects/spiders
d Mollusks
e Worms
f Other invertebrates
g Amphibians
h Fish
i Standard deviation
j Number of the toxicity concentrations

Abbr Min Min-species Max Max-species Mean SDi Nsj

BEN 1.0000 B. calyciflorusf 1130.0 D. magnab 163.6 209.2 162
MEB 0.3900 L. pipiensg 1340.0 G. affinisb 204.4 270.4 89
ETB 1.9400 G. pseudolimnaeusb 360.0 C. variegatush 81.3 84.0 87
CUM 0.6010 D. magnab 207.0 L. idush 29.4 45.4 27
OX 1.0000 D. magnab 308.0 L. idush 32.3 57.3 34
MX 2.4419 C. dubiab 55.7 D. magnab 11.0 10.7 30
PX 2.6000 O. mykissh 105.1 C. vulgarisa 21.1 21.7 23
4-ISO 3.5400 D. magnab 500.0 A. aegyptic 108.3 165.9 21
PSC 3.6058 D. magnab 22.4 T. zilliih 9.9 6.7 11
BIP 1.0949 D. magnab 14.7 L. macrochirush 3.2 2.6 28
NAP 0.5100 M. salmoidesh 220.0 G. affinish 12.6 28.9 135
1-MEP 1.4220 D. magnab 39.0 P. promelash 8.6 9.5 13
2-MEP 0.4735 A. salinab 9.0 C. vulgarisa 2.4 2.0 18
ACE 0.2200 C. septemspinosab 15.0 D. magnab 1.7 2.1 55
FLU 0.2120 D. pulexb 100.0 P. promelash 6.9 17.6 34
ANT 0.0013 L. macrochirush 17.8 P. reticulatah 0.6 2.5 51
PHE 0.0271 A. bahiab 244.0 D. magnab 9.1 33.4 132
FLT 0.0020 C. tentansc 150.0 D. magnab 3.9 23.1 41
PYR 0.0009 A. bahiab 11.9 M. lateralisd 1.6 3.2 26
BaP 0.0006 C. fuscaa 371.0 C. ripariusc 4.9 7.5 46
PYD 26.0000 C. carpioh 9550.0 X. laevisg 1049.5 1322.9 73
4-AMP 0.3700 P. kadiakensisb 62.0 E. catenariad 18.1 17.2 26
STR 0.5600 R. subcapitataa 255.0 D. magnab 37.3 42.0 65
PHN 0.2600 A. kokuboib 2200.0 H. novemlineatusc 131.9 291.7 375
PHM 10.0000 L. macrochirush 2600.0 H. pluvialisa 426.4 594.3 18
OC 5.0000 D. magnab 382.6 L. gibbah 69.5 82.3 91
MC 3.8800 O. mykissh 567.7 L. macrochirush 49.8 111.3 24
PC 1.4000 D. magnab 160.0 T. pyriformisf 17.2 24.8 38
REC 0.3744 D. rerioh 572.3 D. rerioh 125.7 132.5 32
BEQ 0.0450 O. mykissh 43.9 A. hoyamushif 7.3 13.1 11
4-TEB 1.9000 C. septemspinosab 41.5 C. vulgarisa 9.9 8.6 23
4-TEO 0.0110 D. magnab 1.2 D. japonicae 0.2 0.3 20
CAF 0.0025 C. magisterb 11.0 C. carpioh 0.8 2.0 32
2-PHP 0.1500 M. aeruginosaa 29.5 P. reticulatah 4.2 6.4 18
BEZ 1.5000 D. magnab 50.0 J. floridaea 15.2 10.3 28
QUL 0.4400 P. promelash 219.0 X. laevisg 71.4 55.4 46
6-MEQ 0.7300 G. aculeatush 69.0 O. latipesh 15.3 12.9 54
NAQ 0.0030 C. carpioh 100.0 C. sp.a 21.1 33.4 9
DIF 1.0500 P. promelash 18.0 P. reticulatah 3.7 4.1 20
ACD 0.0714 C. ripariusc 20.8 N. paleaa 3.4 4.0 74
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selection of the dataset and wide distribution of the train-
ing set. The training set was used to develop the QSAR 
models to reduce bias in model performance and enhance 
the fitting and generalisation capabilities of the developed 
models. Meanwhile, the testing set was used to initially 
evaluate the external prediction ability of the developed 
QSAR model. Stepwise regression was performed via 
MLR analysis to automatically eliminate variables with 
complete multicollinearity and to gradually remove the 
unimportant molecular descriptors according to the abso-
lute value of standardised coefficients and the significance 
of t-test until the significance level of < 0.05 (Zhang et al. 
2007). An initial regression model was obtained after 

mathematical substitution via PCR analysis following the 
principle of orthogonal linear transformation to achieve 
the dimensionality reduction of the data and the further 
elimination of multicollinearity. The descriptors with tol-
erance (T > 0.1) and variance inflation factors (VIF < 5) 
indicated no collinearity (Xu and Zhang 2001; Yang et al. 
2021; Zhang et al. 2007). The goodness of fit of the QSAR 
models was characterised by the coefficient of determi-
nation (R2), adjusted R2 (R2

adj), root-mean-square error 
(RMSE), and mean absolute error (MAE). The QSAR 
model was considered highly reliable if R2 and R2

adj of 
the regression model were close to 1 with a smaller RMSE 
and MAE value. It is suggested that MAE should be ≤ 0.1 

Fig. 1  Two-dimensional molecular structure diagrams of 40 AHCs
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multiplied by the range of the training set in a reliable 
QSAR model (Roy et al. 2016).

Then, the leave-one-out (LOO) method was used for dou-
ble cross-validation (internal validation and external valida-
tion) to evaluate the stability and reliability of the developed 
QSAR models (Baumann and Baumann 2014). Internal sta-
bility was assessed using the LOO cross-validation coeffi-
cient (Q2

LOO) and consistency correlation coefficient (CCC 
CV). The external predictability was estimated using the vali-
dation parameters (Q2

F1,  Q2
F2, and  Q2

F3) and coordination 
correlation coefficient (CCC EXT). The calculation equations 
for these statistical validation parameters were summarised 
in Table S3. The limits of these validation parameters were 
in line with the OECD Requirements Guidelines for QSAR 
modelling (Golbraikh and Tropsha 2002; OECD 2014; Trop-
sha 2010), as shown in Table 3.

Finally, after the double cross-validation, y-randomi-
sation tests were performed 20 times to further justify the 
chance correlation between the original descriptor matrix 
and the scrambled vector of response  (logHC5). The aver-
age coefficients of the y-randomisation models (R2

yrand and 
Q2

yrand) of the developed models within the threshold value 
(R2

yrand < 0.4 and Q2
yrand < 0.05) were considered as non-

accidental modelling.
According to the procedures described above, a final 

QSAR model for  HC5 estimation was developed, whose 
general form was shown as follows:

where endpoint (yi) is described with the estimated  logHC5; 
independent variables (x1, x2…, xn) are the parameters of the 
most relevant molecular descriptors; k1, k2…, kn are their 
regression coefficients of the molecular descriptors; and k0 
is the constant term.

Application domain analysis of the developed QSAR 
models

The leverage approach combined with the ratio of the resid-
ual to the standardised residual was adopted to describe the 
application domain (AD), as per the OECD guideline for 
QSAR model development (OECD 2014). Then, the AD was 
visualised using the Williams plot to evaluate the reliability 
of the developed QSAR model (Singh et al. 2023). AD was 
defined by the normalised residual/standard residual outliers 
(± 3) and the warning leverage value (h*). A chemical with 
a leverage value (hi) higher than h* was identified as a struc-
tural outlier that is beyond the AD of the developed models 
(Gramatica et al. 2013). A chemical with a ratio of the residual 
to the standardised residual of > 3 or < -3 was identified as a 

(1)yi = k1x1 + k2x2+… + knxn + k0

response outlier of the QSAR model. The hi and h* of the 
chemicals were calculated as shown in the equations below.

where xi is the row vector of the molecular descriptor matrix 
for the ith chemical, X is the matrix of molecular descriptors 
for the training set, k is the number of molecular descriptors 
involved in the QSAR model, and m is the number of the 
compounds in the training set.

Accuracy of the estimated hazard thresholds using 
the developed QSAR models

In total, six AHCs, including benzo[a]pyrene (BaP), cumene 
(CUM), o-xylene (OX), m-xylene (MX), p-xylene (PX), and 
naphthalene (NAP), were selected to verify the accuracy of 
the estimated hazard thresholds using the developed QSAR 
models. The estimated  HC5 of these AHCs were transferred 
to the acute water quality criteria (AWQC) and then com-
pared with the published water quality standards of different 
countries and regions to evaluate the estimation accuracy of 
the hazard thresholds via the developed QSAR models. The 
AWQC that were within the same order of magnitude as the 
published water quality criterion was considered as the devel-
oped QSAR model, with high accuracy in estimating the haz-
ard thresholds of AHCs, as proposed by Dyer et al. (2008).

The AWQC were calculated as shown as follows:

where the AF was considered 5 according to the ‘worst case 
scenario’ of ecological risk (Sun et al. 2017).

Quantitative relationship analysis 
between molecular structure and hazard threshold

Herein, the standardised coefficients of the molecular 
descriptors involved in the developed QSAR models were 
used to characterise the quantitative relationship between the 
molecular structure and hazard threshold of the AHCs. The 
standardised coefficients were calculated by standardising the 
regression coefficients of the involved molecular descriptors 
in Eq. (1). The standardised coefficients reflected the influ-
ence of these molecular descriptors on the hazard thresholds 
of AHCs. The higher the weight of the standardised coef-
ficient of a molecular descriptor, the greater the influence of 
the molecular descriptor on the hazard threshold of AHCs.

(2)hi = xT
i
(XTX)−1xi

(3)h∗ =
3(k + 1)

m

(4)AWQC = pred.HC5∕AF
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Results and discussion

Toxicity of the AHCs

Acute and chronic toxicity concentrations of 40 AHCs in a 
total of 225 species (Table S1) were collected and screened 
to obtain the  HC5 for the QSAR model development of 
AHCs (Table 1). From the  EC50 or  LC50 values, the acute 
toxicity was noted to vary considerably with different 
AHCs. The mean  EC50 or  LC50 values of the 40 AHCs 
varied 5 orders of magnitude (from 0.2 to 1049.5 mg/L). 
BaP and pyrene (PYR) were determined as the most toxic 
among the studied AHCs, with the minimum  EC50 or  LC50 
(0.0006 and 0.0009 mg/L) to the algae C.fusca and the 
crustaceans A.bahia, respectively. In contrast to BaP and 
PYR, pyridine (PYD) was the least toxic to amphibians 
X. laevis, having the highest  EC50 or  LC50 concentration 
(9550.0 mg/L).

The species tested for the toxicity of AHCs included 
planktonic algae, invertebrates (e.g. crustacean, worms, 
molluscs, and insects/spiders), and vertebrates (e.g. fish, 
amphibians, and reptiles) (Table S1). A majority of crus-
taceans (e.g., D. magna) and algae (e.g., R. subcapitata) 
were deemed to be the most sensitive, while fish (e.g. P. 
promelas) and amphibians (e.g. A. bahia) were most tol-
erant to the AHCs at maximum and minimum  EC50 or 
 LC50 (Table 1), indicating that AHCs were more likely to 
endanger invertebrates than vertebrates. Consistent results 
were also reported by previous studies, stating that benthic 
invertebrates (e.g. D. magna and A. salina) were more 
susceptible to PAHs than fish (e.g. D. rerio and O. latipes) 
with high mobility and metabolic capacity; this might be 
attributed to differences in ingestion pathways, toxic char-
acteristics, metabolic capacity, and habitats (Honda and 
Suzuki 2020).

HC5 of the AHCs

Herein, the species of the SSD models included at least 
‘three phyla and eight families’, with priority given but not 
limited to the toxicity concentrations from three trophic 
levels (algae, daphnia, and fish). The best fitting method, 
distribution models, and P-values are shown in Table S5. 
The P-values of 34 AHCs ranged from 0.8 to 1.0. The 
remaining six AHCs used the metropolis hastings algo-
rithm to fit the SSD curves, with P-values ranging from 
0.4 to 0.6. In this situation, the closer the P-value is to 
0.5, the better goodness of fit for the metropolis hastings 
algorithm.

The slope of the SSD curve reflected the difference 
in species sensitivity to toxic substances (Beiras and 
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Schönemann 2021). As can be seen from the optimal 
SSD curves demonstrated in Fig. 2, sensitivities among 
the species varied with different AHCs. For monocyclic 
aromatic hydrocarbons (MAHs), no significant difference 
in the species sensitivity was observed at low  logHC5 
concentration (< 1 mg/L); however, species sensitivity 
gradually increased with increasing  logHC5 concentration 
(Fig. 2a). Nevertheless, PAHs such as NAP, acenaphthene 
(ACE), and fluorene (FLU) were usually more sensitive to 
the selected organism species (Fig. 2b and d) than MAHs 
(Fig. 2a).

As shown in Fig. 3, the  HC5 of the AHCs were widely 
distributed (from 0.0009 to 44.119  mg/L), ranging 6 
orders of magnitude. The benzene ring numbers of AHCs 
significantly affected the  HC5 in the following order: 
BEN > NAP > ANT > PYR > BaP. The  HC5 of the AHCs 
with three or five benzene rings were generally lower than 
that with one or two benzene rings, indicating that the eco-
logical risk of AHCs increased with increasing number of 
benzene rings. Previous studies have reported that increase 
in the number of benzene rings may lead to high hydropho-
bicity and strong persistence, thus exacerbating the risks of 
PAHs (Jesus et al. 2022; Mackay et al. 1992). Additionally, 
the  HC5 of aromatic hydrocarbons were generally lower than 

that of their derivatives. The hazard levels of AHCs were as 
follows: PAHs > derivatives of PAHs > MAHs > derivatives 
of MAHs. Taking MAHs as an example, lower  HC5 and 
higher risk were observed for xylene (OX, MX, and PX) 
than alcohols (phenol [PHN] and phenylmethanol [PHM]) 
and phenols (o-cresol [OC], m-cresol [MC], and p-cresol 
[PC]). A higher risk of MAHs compared with their deriva-
tives may be due to their high hydrophobicity and degrada-
bility, rendering them easier to combine with biological cells 
(Rorije et al. 1998).

Developed QSAR models

Herein, three highly reliable QSAR models were developed 
using MLR and PCR analyses, considering the  logHC5 as 
the dependent variable and the molecular descriptor as the 
independent variable. As shown in Table 2, models (1), (2), 
and (3) were developed based on the PADEL descriptors, 
quantum chemical descriptors, and both of them, respec-
tively. High R2 (0.998, 0.907, and 0.937) and R2

adj (0.908, 
0.871, and 0.918) and low RMSE (0.395, 0.468, and 0.375) 
and MAE (0.151, 0.370, and 0.284) were observed in 
Table 3, indicating that the developed QSAR models have 
excellent fitting performance. R2 estimates the proportion of 

Table 3  Statistical 
characteristics of three 
developed QSAR models

R2 coefficient of determination, R2
adj adjusted R2, RMSE root-mean-square error, MAE mean absolute error, 

D-W Durbin-Watson test value, F1 Fischer value, Q2
LOO leave one out cross validation coefficient, R2

yrand 
and Q2

yrand the average coefficients of y-randomisation models, CCC  concordance correlation coefficient, 
Q2

F1, Q2
F2, Q2

F3 external validation criteria

Process Parameter Threshold value Model (1) Model (2) Model (3)

Fitting parameter R2  > 0.6 0.998 0.907 0.937
R2

adj  > 0.6 0.908 0.871 0.918
RMSE 0.395 0.468 0.375
MAE 0.151 0.370 0.284
D-W 2.950 2.202 1.961
F1 697.862 40.567 58.264

Internal validation parameter Q2
LOO  > 0.5 0.939 0.860 0.869

R2
LOO  > 0.6 0.998 0.885 0.937

RMSEtrain 0.308 0.500 0.165
MAEtrain 0.017 0.266 0.214
MAE threshold 0.571 0.485 0.535
CCC train 0.971 0.928 0.927
R2

yrand  < 0.4 0.169 0.188 0.192
Q2

yrand  < 0.05 0.109 -0.024 0.014
External validation parameter Q2

F1  > 0.6 0.625 0.707 0.760
Q2

F2  > 0.6 0.616 0.706 0.782
Q2

F3  > 0.6 0.744 0.750 0.774
R2

test  > 0.6 0.616 0.706 0.759
RMSEtest 0.882 0.637 0.478
MAEtest 0.134 0.104 0.069
MAE threshold 0.410 0.408 0.406
CCC test 0.798 0.861 0.914
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the changes of dependent variable explained via regression. 
The closer R2 is to 1, the better the goodness of fit for the 
developed models. The threshold value of MAE for models 
(1), (2), and (3) was 0.571, 0.485, and 0.535, respectively, 
which were calculated according to the range of the  logHC5 
of the AHCs in the training sets (Table S6). The MAE 
(0.017, 0.266, and 0.214) of the three QSAR models in this 
study were lower than the MAE threshold value (Table 3), 
suggesting that the developed three models have good met-
rics performance and high prediction accuracy.

The three QSAR models developed from different combi-
nations of molecular descriptors have demonstrated accept-
able internal stability and external predictability. They 
explained > 85% variance of the training set with R2

LOO 
(0.998, 0.885, and 0.937) and 60% variance of the test-
ing set with R2

test (0.616, 0.706, and 0.759). The R2
LOO of 

the three models was comparable with the corresponding 
Q2

LOO (0.939, 0.860, and 0.869). Additionally, high CCC train 
(0.971, 0.928, and 0.927) and low RMSE (0.308, 0.500, and 
0.165) have also indicated reliable internal fitting ability and 

Fig. 4  Williams plots for model (1) (a), model (2) (b), and model (3) (c), and the correlation between experimental and estimated  logHC5 values 
of model (1) (d), model (2) (e), and model (3) (f)
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robustness of the developed models. The external validation 
parameters of the three models demonstrated good predictive 
performance on the  HC5 of AHCs, with Q2

F1 (0.625, 0.707, 
and 0.760), Q2

F2 (0.616, 0.706, and 0.782), and Q2
F3 (0.744, 

0.750, and 0.774), meeting the criteria thresholds of OECD 
principles (Q2

F1~F3 > 0.6). High CCC test (0.7998, 0.861, and 
0.914) further verified the excellent predictive ability of the 
three models. As per the Williams plot analysis shown in 
Fig. 4a, two response outliers (benzoquinone (BEQ) and 
4-tert-octylphenol (4-TEO)) were detected whose normal-
ised residual/standard residual (3.357 and 4.082, respec-
tively) were outside the AD (± 3) of model (1). The residu-
als between the experimental and estimated  logHC5 of the 
two outliers were determined to range from 1.3 to 1.6, could 
probably owing to the underrated experimental data rather 
than to molecular descriptors according to previous studies 
(Hamadache et al. 2018; Kar and Roy 2012). As shown in 
Fig. 4 b and c, almost all the AHCs were within the AD. 

The leverage values hi for all the AHCs were concentrated 
between 0 and 0.5 and below the warning leverage values 
h* (2.531, 0.656, 0.844), indicating no structural outliers 
and response outliers for the developed models. The average 
coefficients of y-randomisation models further indicated that 
the developed models were not accidental modelling, with 
R2

yrand (0.169, 0.188, and 0.192) and Q2
yrand (0.109, − 0.024, 

and 0.014) significantly lower than the threshold value 
(R2

yrand < 0.4 and Q2
yrand < 0.05) (Table 3).

Model (3) was identified to be the best developed QSAR 
model for the hazard threshold estimation of AHCs in this 
study owing to its best fitting parameters, internal and exter-
nal validation parameters, as well as the best prediction per-
formance. The results of significance analysis revealed that 
there was no significant difference between the experimental 
and estimated  logHC5 with a variance significance of 0.845 
(> 0.05) of Levene test for variance equality and equalisa-
tion significance of 0.903 (> 0.05) of t-test for equality of 
means (Table 2), confirming the optimal fitting relationship 
and generalisation ability of model (3). Visually, as shown 
in Fig. 4 d, e, and f, the best agreement was observed for 
model (3) between the experimental and estimated  logHC5 
(Table S7) for both the training and testing sets.

The hazard thresholds of six AHCs estimated using 
model (3) in this study were compared with the published 
criterion of Environmental Quality Standards for Surface 
Water (GB3838-2002) of China and Environmental Quality 
Standards for Priority Substances of the European Union. 
As shown in Fig. 5a, the AWQC values of the six AHCs 
were approximate to the published water quality limits. For 
example, the estimated  logAWQC of xylene (2.94, 2.97, and 
2.80) were within an order of magnitude with the criterion 
GB3838-2002 (2.70) (Dyer et  al. 2008). The estimated 
 logAWQC (2.3) of PAHs such as NAP was considerably 
approximate to the criterion from the European Union (2.1). 
These results have well supported the idea that the developed 
QSAR Model (3) is highly accurate in estimating the hazard 
thresholds.

Underlying toxicity mechanism of the quantitative 
structure–hazard threshold relationship

As shown in model (3) (Table 2), three topological descrip-
tors (Zagreb, GATS2m, and  Vm), four electrotopological 
descriptors (VR3_Dzs, AATSC2s, GATS2c and ATSC2i), 
and one electrophilic descriptor (ω) were significantly asso-
ciated with the hazard thresholds of AHCs. The detailed 
definitions of these descriptors are shown in Table S8. The 
values of the eight molecular descriptors varied significantly 
among the different AHCs (Table S9). The ratio of the maxi-
mum and the minimum values of ω, VR3_Dzs, and Zagreb 
was > 5. The maximum values of Vm, GATS2c, and GATS2m 
were 2.96, 2.73, and 1.85 times the minimum values, 

Fig. 5  Comparison of acute water quality criteria of AHCs with rel-
evant standards among different countries and regions (a). Weights 
of the standardized coefficients of molecular descriptors in QSAR 
Model (3) (b)



47231Environmental Science and Pollution Research (2024) 31:47220–47236 

respectively. The values of ATSC2i and AATSC2s varied 
extensively from − 13.6294 to 16.4054 and from − 0.2755 to 
0.3765, respectively. These results indicate that the AHCs 
used for developing the QSAR model (3) varied signifi-
cantly with regard to spatial topological structure, electro-
topological state and electrophilic properties. The AHCs 
with various molecular structures effectively supported the 
development of the QSAR model and the investigation of 
quantitative relationship between molecular structure and 
hazard threshold.

The electrotopological descriptors (VR3_Dzs and 
GATS2c) and topological descriptor (Vm) were deter-
mined to be positively correlated with the  logHC5, 
whereas the topological descriptors (Zagreb and 
GATS2m), electrophilic descriptor (ω), and electrotopo-
logical descriptors (AATSC2s and ATSC2i) were nega-
tively correlated (Fig. 5b). The quantitative structure–haz-
ard threshold relationship in model (3) demonstrated the 
important influence of molecular structure on ecological 
risks wherein it was deemed beneficial for understanding 
the toxicity mechanisms of AHCs.

Topological descriptors including Zagreb, GATS2m, and 
Vm were found to be the most important molecular descrip-
tors affecting the hazard thresholds of AHCs, as they have 
the highest influence weight (54%) in all the influenc-
ing molecular descriptors. Zagreb was a graph theoretical 

topological descriptor that measured the number and types 
of connections between atoms in a molecule. It was iden-
tified to be the maximal influencing factor (accounted for 
31.3% of the influencing weight) affecting the hazard thresh-
old of AHCs (Fig. 5b). Herein, AHCs with a higher Zagreb 
value (e.g. BaP, FLT, and PYR with Zagreb values of 120, 
94, and 94, respectively) were usually more toxic and had a 
lower  logHC5 concentration (− 2.999, − 2.118, and − 2.705) 
(Fig. 6). Significant positive correlation between hyper-
Zagreb and cytotoxicity was also found in natural com-
pounds such as vitamin E and caffeic acid (Parvathi and 
Dodoala 2022). A higher Zagreb value indicated a greater 
number and complexity of interatomic connections in the 
chemical molecule, making the chemical more difficult to 
be metabolised in and cleared from the biological system, 
thus increasing its toxicity and potential risks (Janežič et al. 
2017). GATS2m, which is defined as the Geary autocorrela-
tion − lag 2/weighted by mass and is known to encode the 
topological distribution of atomic mass along with the spa-
tial molecular graph, was determined to be another impor-
tant influencing factor (accounted for 16.9% of the influ-
encing weight) affecting the hazard threshold of AHCs. As 
shown in Fig. 6, lower  logHC5 values (0.015 and − 0.462, 
respectively) were observed for the AHCs such as NAP and 
BIP that showed a higher GATS2m values (1.02 and 1.07, 
respectively). The negative effect of GATS2m on the hazard 

Fig. 6  Positive and negative contributions of important molecular 
descriptors on the  logHC5 for some specific compounds in model (3); 
molecular descriptors highlighted with ↑ and blue colour, positive 

contribution; molecular descriptors highlighted with ↓ and red colour, 
negative contribution
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threshold of AHCs is most likely due to the antioxidant 
activity (Saber et al. 2019). Previous studies have shown 
that PAHs could undergo biotransformation reactions after 
being taken up by organisms, which subsequently stimu-
late the production of reactive oxygen species and induce 
oxidative damage to increase toxicity and risk (Hannam 
et al. 2010; Livingstone 1991; Valavanidis et al. 2006). Vm, 
which is the van der Waals volume of molecule, was also an 
influential descriptor (accounted for 6.1% of the influencing 
weight) affecting the hazard threshold of AHCs. Molecular 
volume has been proved to be related to hydrophobicity, 
thus affecting the toxicity and risks of chemicals (Di Marzio 
et al. 2001; Wang et al. 2023). The Vm of a chemical was 
usually observed to negatively influence toxicity (Zhu et al. 
2010). Similar results that AHCs with lower Vm values (e.g., 
BEQ and QUL with Vm values of 87.102 and 90.896, respec-
tively) showed lower  logHC5 values (− 3.142 and − 0.066, 
respectively) were also found in this study (Fig. 6). Gener-
ally, chemicals with lower Vm can easily cross through the 
cytoderm or cytomembrane and enter organisms, thereby 
giving functional incapacitation of cells and organs (Ding 
et al. 2011; Wang et al. 2022).

Electrotopological descriptors including VR3_Dzs, 
AATSC2s, GATS2c, and ATSC2i have showed the signifi-
cant importance of electronic information on the hazard 
thresholds of AHCs, accounting for 31.7% of the weight 
in all the influencing molecular descriptors. VR3_Dzs, the 
logarithmic Randic-like eigenvector-based index from Bar-
ysz matrix/weighted by I-state, has significantly affected 
the hazard threshold of AHCs (accounted for 10.5% of 
the influencing weight). The hazard threshold  (logHC5) of 
the AHCs with a higher VR3_Dzs value (e.g. BaP, with a 
value of 13.193) was usually observed to be higher (Fig. 6). 
A higher VR3_Dzs value is explained as more partition-
ing of the effect of non-σ electrons throughout the σ bonds 
starting from the atom in question, which made it more 
difficult for electrons of the chemical to interact between 
molecules, thus reducing the toxicity and risk of AHCs 
(Önlü and Saçan 2018). AATSC2s, GATS2c, and ATSC2i 
are two-dimensional sub-group autocorrelation descrip-
tors determined by the corresponding number and specific 
weighting scheme at the real of ‘lag’, which accounted for 
8.8%, 7.3%, and 5.1% of the weight in all of the influencing 
molecular descriptors, respectively. As shown in Fig. 6, the 
AHCs (e.g. CAF), which had the higher ATSC2i (16.405) 
and AATSC2s (0.377) values and the lower GATS2c value 
(0.825), presented a relatively higher hazard threshold 
 (logHC5). AATSC2s and GATS2c have described the prop-
erties of atomic mass, polarisability, and electronegativity 
and reflected the attribute distribution of specific atoms 
that explained the ability of electron recovery and release 
(Adeniji et al. 2020). The difference between AATSC2s and 
GATS2c is that they were weighted by I-state and charges, 

respectively. ATSC2i was generally considered to be the 
absolute value of Ehomo, which could determine the possi-
bility of attack reaction to radical attack, for example, OH 
radical affecting molecular properties (Cvetnic et al. 2019; 
Kušić et al. 2009). Electrotopological descriptors encoding 
electronic and topological characteristics of chemicals were 
usually found to significantly influence the toxicity and risk 
of aromatics (Cvetnic et al. 2019). Chemicals with positively 
charged atoms and higher ionisation potential have led to 
increased toxicity and higher risk (Khan and Roy 2017). 
Electrotopological descriptors could influence the interac-
tions at the active sites and form hydrogen bonds, thereby 
potentially creating the risk of AHCs (Barzegar et al. 2017).

Electrophilic descriptor ω was also observed to be an 
important molecular descriptor as it affects the hazard 
thresholds of AHCs, accounting for 14.1% of the weight in 
all the influencing molecular descriptors. ω measured the 
global electrophilic power of the molecule and the ability 
of a chemical to accept electrons (Parthasarathi et al. 2004). 
Herein, AHCs with higher ω value such as BaP, FLT, and 
PYR (0.157, 0.158 and 0.137) usually showed a lower 
 logHC5 value (Fig. 6). Higher electrophilicity was proved 
to enhance the toxicity of PAHs and amines and trigger 
mutations of nitroaromatic compounds (Huang et al. 2021; 
Roy et al. 2006). A chemical with higher ω value was more 
prone to electrophilic–nucleophilic reactions at nucleophilic 
sites to form covalent bonds, thus irreversibly influencing 
the normal functions of DNA, enzymes, structural proteins, 
and other biomacromolecules and subsequently increasing 
the toxicity and risk of the chemical (LoPachin et al. 2019).

Conclusion

Herein, an effective QSAR method was developed to esti-
mate the hazard thresholds of AHCs to improve the ERA 
and investigate the quantitative relationship between the 
molecular structure and risk thresholds of AHCs.

(1) Three effective QSAR models were developed to esti-
mate the hazard thresholds of AHCs. Model (3), which 
was developed by combining the PADEL descriptors 
and quantum chemical descriptors, was identified as the 
optimal QSAR model, characterised by good fitness, 
excellent internal stability, external predictability, and 
wide applicability domain.

(2) The eight molecular descriptors involved in model (3) 
demonstrated the importance of electrophilicity and 
topological and electrotopological properties affecting 
the hazard thresholds of AHCs. Topological descrip-
tors (Zagreb and GATS2m), electrophilic descriptor 
(ω), and electrotopological descriptors (AATSC2s and 
ATSC2i) were negatively correlated with the hazard 
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thresholds, whereas electrotopological descriptors 
(VR3_Dzs and GATS2c) and topological descriptor 
(Vm) were positively related to the hazard thresholds.

(3) The AWQC derived from the hazard thresholds estimated 
using model (3) were approximate to the safety limits of 
AHCs as per the published water quality standards.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 024- 34016-z.
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