
Vol:.(1234567890)

Environmental Science and Pollution Research (2024) 31:42948–42969
https://doi.org/10.1007/s11356-024-33921-7

RESEARCH ARTICLE

Interpreting optimised data‑driven solution with explainable 
artificial intelligence (XAI) for water quality assessment for better 
decision‑making in pollution management

Javed Mallick1  · Saeed Alqadhi1 · Hoang Thi Hang2 · Majed Alsubih1

Received: 5 December 2023 / Accepted: 3 June 2024 / Published online: 17 June 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
In Saudi Arabia, water pollution and drinking water scarcity pose a major challenge and jeopardise the achievement of 
sustainable development goals. The urgent need for rapid and accurate monitoring and assessment of water quality requires 
sophisticated, data-driven solutions for better decision-making in water management. This study aims to develop optimised 
data-driven models for comprehensive water quality assessment to enable informed decisions that are critical for sustainable 
water resources management. We used an entropy-weighted arithmetic technique to calculate the Water Quality Index (WQI), 
which integrates the World Health Organization (WHO) standards for various water quality parameters. Our methodology 
incorporated advanced machine learning (ML) models, including decision trees, random forests (RF) and correlation analyses 
to select features essential for identifying critical water quality parameters. We developed and optimised data-driven models 
such as gradient boosting machines (GBM), deep neural networks (DNN) and RF within the H2O API framework to ensure 
efficient data processing and handling. Interpretation of these models was achieved through a three-pronged explainable 
artificial intelligence (XAI) approach: model diagnosis with residual analysis, model parts with permutation-based feature 
importance and model profiling with partial dependence plots (PDP), accumulated local effects (ALE) plots and individual 
conditional expectation (ICE) plots. The quantitative results revealed insightful findings: fluoride and residual chlorine had 
the highest and lowest entropy weights, respectively, indicating their differential effects on water quality. Over 35% of the 
water samples were categorised as ‘unsuitable’ for consumption, highlighting the urgency of taking action to improve water 
quality. Amongst the optimised models, the Random Forest (model 79) and the Deep Neural Network (model 81) proved to 
be the most effective and showed robust predictive abilities with  R2 values of 0.96 and 0.97 respectively for testing dataset. 
Model profiling as XAI highlighted the significant influence of key parameters such as nitrate, total hardness and pH on 
WQI predictions. These findings enable targeted water quality improvement measures that are in line with sustainable water 
management goals. Therefore, our study demonstrates the potential of advanced, data-driven methods to revolutionise water 
quality assessment in Saudi Arabia. By providing a more nuanced understanding of water quality dynamics and enabling 
effective decision-making, these models contribute significantly to the sustainable management of valuable water resources.
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Introduction

In the Kingdom of Saudi Arabia (KSA), the challenge 
of ensuring water quality is particularly acute due to the 
unique geographical and climatic conditions (Al-Omran 
et al. 2016). As a country largely devoid of natural fresh-
water bodies like rivers and lakes, KSA predominantly 
relies primarily on groundwater and desalination of sea-
water to meet its water needs for drinking, irrigation and 
industrial purposes. This dependence is exacerbated by 
the country’s rapid economic development and popula-
tion growth (Al-Omran et al. 2016). The extensive use 
of groundwater, particularly in agriculture, has led to 
considerable challenges. The use of artificial fertilisers, 
which is necessary to meet the increased demand for food, 
often leads to excessive nutrient extraction from the soil 
(Fallatah 2020). This excess fertiliser, which is rich in 
nitrates and phosphates, then seeps into the groundwater 
and contaminates it. Furthermore, the transport of these 
pollutants through the groundwater system contributes to 
the broader problem of water pollution, which affects both 
human health and the environment (Saud and Abdullah 
2009; Alghamdi et al. 2020).

Saudi Arabia’s geographical landscape, characterised 
by thick Mesozoic and Cenozoic sedimentary rocks, 
forms productive aquifers that are central to the country’s 
groundwater resources (Alharbi and Zaidi 2018). However, 
over-reliance on these aquifers in an arid environment is 
leading to declining groundwater levels and deteriorating 
quality, posing a major environmental challenge (Alharbi 
2018). Rapid urbanisation and the expansion of agricul-
tural activities across the country have further increased 
the demand for freshwater resources. As a result, the 
task of assessing and managing water quality is becom-
ing increasingly complex and requires more efficient and 
reliable methods (Khanfar 2008; Al-Hammad and Abd 
El-Salam 2016). The traditional approach to water qual-
ity assessment is the use of water quality indices (WQIs) 
(Khuan et al. 2002; Asadollah et al. 2021). WQIs are an 
important tool for water resources management as they 
represent a single measure that encompasses various phys-
ical and chemical parameters of water quality (Zali et al. 
2011; Hameed et al. 2017). However, the calculation of 
these indices is often associated with challenges, such as 
being time-consuming, complex and prone to inconsist-
encies due to the use of different equations and methods 
(Kouadri et al. 2021). This complexity is exacerbated by 
the lack of a universal WQI method, leading to different 
interpretations and assessments of water quality (Leong 
et al. 2021).

In response to these challenges, artificial intelligence 
(AI)-based WQI prediction emerges as a promising 

solution (Aldhyani et al. 2020; Hmoud Al-Adhaileh and 
Waselallah Alsaade 2021; Sajib et al. 2024). AI-based 
models offer a transformative solution by eliminating the 
need for tedious sub-index calculations, enabling fast and 
efficient water quality assessment (Sarafaraz et al. 2024; 
Tiyasha et al. 2021). These models are characterised by 
their non-linear structures that can handle large data sets 
with different scales and are resistant to missing data 
(Elbeltagi et al. 2022). The strength of AI algorithms in 
predicting complex phenomena lies in their ability to ana-
lyse data and recognise patterns (Irwan et al. 2023; Sidek 
et al. 2024). In this process, algorithms are constructed 
using a subset of the data set (training data) and the pre-
diction performance is validated using a separate subset 
(test set) (Irwan et al. 2023). Notable AI algorithms that 
have been successfully applied in water quality prediction 
include adaptive boosting (Adaboost), gradient boosting 
(GBM), extreme gradient boosting (XGBoost), decision 
trees (DT), extra trees (ExT), random forest (RF), mul-
tilayer perceptron (MLP), radial basis function (RBF), 
deep feed-forward neural network (DFNN) and convolu-
tional neural network (CNN) (Kim et al 2022; Khoi et al. 
2022; Aldrees et al 2022; Nayan et al. 2020; Talukdar 
et al. 2023a; Al-Sulttani et al 2021; Sinha 2023; Yusri 
et al 2022; Ho et al 2019; Sakaa et al. 2022; Sheikh Kho-
zani et al 2022; El-Shebli et al 2023; Kogekar et al. 2021, 
Mei et al. 2022; Sidek et al. 2024). These AI models have 
been used in various contexts e.g. in the prediction of man-
ganese removal prediction (Bhagat et al. 2020; Erickson 
et al. 2021), flood susceptibility studies (Talukdar et al. 
2020a; 2023a; Islam et al. 2021; Saha et al 2021; Ahmed 
et al. 2022; Mahato et al 2021), the identification of pol-
lution sources (Mia et al 2023) and the general predic-
tion of water quality (Talukdar et al. 2023b; Sinha 2023; 
Yusri et al 2022; Khoi et al 2022), with varying degrees 
of accuracy. The application of AI in water quality assess-
ment represents a significant advance as it offers a more 
streamlined, accurate and efficient approach compared to 
conventional methods (Lap et al. 2023).

Grid search optimisation in machine learning is a meth-
odological approach to improve the performance of models 
by fine-tuning their hyperparameters (Wu et al. 2019; Kim 
and Seo 2024). In contrast to general model parameters 
derived from training data, hyperparameters are predefined 
settings that control the learning process. For example, 
while the coefficient of a logistic regression (LR) model is 
determined during training, the number of decision trees in 
an RF model is a hyperparameter that is set before training 
(Talukdar et al. 2020b). The importance of hyperparameters 
in machine learning cannot be overstated, as they directly 
influence the accuracy, speed and reliability of the models. 
Grid search involves exhaustively exploring a given range 
of hyperparameters, iteratively running through all possible 
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combinations and evaluating their performance to select the 
optimal set (Dodangeh et al. 2020). This process ensures 
that the chosen hyperparameters maximise the effectiveness 
of the model (Talukdar et al. 2024). However, this task can 
be computationally intensive and time-consuming, particu-
larly for complex models with numerous hyperparameters 
(Raheja et al. 2024). However, the meticulousness of grid 
search makes it an indispensable tool in machine learning, 
especially for applications where precision and model per-
formance are critical (Fang et al. 2021).

Although advanced AI models, including hybrid and 
deep learning systems, can provide highly accurate predic-
tions, they often operate as "black boxes" that offer little 
insight into how they arrive at these predictions (Alshehri 
and Rahman 2023). This ambiguity limits their applicability, 
particularly in areas where understanding the motivations 
behind decisions is critical (Park et al. 2022a). Explainable 
artificial intelligence (XAI) addresses this fundamental chal-
lenge in the field of AI and machine learning for decision-
making processes (Talukdar et al. 2023a, 2024). XAI aims 
to demystify these complex models and provide clarity on 
the internal mechanisms and decision-making processes 
(Talukdar et al. 2023b; Park et al. 2022a). Techniques such 
as SHapley Additive exPlanations (SHAP), partial depend-
ence plot (PDP), permutation-based feature importance, 
accumulated local effect (ALE) have gained prominence in 
this field (Ahmed et al. 2023, 2024, Mia et al. 2023). SHAP, 
an additive feature assignment method, and PDP decom-
pose the prediction of a model into the contribution of each 
feature, providing insights into the interaction and relative 
importance of the different variables to the model’s results 
(Ahmed et al. 2024). This interpretive approach not only 
increases the transparency of AI models, but also builds 
trust with users and stakeholders and ensures that AI-driven 
decisions are understandable and justifiable (Talukdar et al. 
2023b). The application of XAI is critical in areas such as 
geohazard prediction and environmental monitoring, where 
understanding the basis of predictive modelling is as impor-
tant as the predictions themselves (Ahmed et al. 2024).

This study addresses critical gaps in water quality 
assessment in Saudi Arabia, where conventional methods 
are inadequate given the dynamic environmental changes 
and the region’s dependence on groundwater and seawa-
ter desalination, exacerbated by agricultural and industrial 
pressures. We use advanced machine learning (ML) models 
to conduct real-time data-driven analyses with an entropy-
weighted WQI and integrate XAI to identify key water qual-
ity parameters. This enables targeted policy measures and 
improves the understanding of water quality interactions. In 
addition, the H2O API in R programming, which is central 
to our methodology, facilitates both grid search optimisation 
and XAI integration, simplifying the exploration of multi-
ple parameter combinations to optimise model configuration 

and interpretability (Talukdar et al. 2024; Šandera and Štych 
2024). This integration of grid search optimisation with XAI 
within the H2O framework ensures that model performance 
is not only improved, but that the results are transparent, 
trustworthy, and meet the requirements of complex data-
driven decision-making processes. This approach represents 
a significant innovation in environmental monitoring as it 
improves both the performance and interpretability of ML 
models, which is crucial for effective environmental man-
agement and policy formulation. These innovations hold 
great potential for global sustainable water management 
and could influence future academic and policy directions.

Materials and methodology

Study area

The Asir Province in Saudi Arabia is located within the 
coordinates 18°12′029.355″N, 18° 12′051.436″N latitude 
and 42° 29′05.157″E, 42° 29′019.795″E longitude, covering 
an area of 84,250 square kilometres (as shown in Fig. 1b). 
Asir experiences various climatic conditions, including hot 
desert, cold desert, cold semi-arid and hot semi-arid zones. 
It receives an annual rainfall of 350 mm, making it a signifi-
cant region for agriculture. The geological composition of 
Asir consists of aquifers such as quaternary alluvium, quartz 
sandstone and conglomerates, with secondary aquifers pri-
marily composed of calcareous deposits undergoing lateral 
diagenetic modifications. These aquifers exhibit greater 
porosity and karstification (Mallick et al. 2018). Figure 1B 
provides a geological map of the Asir region. One crucial 
source of groundwater in the region is the unconfined quater-
nary alluvial aquifers, which are replenished by runoff from 
the Asir highlands. These shallow aquifers have an estimated 
annual recharge of 1196 × 106 m3 and exhibit varying water 
quality, ranging from poor to good, as noted by Dabbagh and 
Abderrahman in 1997. The high-quality groundwater found 
in Wadi-al-Dawassir is attributed to a 100-m-thick layer of 
alluvial fill.

The Asir region is rapidly advancing its rainwater harvest-
ing efforts through the construction of check dams. These 
dams enable the collection of sufficient water to cultivate 
15,000 hectares of agricultural land. Presently, if just a quar-
ter of the runoff water currently lost could be effectively 
harvested, it would fulfil all of Saudi Arabia’s existing agri-
cultural water requirements. The majority of Saudi Arabia’s 
runoff occurs along the escarpment in the Asir region, where 
wadis flow towards the coastal area, contributing approxi-
mately 60% of the nation’s total runoff. Most wadi structures 
are filled with sand and gravel, and after a short distance, the 
runoff seeps into subsurface water bodies (wadi) and forms 
a sub-flow, recharging the groundwater. Storm runoff can 
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occur in the Asir region at any time of the year. Saudi Arabia 
has a longstanding tradition of constructing dams, particu-
larly in the Hijaz and Asir regions. As of 2018, according 
to the Saudi Arabia Ministry of Environment, Water and 
Agriculture, there are 509 dams throughout the kingdom, 
with 117 of them located in the Asir region. The primary 
purpose behind constructing these dams is to capture runoff 
and replenish the groundwater network, although some dams 
also serve as sources of drinking water and direct irrigation 
for agriculture.

Sampling and laboratory analysis

A total of 62 groundwater samples were taken from vari-
ous wells within the study region, as shown in Fig. 1b. The 
locations of these wells were randomly selected to ensure 
a representative distribution across the different geological 
and hydrological conditions in the area. This random selec-
tion was intended to provide a comprehensive overview of 
the water quality in the entire study region. During sam-
pling, several parameters, including electrical conductivity 
(EC), pH and total dissolved solids (TDS), were measured 
to assess water quality. Handheld sensors manufactured by 
HANNA were employed for these measurements. Prior to 
each sampling session, the sensor was calibrated daily using 
standard solutions with pH values of 4.0, 7.0 and 10.0, as 
well as EC standards at 84 uS/cm, 1413 uS/cm and 12.8 

mS/cm. For each sampling site, two groundwater samples 
were collected in high-density polyethylene (HDPE) bottles. 
One of these samples was acidified in the field using a 1:1 
nitric acid solution and was subsequently utilised for cation 
analysis. The second sample was left unaltered and was 
designated for laboratory-based anion estimation. To deter-
mine the concentrations of cations such as calcium  (Ca2+), 
sodium  (Na+), magnesium  (Mg2+), potassium  (K+) and iron 
(Fe), an atomic absorption spectrophotometer from Thermo 
Scientific’s M series was employed. On the other hand, the 
analysis of anions, including chloride  (Cl−), fluoride  (F−), 
nitrate  (NO3

−) and sulphate  (SO4
2−), was carried out using 

an ion chromatograph (Dionex) in gradient mode. Addition-
ally, bicarbonate  (HCO3) was determined using a titrimetric 
method, while total alkalinity and hardness were assessed 
following the standard procedures outlined in APHA 1995. 
All the reagents, standards and chemicals utilised in these 
analyses were of analytical grade and sourced from Merck.

Water quality index estimation using entropy 
weighted arithmetic method

The theoretical method for estimating the WQI using the 
entropy-weighted arithmetic method revolves around the 
application of entropy theory to objectively determine the 
weighting of each water quality parameter, thereby eliminat-
ing the subjective biases typically associated with expert 

Fig. 1  Study area and geological map
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opinion (Singh et al. 2019). In this method, entropy, a con-
cept derived from information theory, is used to quantify 
the degree of disorder or uncertainty associated with each 
water quality parameter (Verma et al. 2022). The greater the 
variability of a parameter across different water samples, 
the higher its entropy value, indicating a more significant 
role in the overall water quality assessment. This process 
begins with the collection and normalisation of water qual-
ity data, followed by the calculation of entropy values for 
each parameter. These entropy values are then used to derive 
objective weights that reflect the relative importance of 
each parameter to overall water quality. These weights are 
applied to the normalised values of each parameter and the 
entropy-weighted arithmetic mean of these values is calcu-
lated to obtain the final WQI. This entropy-based weight-
ing approach ensures that the WQI is a more accurate and 
objective representation of water quality, as it minimises the 
influence of human bias and subjectivity that is inevitable 
in methods that rely heavily on expert opinion. In this way, 
it provides a more reliable and scientifically sound basis for 
water quality assessment, which is crucial for effective envi-
ronmental monitoring and management.

Methods for machine learning–based feature 
selection techniques

In the theoretical framework of machine learning-based fea-
ture selection techniques, in particular the decision tree, ran-
dom forest and correlation methods, each technique fulfils 
a specific role in identifying the most important features for 
predicting the WQI. The decision tree method works by cre-
ating a tree-like model of decisions where the importance of 
features is determined by how effectively they contribute to 
the partitioning of the data, indicating their influence on the 
outcome variable, in this case the WQI. The random forest 
approach, an ensemble of decision trees, further refines this 
process by constructing multiple trees and aggregating their 
results, thereby improving the reliability and generalisability 
of the feature importance scores. This method is particu-
larly effective in dealing with overfitting and provides a more 
comprehensive understanding of feature relevance. Finally, 
the correlation method involves statistical analysis to assess 
the strength and direction of the relationship between each 
feature and the WQI. By assessing the correlation coeffi-
cients, this method helps to identify traits that have a signifi-
cant linear relationship with the WQI. Together, these three 
methods provide a robust framework for feature selection, 
ensuring that the most predictive and relevant features are 
identified for use in WQI prediction models. This multi-lay-
ered approach utilises both statistical and machine learning 
techniques to improve the accuracy and efficiency of water 
quality assessments.

Selection and optimisation of ML models in H2O API 
for assessing water quality

The selection of the GBM, DNN and RF models in the H2O 
API for this water quality assessment study is based on their 
different capabilities in dealing with complex, non-linear data 
patterns commonly found in environmental datasets. These 
models are favoured due to their robustness, their ability to 
handle a large number of input features and their resistance 
to overfitting, which makes them particularly suitable for 
water quality analysis. Grid search optimisation is chosen 
for these models to systematically explore a wide range of 
hyperparameter combinations to determine the optimal model 
configuration. This approach is crucial for improving model 
performance and prediction accuracy. The H2O API is used 
in this study due to its user-friendly interface, scalability and 
efficient handling of large datasets for optimising and deploy-
ing ML models. It provides a comprehensive environment that 
simplifies the implementation of complex models and the grid 
search optimisation process, making it an ideal choice for this 
application.

GBM

The GBM model in H2O is an ensemble learning method 
that sequentially builds a series of decision trees, where 
each tree is designed to correct the errors of its predecessor 
(Talukdar et al. 2023a). This method combines the predic-
tions from multiple trees to produce a final, more accurate 
prediction (Ahmed et al. 2024) (see Eq. 1). GBM is particu-
larly effective in assessing water quality due to its ability to 
model complex interactions between parameters and its high 
prediction accuracy. The iterative nature of GBM allows it 
to focus on difficult-to-predict instances, making it highly 
adaptable to varying water quality data patterns.

where ht(x) represents the decision trees and �t are the 
weights for each tree.

DNN

DNNs in the H2O framework consist of multiple layers of 
interconnected nodes or neurons, each designed to progres-
sively extract and refine features from the input data. The 
transformation in each layer of a DNN can be mathemati-
cally represented as:

where ai are the activations from the previous layer, wi and 
bi represent the weight matrix and bias vector of the current 

(1)GBM(x) =

T
∑

t=1

�tht(x)

(2)ai+1 = f (wi ⋅ ai + bi)
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layer, respectively, and σ denotes a non-linear activation 
function, such as ReLU or sigmoid. This structure allows 
DNNs to capture intricate relationships within the data, 
modelling complex patterns that are not readily apparent 
(Ahmed et al. 2024). The depth of the network (number 
of layers) and the number of nodes in each layer can be 
adjusted to suit the complexity of the dataset, with deeper 
networks generally being more capable of learning nuanced 
features of the data (Talukdar et al. 2023a).

RF

RF, as implemented in H2O, operates as an ensemble of 
decision trees, each constructed from a randomly selected 
subset of the training data and features, according to the bag-
ging approach. The final prediction of the RF model is typi-
cally the average of the predictions from all the individual 
trees, which can be represented as:

where ht(x) are the individual trees. Each tree is built inde-
pendently, and the random selection of features and sam-
ples for each tree reduces variance and avoids overfitting, 
making RF particularly robust against model bias and vari-
ance issues (Palkar et al. 2022). This methodology not only 
enhances the stability and accuracy of the predictions but 
also makes RF an excellent tool for handling datasets with a 
high dimensional feature space.

Assessment of the performance of ML models

When evaluating the performance of machine learning 
models for water quality prediction, a comprehensive set 
of metrics is used, each providing a unique perspective on 
the accuracy and reliability of the model. Mean square error 
(MSE) and root mean square error (RMSE) are used to quan-
tify the mean square difference and square root of this differ-
ence between the predicted and actual values, respectively, 
providing insight into the overall prediction error of the 
model. The mean absolute error (MAE) measures the aver-
age magnitude of the errors in a set of predictions without 
considering their direction. The Root Mean Squared Loga-
rithmic Error (RMSLE) is particularly useful when deal-
ing with exponential growth as it evaluates the logarithmic 
difference between the predicted and actual values, making 
it less sensitive to large errors in predicting higher values. 
Similar to the MSE, the mean residual deviance is a measure 
of the variance of the prediction errors and indicates the 
deviation of the model from the observed data. The coef-
ficient of determination (R2) indicates the proportion of the 
variance in the dependent variable that can be predicted by 

(3)RF(x) =
1

T

T
∑

t=1

ht(x)

the independent variables and is therefore a measure of the 
explanatory power of the model. In addition, the Taylor dia-
gram is used as a visual tool to compare the statistical sum-
mary of the model’s performance, including its correlation, 
standard deviation and RMSE, with the observed data. This 
comprehensive approach to performance evaluation ensures 
a thorough assessment of the accuracy, reliability and suit-
ability of the model for predicting water quality.

Interpreting optimised ML models through XAI

Interpreting optimised machine learning models in the H2O 
API, in particular GBM, DNN and RF, through XAI is criti-
cal to understanding the decision-making process of these 
models. XAI provides transparency and insight into the com-
plex workings of these advanced models and makes them 
more interpretable for users and stakeholders (Talukdar et al. 
2023b; Ahmed et al. 2023, 2024; Mia et al. 2023). To this 
end, the DALEX package in R is used, which provides a set 
of tools and methods to explain and understand the behav-
iour and predictions of machine learning models. Using the 
features of DALEX, we can analyse the models to gain a 
comprehensive understanding of how they work, to under-
stand how different features influence the predictions, and 
to identify possible biases or inconsistencies.

Model diagnostic

Model diagnosis in XAI involves evaluating the perfor-
mance and reliability of the optimised ML models. This is 
primarily done by residual analysis, which analyses the dif-
ference between the observed values and the predictions of 
the model (residuals). Residual analysis helps to identify 
patterns or anomalies in the predictions, such as systematic 
biases, overfitting or underfitting. By analysing these residu-
als, we gain insights into the accuracy of the model in dif-
ferent data segments and can diagnose problems that could 
affect the performance of the model. This diagnostic process 
is important to validate the effectiveness of the model and 
ensure that it generalises well to new, unseen data.

Model parts

The ‘model parts’ aspect of XAI focuses on understanding 
the contribution of each feature to the model’s predictions. 
This is achieved through permutation-based feature impor-
tance, a technique that assesses the impact of reshuffling 
each feature on the accuracy of the model. By randomly 
permuting the values of each feature and measuring the 
change in the model’s performance, we can determine the 
importance of each feature to the predictions. This method 
provides a ranking of the features based on their importance 
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and helps to identify the most influential variables in the 
model and understand their role in the prediction process.

Model profile

Model profiling in XAI includes techniques such as Par-
tial Dependence Plots (PDP), Accumulated Local Effects 
(ALE) and Individual Conditional Expectation (ICE) plots. 
These methods provide a deeper insight into the relationship 
between characteristics and the predicted outcome. PDPs 
show the average impact of a feature on the model’s predic-
tions and allow us to identify patterns and trends in how 
feature values influence the outcome. ALE charts provide a 
similar view, but focus on the local effects of features and 
provide a more accurate representation in the presence of 
correlated features. ICE graphs, on the other hand, show 
how predictions for individual instances change as a feature 
is varied, providing a detailed insight into the behaviour of 
the model. Together, these profiling techniques provide a 
comprehensive picture of how different features and their 
interactions affect the model’s predictions, improving the 
interpretability of complex ML models.

Results

Assessment of water quality condition

Water quality was assessed by measuring physicochemical 
parameters such as TDS, conductivity, pH and concentra-
tions of ions such as nitrates, sulphates, chlorides, iron and 
magnesium. The descriptive statistics show considerable 
variability. For example, the TDS value showed a high 
standard deviation of 479.47, which indicates a different 
mineral content of the samples (supplementary Section 1). 
The confidence intervals for pH (7.61–7.92) indicate consist-
ent acidity, while wider intervals for TDS (583.89–822.59) 
and conductivity (1045.30–1397.61) reflect greater variabil-
ity in these readings. Such discrepancies indicate different 
water sources and possible contaminants. Probability distri-
bution plots further illustrate this variability: ammonia and 
nitrite levels are predominantly low, as indicated by right-
skewed distributions, while broader distributions for TDS 
and conductivity indicate a range of dissolved concentrations 
(Supplementary Fig. 1). Parameters such as pH show nar-
row peaks, indicating uniformity in the samples, while flat-
ter distributions for TDS and conductivity indicate greater 
variation. In terms of overall water quality impairment, 
parameters with a broad distribution are of particular con-
cern, especially if they include ranges that exceed environ-
mental or health standards. They may indicate the need for 
targeted water treatment procedures or further investigation 
of possible sources of pollution. The shape and distribution 

of these distributions can inform water quality management 
decisions, such as whether to focus on general treatment 
methods or specific pollutants.

The descriptive statistics and distributions emphasise 
the challenges of predicting overall water quality from iso-
lated parameters alone. Therefore, we calculated the WQI 
using the entropy weighting method, which is based on 
WHO standards. The WHO sets acceptable limits such as 
0.50 mg/L for ammonia (weight 0.05), 0.10 mg/L for nitrite 
(weight 0.09) and 10 mg/L for nitrate (weight 0.06) to ensure 
water safety. TDS has a higher allowable limit of 600 mg/L 
(weight 0.02), indicating the ubiquitous presence of TDS 
in water, while the limits for chloride and sulphate are both 
set at 250 mg/L (weight 0.03). Total hardness has a limit of 
500 mg/L (weight 0.02), and the limit for total calcium is 
75 mg/L with a lower weight of 0.02. Magnesium and iron 
have limits of 30 mg/L (weight 0.05) and 0.30 mg/L (weight 
0.05), respectively, reflecting their moderate impact on the 
WQI. Fluoride has the highest weighting of 0.26, with a 
limit of 1.50 mg/L, as it has a significant impact on health 
at varying concentrations. The standard for alkalinity is 
80 mg/L (weighting 0.03), while conductivity is set at 1000 
µS/cm (weighting 0.01). The standard for pH is 8.50 (weight 
0.00), which means that it has less direct impact. Turbidity 
and residual chlorine are weighted at 0.17 and 0.10, with 
standards of 5.00 NTU and 0.50 mg/L respectively, empha-
sising their importance in determining water clarity and 
microbial safety. These parameter weights, reflecting the 
degree of impact of each parameter on overall water quality, 
are used to calculate the WQI, which has a mean of 188.14 
and a high standard deviation of 794.92, indicating consider-
able variation in water quality between samples. The WQI 
was then categorised into five categories—excellent, good, 
poor, unsuitable and very poor—as in Alam et al. (2021). 
The distribution analysis showed that over 35% of the sam-
ples fell into the unsuitable category, indicating the need for 
treatment, while less than 10% were very poor, indicating 
heavy contamination. Conversely, around 40% of samples 
were categorised as excellent or good and 15% as poor, 
illustrating the different water quality requirements in the 
different regions (Fig. 2).

Analysis of feature selection

Feature selection is a crucial step in the modelling pro-
cess in both machine learning and deep learning, as it 
helps to improve the performance of the model by reduc-
ing complexity, preventing overfitting and increasing 
computational efficiency. By identifying and retaining 
only the most informative features, models can achieve 
higher accuracy with simpler, more interpretable results. 
Therefore, we used three ML models in this study, such 
as correlation of all variables with WQI, decision tree 
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and random forest models as feature selection (Fig. 3). In 
the given analysis for the model of correlation with WQI 
(panel a), the five most influential parameters are resid-
ual chlorine, nitrate, TDS, sulphate and total hardness, 
which all show strong positive correlations, suggesting 
that they are significant predictors of water quality. The 
least influential parameters with the lowest correlations 
include ammonia, fluoride, alkalinity, total calcium and 
iron, indicating a weaker linear relationship with WQI. 
For the decision tree model (panel b), the parameters with 
the highest values for importance are nitrite, turbidity, 
sulphate, magnesium and TDS. These parameters are con-
sidered to be the most critical in determining the splits in 
the decision tree and therefore have a large influence on 
the predictions of the model. Conversely, the least impor-
tant parameters that contribute least to decision making 
are iron, alkalinity, total calcium, fluoride and ammonia. 
Finally, for the Random Forest model (panel c), the left 
graph shows that the top five parameters that increase the 
mean square error the most when omitted (i.e. the most 
important) are residual chlorine, fluoride, pH, nitrate and 
TDS. This indicates that omitting these features signifi-
cantly degrades the performance of the model. The dia-
gram on the right shows IncNodePurity, where the most 
important factors for node purity are residual chlorine, 
nitrate, TDS, pH and conductivity. Based on these quan-
titative assessments, ammonia was found to have minimal 
impact on model performance and was therefore removed 
from the dataset for further WQI assessment with DL 
models. The low importance of the features and the mini-
mal impact on model accuracy and node purity justify the 
exclusion of ammonia, allowing the models to focus on 
parameters with stronger predictive relationships to WQI.

Implementation of ML models in H2O API 
for assessing water quality

GBM, DNN and RF algorithms were used in the imple-
mentation of ML models within the H2O API framework 
to assess the WQI. The H2O API facilitates the streamlined 
application of these complex algorithms and enables effi-
cient optimisation and assessment of WQI, which is crucial 
for the development of a data-driven system for fast and 
accurate water quality monitoring. This approach not only 
expedites the processing of large data sets but also provides 
a scientific interface for in-depth analyses that support more 
informed decision making. By utilising the computing power 
and user-friendly features of the H2O API, the application of 
these water quality assessment models becomes more acces-
sible, enabling continuous improvements in environmental 
management.

Optimization of ML models using grid search algorithm

The versatility of the H2O API in grid search algorithms 
enables optimal identification of hyperparameters for 
robust ML models, which are essential for WQI assess-
ments. For the GBM model, a grid search across 36 
hyperparameter combinations (e.g. balance_classes, 
col_sample_rate, max_depth) identified the best model, 
gbm_grid1_model_38, based on the lowest RMSE. This 
model, shown in detail in Supplementary Fig. 2, consists 
of 658 trees with a depth of 3 to 6 and optimises com-
plexity and fit to the training data. The DNNs underwent 
a more extensive optimization testing 97 hyperparameter 
variations, including activation, epochs, hidden layers and 
L1 and L2 regularisation (Supplementary Fig. 3). The 

Fig. 2  A composite assessment of water quality across various sam-
ple locations, utilizing the WQI as a metric. On the left, the hori-
zontal bar chart displays the WQI classification for individual sam-

ple locations, with varying lengths of bars representing the index’s 
numerical value mapped to a colour gradient
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optimal DNN model, DNNs_model_81, was characterized 
by an architecture with 206 weights/biases, 15 input neu-
rons and multiple hidden layers of 5 neurons each, using a 
Tanh activation function. This configuration emphasises 
the depth of the model and the tailored complexity for 
accurate WQI prediction. Meanwhile, the robustness of the 
RF model was tested in 389 trials, optimising parameters 
such as max_depth, mtries, ntrees and sample_rate, with-
out a single error occurring (Supplementary Fig. 4). The 

best RF model, RF_grid1_model_79, configured with 50 
trees and a maximum depth of 18, shows its ability to rec-
ognise complex, non-linear patterns in the dataset. These 
optimization efforts for the GBM, DNN and RF models 
ensure a data-driven, science-based approach to rapid WQI 
assessment. The optimal hyperparameters, facilitated by 
the H2O API grid search, improve model performance and 
promote accurate water quality monitoring that supports 
informed environmental decision making.

Fig. 3  A three-part feature selection analysis for predictive model-
ling of WQI with ML algorithms. Panel a shows the Pearson corre-
lation coefficients between individual water quality parameters and 
the WQI, highlighting the parameters that are most strongly linearly 
related to the WQI. Panel b shows the feature importance values 
derived from a decision tree model, indicating the relative predic-

tive value of each parameter within the model. Panel c contrasts two 
metrics from a random forest model: The percentage increase in mean 
squared error (%IncMSE) when a feature is excluded and the increase 
in node purity (%IncNodePurity), both of which quantify the impact 
of each parameter on the accuracy of the model and the decision pro-
cess
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To validate the model optimization, the learning curves 
for the three best models—gbm_grid1_model_38, DNNs_
model_81 and RF_grid1_model_79—were analysed 
(Fig. 4). For gbm_grid1_model_38, the curve stabilises at 
600 trees, with training and cross-validation error rates close 
to 30%, indicating an optimal number of trees without over-
fitting. DNNs_model_81 shows a decrease in error rates and 
reaches a plateau at 80 epochs, indicating effective learning. 
RF_grid1_model_79 stabilises the error reduction at around 
40 trees, confirming the adequate complexity and generaliz-
ability of the model. These curves show that the models are 
well tuned and capture the necessary data patterns without 
being too specific to the training set.

Assessment of optimised ML models

The performance assessment of machine learning models 
is a crucial step to ensure their reliability and effectiveness 
in predictive tasks. In the context of water quality analysis, 
evaluating the accuracy and generalisability of models such 
as GBM, DNN and RF is essential to determine their practi-
cal utility in predicting WQI from various water parameters 
(Table 1).

The GBM model (gbm_grid1_model_38) was evaluated 
using various regression metrics. The performance of the 
model on the training data shows an MSE of 501.84, RMSE 
of 22.40, MAE of 8.89, RMSLE of 0.16 and mean residual 

Fig. 4  The learning curves of three optimised ML models for WQI 
prediction: Panel a shows the learning curve of the GBM model 
gbm_grid1_model_38. Panel b shows the learning progress of the 

DNN model DNNs_model_81. Panel c shows the learning curve of 
the RF model RF_grid1_model_79
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deviance of 501.84. These results indicate that the model 
fits the training data well, with a relatively low error rate. 
However, when evaluating the validation data, the error met-
rics are higher, with an MSE of 1868.66, RMSE of 43.23, 
MAE of 19.33, RMSLE of 0.26 and mean residual deviance 
of 1868.66. The increase in error rates in the validation set 
compared to the training set indicates that the model may not 
generalise as effectively to new, unseen data, which could be 
a sign of overfitting. Cross-validation, a more robust metric, 
reports an MSE of 1723.09, RMSE of 41.51 and MAE of 
18.11. The summary of the cross-validation metric shows 
variation in the model’s performance across different folds, 
with an RMSE ranging from 19.92 to 65.39 and an R2 (coef-
ficient of determination) metric ranging from 0.56 to 0.87, 
highlighting some variability in the model’s predictive accu-
racy. The average MAE value of 18.73 and the RMSE value 
of 38.52 from the cross-validation are higher than the values 
from the training data, but lower than the values from the 
validation data. This suggests that while the model may be 
slightly overfitting, it still has a reasonable degree of predic-
tive power that could be applicable to new data, especially 
when considering the mean R2 value of 0.64, which suggests 
that a good proportion of the variance is explained by the 
model. The slight overfitting observed does not preclude the 
use of the model for new data, but indicates that the predic-
tions of the model should be considered with an awareness 
of its limitations and potential for error.

The DNN model (DNNs_model_81) shows different 
performance levels in the training, validation and cross-
validation data sets. For the training data, the model has an 

MSE of 118.91, an RMSE of 10.90, an MAE of 4.99, an 
RMSLE of 0.12 and a mean residual deviation of 118.91. 
These metrics indicate strong performance in the training 
set with relatively low error rates, suggesting that the model 
has learnt to fit the training data effectively. When evaluat-
ing the validation data, the error increases with an MSE of 
354.97, an RMSE of 18.84, an MAE of 9.34, an RMSLE of 
0.13 and a mean residual error of 354.97. Although the error 
is not too high, the predictive ability of the DNN model for 
unseen data is still very good. The cross-validation results, 
which allow a more robust assessment by training the model 
on multiple folds of the data, show further increased error 
rates: an MSE of 601.77, RMSE of 24.53, MAE of 11.69 
and RMSLE of 0.31, with a mean residual deviance of 
601.77. The summary of cross-validation metrics illustrates 
the variability in the model’s performance across different 
folds, with RMSE ranging from 9.84 to 35.55 and R2 values 
ranging from 0.77 to 0.90. The mean cross-validation RMSE 
of 22.02 and MAE of 11.32 are higher than the training met-
rics, but not excessively so, indicating that the model main-
tains its predictive ability across different subsets of the data.

The RF model (RF_grid1_model_79), which was evalu-
ated for water quality prediction, shows different perfor-
mance metrics for training, validation and cross-validation 
data. On the training data, the RF model reports an MSE of 
943.01, an RMSE of 30.71, an MAE of 10.39, an RMSLE 
of 0.27 and a mean residual error of 943.01. These figures 
suggest that when applied to the training data on which it 
was trained (particularly out-of-bag samples), the model has 
a moderate level of error, which is to be expected with a 
diverse dataset. Moving to the validation data, the perfor-
mance of the model improves with a lower MSE of 532.33, 
RMSE of 23.07, MAE of 12.80, RMSLE of 0.22 and mean 
residual error of 532.33. The reduction in MSE and RMSE 
in the validation set compared to the training set is atypi-
cal, as models typically perform better on the training data. 
This could indicate that the model is very robust and does 
not over-fit as it maintains its performance when exposed to 
unseen data. The cross-validation metrics provide a com-
prehensive assessment of the generalisability of the model. 
In a fivefold cross-validation of the training data, the model 
shows an MSE of 980.10, an RMSE of 31.31, an MAE of 
11.63 and an RMSLE of 0.27, with a mean residual devi-
ance of 980.10. The summary of the cross-validation metrics 
shows some variability in the model’s performance, with an 
average RMSE of 24.62 and a standard deviation of 17.65, 
indicating that the model’s prediction error can fluctuate but 
generally maintains a consistent level of performance across 
different data subsets. The R2 values, which indicate the pro-
portion of variance explained by the model, range from 0.75 
to 0.97 and average 0.86, indicating that the model captures 
a substantial proportion of the variance in the data. The RF 
model RF_grid1_model_79 thus shows robust performance 

Table 1  Statistical analysis of model performance in predicting WQI 
using GBM, DNN and RF models

Model GBM 
(gbm_grid1_
model_38)

DNN 
(DNNs_
model_81)

RF 
(RF_grid1_
model_79)

MSE (training) 501.84 118.91 943.01
RMSE (training) 22.4 10.9 30.71
MAE (training) 8.89 4.99 10.39
RMSLE (training) 0.16 0.12 0.27
MSE (validation) 1868.66 354.97 532.33
RMSE (validation) 43.23 18.84 23.07
MAE (validation) 19.33 9.34 12.8
RMSLE (validation) 0.26 0.13 0.22
MSE (cross-valida-

tion)
1723.09 601.77 980.1

RMSE (cross-valida-
tion)

41.51 24.53 31.31

MAE (cross-valida-
tion)

18.11 11.69 11.63

RMSLE (cross-vali-
dation)

0.31 0.27
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with consistency across training and cross-validation data-
sets, with a slight increase in error rates in cross-validation. 
The ability of the model to maintain a relatively stable error 
rate across different subsets of the data, without a significant 
increase in error rate during cross-validation, suggests that 
the model is not overfitting and is likely to perform well on 
new data. The high R2 values also speak in favour of the 
model’s ability to reliably predict water quality.

Comparisons of the performance of ML models

The performance of the statistical comparison of the ML 
models’ performance in predicting water quality indices 
using the scatter heat map (Fig. 5) and the Taylor diagram 

(Fig. 6). For the GBM model (gbm_grid1_model_38), an 
R2 of 0.92 for training indicates that 92% of the variability 
in the training dataset is captured by the model, dropping 
slightly to 0.90 in the testing phase. This drop means that 
although the GBM model is robust, there may be some 
overfitting as the model is slightly less effective at pre-
dicting unseen data. The DNN model (DNNs_model_81) 
has R2 values of 0.98 for training and 0.97 for the test 
phase, indicating exceptional performance and generalisa-
tion from training to unseen data. The minimal decrease 
in the R2 value from training to testing indicates that the 
DNN model captured the underlying patterns in the data 
very well without overfitting. The RF model (RF_grid1_
model_79) has the highest R2 of 0.99 during training, 

Fig. 5  The predictive performance of three machine learning mod-
els—GBM, RF and DNN—in estimating the WQI  for training and 
testing phase. Each plot contrasts the predicted WQI values (y-axis) 
against the actual WQI values (x-axis) for both training (top row) 
and testing (bottom row) datasets. Areas with higher colour intensity 

indicate a higher concentration of data points, with the diagonal line 
representing perfect prediction. The closeness of data points to this 
diagonal reflects the accuracy of each model, with the RF and DNN 
models showing tighter clusters around the diagonal line
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which indicating almost perfect predictability. During 
testing, however, the R2 drops to 0.96, which is a slight 
decrease, but still indicates a highly predictive model with 
strong generalisation capabilities.

In a Taylor diagram, which provides a visual summary 
of several aspects of model performance, the correlation 
coefficient (radial distance from the origin), centred RMSE 
(contours) and standard deviation (distance along the x-axis) 
of the model predictions relative to the observed values are 
displayed simultaneously (Fig. 6). The DNN and RF models 
with high R2 values and a smaller drop between training and 
testing are closer to the ‘observed’ point in the diagram, indi-
cating better performance. The GBM model still performs 
well, but is slightly further away due to its lower R2 values.

Overall, although the RF model shows a slight decrease in 
R2 value from training to test, its high R2 values indicate that 
it performs best and is good at capturing and predicting the 
variance in the water quality data. The DNN model also shows 
excellent performance and is comparable to the RF model, but 
the slightly higher R2 of the RF model in training gives it an 
advantage. Despite its good fit, the GBM model is slightly out-
performed by the other models, as R2 decreases more strongly 
from training to testing, which can be crucial in model selec-
tion for predictive tasks where the highest accuracy is required.

Interpreting optimised WQI‑ML models using 
XAI for better decision making in water pollution 
management

The interpretation of optimised WQI-ML models using XAI 
is crucial for informed decision making in water pollution 
management. XAI facilitates understanding and confidence 
in ML models by providing insights into their decision-
making processes.

Model diagnostic

This step involves assessing the overall statistical health and 
robustness of the model. Technique such as residual analysis 
of model assumptions are used to ensure that the model’s 
predictions are reliable and consistent. the model diagnos-
tic plots for three optimised machine learning models—h2o 
dnn, h2o rf and h2o gbm—used to predicting the WQI 
show a detailed scientific analysis that takes into account 
the inverse cumulative distribution and boxplot of the residu-
als for each model (Fig. 7). In the inverse cumulative dis-
tribution graph, the h2o rf model has a higher percentage 
of lower residuals compared to the other two models over 
the entire range of residuals, suggesting that the predictions 
of the h2o rf model are more consistently close to the true 
values. A higher percentage of smaller residuals indicates 
that the model better represents the underlying pattern in the 
data without overfitting. This is also supported by the box-
plot, in which the h2o rf model has a median closer to zero 
and a smaller interquartile range, suggesting that most of its 
predictions are closer to the true values and vary less. The 
root mean square of the residuals, indicated by the red dot, 
is also lower for the h2o rf model than for the h2o dnn and 
h2o gbm models, supporting the assumption that the h2o rf 
model has smaller prediction errors on average. Conversely, 
the h2o gbm model appears to have a wider spread of residu-
als, as indicated by the step-down pattern in the inverted 
cumulative distribution plot and the larger interquartile 
range in the boxplot. Although it is not the worst model, it 
shows a higher variability in its predictions. Although the 
h2o dnn model has a relatively lower median of the residu-
als compared to the h2o gbm model, it still shows greater 
variability and a higher root mean square of the residuals 
than the h2o rf model. This indicates that although the h2o 

Fig. 6  Comparative assessment of ML model performance in WQI prediction. Panel a presents the performance of three machine learning mod-
els—DNN, GBM and RF—during the training phase. Panel b shows the same models’ performance in the testing phase
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dnn model makes several accurate predictions, it is on aver-
age less accurate than the h2o rf model. Overall, the h2o rf 
model stands out as the most consistent and accurate model 
for predicting WQI amongst the three models evaluated, as 
evidenced by both the distribution of its residuals and the 
root mean square error.

Model parts

In this stage, the model is broken down into its individual 
components to assess the contribution of each feature to 
the prediction. Technique such as permutation-based fea-
ture importance ranking can be used to help understand 
which parameters are most influential in determining water 
quality and should therefore be prioritised in management 
strategies. Analysing the feature importance plots for the 
machine learning models, like h2o dnn, h2o gbm and h2o rf, 
we can identify the most and least influential water quality 
parameters for predicting the WQI (Fig. 8). For the h2o dnn 
model, the most important influencing factors are residual 
chlorine (Res.Cl), conductivity, nitrate and total hardness, 
with residual chlorine being the most important. In contrast, 
magnesium, total alkalinity and nitrite are the least influ-
ential. The h2o gbm model categorises conductivity as the 
most critical parameter, followed by nitrates, residual chlo-
rine and pH, while magnesium, total alkalinity and turbidity 
have the least influence. The h2o rf model shows a similar 
pattern for the most influential parameters, with conductiv-
ity in first place, followed by total hardness, chloride and 

sulphate. The least influential characteristics for this model 
are also magnesium, total alkalinity and iron. The overall 
assessment of all three models shows that conductivity and 
nitrate are consistently amongst the most influential param-
eters, indicating their critical role in water quality and their 
potential as primary indicators of WQI. The least influen-
tial parameters, such as magnesium, may be less variable 
or have less direct impact on water quality in the context of 
these models. This analysis is of great importance for water 
management decisions. It shows that monitoring and control 
of conductivity and nitrate should be prioritised in order to 
maintain or improve the WQI. This prioritisation can help 
to design more effective strategies for water treatment and 
management. This will ensure that resources are allocated 
to the most important factors affecting water quality, thereby 
improving environmental outcomes and public health.

Model profile

Profiling the model is about understanding how changes 
in input characteristics affect the output predictions of the 
model. This can be achieved through methods such as PDP, 
ALE and ICE. The result shows the PDPs for three ML mod-
els (h2o dnn, h2o gbm, h2o rf) used to predicting the WQI 
(Fig. 9). The PDPs illustrate the relationship between a set 
of values for a particular feature and the average prediction 
result of the model, holding all other features constant. In 
this way, we can understand the impact of a single feature on 
the predicted outcome. We can derive several relationships 

Fig. 7  Model diagnostic analy-
sis comparing ML algorithms 
for WQI prediction. Panel a 
shows the reverse cumula-
tive distribution of absolute 
residuals for the optimised 
models (h2o dnn, h2o rf, h2o 
gbm). Panel b depicts boxplots 
of absolute residuals for each 
model, where red dots signify 
the root mean square of residu-
als, offering an at-a-glance 
assessment of each model’s 
precision and consistency
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Fig. 8  Feature importance 
analysis for a h2o dnn, b h2o 
gbm and c h2o rf models in 
predicting WQI

Fig. 9  Partial dependence plots for predictive features in water quality index modelling: The multi-line graphs represent the influence of indi-
vidual water quality parameters on the average predictions of h2o dnn, h2o gbm and h2o rf models, with distinct trends
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from the graphs. For example, the feature ‘Res.Cl’ (residual 
chlorine) in the h2o gbm model shows a sharp increase in 
the average predicted value as the feature value increases, 
indicating a strong dependence on this feature for predicting 
the WQI. Similarly, ‘sulphate’ shows a remarkable increase 
in predicted WQI with increasing feature value for the h2o 
dnn model. On the other hand, conductivity shows a rela-
tively flat line for all three models, suggesting that changes 
in conductivity have a less pronounced effect on the model’s 
WQI prediction. This may indicate that the range of con-
ductivity values in the dataset does not vary significantly 
or that the model does not consider it a strong predictor 
in conjunction with other characteristics. The PDPs can be 
particularly useful for managing water pollution by indicat-
ing which characteristics should be prioritised for monitor-
ing and control. For example, if ‘Res.Cl’ and ‘sulphate’ are 
found to have a significant impact on WQI, as suggested by 
their steep PDP slopes for certain models, then measures to 
control these parameters in water bodies could be important 
to maintain good water quality. In contrast, features with 
shallow PDPs may be of lower priority in terms of immedi-
ate impacts on water quality, but could be important in a 
cumulative or contextual sense. These findings can inform 
water quality management strategies and enable targeted 
interventions that can be more cost-effective and focussed on 
the most influential water quality parameters. This targeted 
approach can help to mitigate the effects of water pollution 
more efficiently and effectively.

ALE plots are used to show how features influence the 
prediction of a model on average. They are an alternative to 
PDPs, which can treat correlated features more accurately 

by considering the local effects of the features (Fig. 10). 
Using the ALE plots, we can observe the average change 
in WQI prediction as a function of the different feature val-
ues. For example, the feature ‘Res.Cl’ (residual chlorine) 
shows a clear positive slope for the h2o gbm and h2o dnn 
models, indicating that higher values of residual chlorine 
have an increasingly positive effect on the predicted WQI. 
Conversely, features such as ‘iron’, ‘magnesium’ and ‘tur-
bidity’ show almost flat lines for all models, suggesting that 
these features have little to no effect on the average predicted 
WQI when other factors are taken into account. This lack 
of impact could be due to the fact that these features do not 
vary greatly within the dataset or their effects are masked 
by correlations with other features. These ALE plots can 
significantly improve the management of water pollution by 
identifying the most influential factors affecting the water 
quality predicted by the models. For example, if you know 
that residual chlorine has a significant positive impact on 
WQI predictions, you can adjust water treatment practises 
to ensure that chlorine concentrations are maintained at 
optimal levels. Similarly, understanding that iron and mag-
nesium have minimal average impact on WQI predictions 
can shift attention from these parameters to more influential 
parameters, optimising resource allocation and intervention 
strategies. This targeted approach, based on robust machine 
learning analyses, can lead to more effective water man-
agement practises that result in better water quality and 
improved environmental and public health outcomes.

ICE charts are a refinement of PDPs and provide a more 
detailed view by plotting the predicted outcome against a 
feature for individual instances, thus taking into account 

Fig. 10  ALE plots for key water quality parameters in h2o dnn, h2o gbm and h2o rf models 
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the heterogeneity of the data set (Fig. 11). Each line in an 
ICE diagram represents an instance from the data set and 
shows how the prediction changes with different values of 
the feature. Using the ICE plots, we can see that certain 
features such as ‘Res.Cl’ (residual chlorine), ‘conductiv-
ity’, ‘nitrate’ and ‘total hardness’ have a significant posi-
tive relationship with WQI prediction in all three models. 
This indicates that as the values for these characteristics 
increase, the predicted WQI generally increases, mean-
ing that these characteristics are positively correlated with 
water quality. In particular, ‘Res.Cl’ and ‘conductivity’ 
appear to have a particularly strong and consistent influ-
ence on the model predictions, as shown by the steep slope 
of their ICE lines. On the other hand, features such as 
‘alkalinity’, ‘chloride’ and ‘iron’ show relatively flat ICE 
lines, suggesting that changes in these feature values do 
not noticeably alter the predicted WQI, at least not within 
the observed range of the dataset. The insights gained 
from the ICE plots can be invaluable for decision making 
in water pollution management. For example, the strong 
positive correlation of ‘Res.Cl’ and ‘conductivity’ with 
high WQI predictions emphasises the importance of these 
parameters in water quality assessment. Water treatment 
plants and pollution control agencies may prioritise the 
monitoring and regulation of these parameters to ensure 
water safety and compliance with quality standards. In 
addition, the relatively flat ICE lines for ‘alkalinity’ and 
‘iron’ suggest that they are less critical as control points 
for improving water quality within the monitored areas, 
allowing for more targeted and resource-efficient manage-
ment strategies. Overall, ICE plots can help identify the 

features that need to be closely monitored and actively 
managed to maintain or improve water quality.

The PDPs, ALE plots and ICE plots collectively provide 
a comprehensive overview of how different features influ-
ence WQI predictions for the machine learning models of 
h2o dnn, h2o gbm and h2o rf. These visualisations show that 
residual chlorine, conductivity, nitrate, total hardness and 
pH are the five most influential parameters that consistently 
affect WQI predictions. Residual chlorine and conductivity 
stand out in all models, indicating their strong predictive 
relationship with water quality, which could result in tar-
geted management actions such as precise chlorination prac-
tises and monitoring of ion concentrations. The influence 
of nitrate points to the need to control agricultural runoff 
and industrial waste, while total hardness and pH changes 
may be crucial indicators of mineral balance and acid–base 
equilibrium in water bodies. Using these insights from ML-
based WQI modelling enables data-driven decision mak-
ing in water pollution management by focusing remediation 
efforts on the factors that have the greatest impact on water 
quality. This optimises resource allocation, improves the 
effectiveness of measures and ultimately ensures the safety 
and cleanliness of water resources.

Discussion

In our study, we conducted a comprehensive assessment of 
water quality in Saudi Arabia using a range of advanced 
ML models with XAI techniques. Our main focus was on 
developing a WQI with an entropy-weighted approach that 

Fig. 11  ICE plots for key water quality parameters in h2o dnn, h2o gbm and h2o rf models
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is aligned with WHO standards. We carefully analysed the 
performance of various ML models, including GBM, DNN 
and RF, to accurately predict the WQI. An important aspect 
of our study was the application of XAI, which allowed us 
to interpret the complex decision-making processes of these 
ML models. This approach provided deep insights into the 
most influential water quality parameters, enabling targeted 
and effective strategies for water pollution management. Our 
research not only provides a new perspective for assessing 
water quality in a region struggling with environmental 
challenges but also sets a precedent for the application of 
advanced technologies in environmental management.

The approach of our study to assess water quality in Saudi 
Arabia involved a comprehensive analysis using an entropy-
weighted WQI in conjunction with World Health Organiza-
tion standards. This methodology allowed us to capture the 
overall state of water quality in different locations with a 
single value. Our results showed a mean WQI of 188.14 
and a high standard deviation of 794.92, indicating consid-
erable variability in water quality across the sampled loca-
tions. Compared to previous studies in Saudi Arabia, our 
results show a more differentiated picture of water quality. 
For example, Alsubih et al. (2022) reported that the water 
from the dams was generally suitable for irrigation, except 
for problems with sodium content and adsorption ratio. This 
is in contrast to our results, where a significant proportion of 
water samples (over 35%) fell into the ‘unsuitable’ category 
for drinking water consumption, emphasising the severity 
of water quality problems for drinking water use. Masoud 
et al. (2022) found a similar variation in Drinking Water 
Quality Index (DWQI) scores, with a significant number of 
samples requiring treatment before consumption. Our study 
confirms this, with almost 40% of samples falling into the 
‘excellent’ and ‘good’ categories, while a significant propor-
tion still required treatment. The large differences in water 
quality can be attributed to several factors. Natural causes 
such as the presence of minerals and radionuclides, as high-
lighted by Haider et al. (2017), and anthropogenic activities 
such as the discharge of industrial and domestic wastewater 
and agricultural runoff have a significant impact on water 
quality. Alharbi et al. (2021) reported elevated concentra-
tions of ions such as TDS,  Ca2+,  Na+,  K+,  Cl–,  SO4

2–and 
 F– in central Saudi Arabia exceeding WHO drinking water 
standards. This indicates a combined influence of natural 
mineral dissolution and anthropogenic activities. Alfaleh 
et al. (2023) used an entropy-weighted WQI similar to our 
approach and found that wastewater discharge was a criti-
cal factor in reducing water quality in Ha’il, Saudi Arabia. 
This is consistent with our results, where the high variabil-
ity in water quality indicates the influence of both natural 
and anthropogenic factors. Possible reasons for the deterio-
rating water quality in Saudi Arabia include over abstrac-
tion of groundwater leading to increased concentration of 

pollutants, discharge of industrial and municipal wastewater, 
inadequate wastewater treatment plants and agricultural run-
off leading to nutrient pollution. These factors, combined 
with the arid climate and limited renewable water resources, 
pose a major challenge to the preservation of water quality. 
Therefore, our study, in conjunction with previous research, 
emphasises the complex and multi-faceted nature of water 
quality problems in Saudi Arabia. The results emphasise 
the need for comprehensive water management strategies 
that take into account both natural and anthropogenic factors 
affecting water quality. These include improving wastewa-
ter treatment infrastructure, regulating industrial discharges, 
sustainable agricultural practises and careful groundwater 
management to ensure the long-term availability and quality 
of water resources in the region.

In our research, we have thoroughly investigated the per-
formance of various machine learning models in predicting 
WQI in Saudi Arabia. The main motivation for developing 
a robust WQI model was to achieve high similarity with 
the WQI based on laboratory analytical parameters. A high-
precision, data-driven model offers significant advantages: 
First, it requires only input data to automatically calculate 
the overall WQI, eliminating manual weighting calculations, 
integration of WHO standards, generation of standard index 
values, data aggregation and final WQI calculation. This 
process ensures both rapidity and precision in water quality 
assessment. Secondly, the development of robust data-driven 
models optimised by the interaction of various parameters 
facilitates a comprehensive understanding of these inter-
actions at different sites. This aspect is usually difficult to 
recognise in the standard WQI calculation and the XAI is 
not generally applicable. However, in our optimised data-
driven WQI prediction system, XAI can be used effectively 
to interpret these interactions and provide valuable insights 
into the behaviour of parameters contributing to WQI at all 
sites. This capability significantly improves decision-making 
processes and enables targeted pollution reduction strategies. 
In our study, the RF model (RF_grid1_model_79) showed 
the highest training R2 of 0.99, indicating near-perfect pre-
diction accuracy, which decreased slightly to 0.96 during 
testing. Although this decrease indicates a robust model, 
it is also an indication of possible problems with overfit-
ting. The DNN model (DNNs_model_81) showed R2 values 
of 0.98 during training and 0.97 during testing, indicating 
exceptional performance and generalisation ability. The 
GBM model (gbm_grid1_model_38) was robust but had a 
higher probability of overfitting with R2 values of 0.92 for 
training and 0.90 for testing. Our results are consistent with 
the findings of Uddin et al. (2023) and Raheja et al. (2022), 
where DNN models performed better in predicting water 
quality. The lower error values and better accuracy of DNN 
models for WQI in these studies confirm our findings on the 
effectiveness of DNN models. In contrast, the studies by Lee 
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et al. (2022) and Sheikh Khozani et al. (2022) reported that 
LSTM models showed excellent performance in predicting 
water quality, which is consistent with our observations and 
emphasises the potential of advanced neural network models 
in this area. Regarding RF models, the results of our study 
are consistent with the research of Devi (2019), Hassan et al. 
(2021) and Mosavi et al. (2021). These studies reported high 
accuracy and robustness of RF models in predicting water 
quality, which is consistent with our observations. The dif-
ferences in model performance can be attributed to several 
factors. First, the inherent characteristics of each model, 
such as the ability of RF to handle non-linear relationships 
and the ability of DNN to capture complex patterns, play 
a crucial role. Second, the type and quality of the data set, 
including the size, diversity and distribution of water qual-
ity parameters, significantly affect the performance of the 
model. Third, models such as GBM may overfit due to 
their high complexity and sensitivity to the training dataset. 
Therefore, our research in conjunction with previous studies 
emphasises the effectiveness of advanced ML models such 
as RF and DNN in accurately predicting WQI. The find-
ings from these studies are crucial for the development of 
efficient water quality monitoring systems and enable policy 
makers and environmental managers to make informed deci-
sions based on reliable predictions. The consistent perfor-
mance of these models in various studies emphasises their 
potential in addressing complex environmental problems 
such as water quality assessment.

In our study, the application of XAI facilitated the inter-
pretation of optimised ML models for WQI and improved 
decision making in water pollution management. In par-
ticular, the use of XAI enabled a clear understanding of 
how these models make their predictions, which increased 
confidence in their results. Our diagnostic analysis has 
shown that the RF model is particularly robust, showing 
the most accurate and consistent WQI predictions with the 
lowest average prediction errors. This consistency suggests 
that the RF model should play a central role in monitoring 
as it provides reliable assessments to guide environmen-
tal policy. The identification of conductivity and nitrate 
as the most influential parameters in determining water 
quality is particularly significant. Based on these results, 
policy makers should prioritise the regulation and continu-
ous monitoring of nitrate levels and conductivity in water 
bodies. Introducing stricter controls on agricultural run-
off and industrial discharges, which are the main sources 
of nitrates and salts that affect conductivity, could be an 
effective strategy. In addition, this prioritisation helps to 
optimise resource allocation and ensures that monitoring 
and mitigation measures are targeted where they are most 
needed. In addition, our model profiling using techniques 
such as PDP, ALE and ICE plots provided detailed insights 
into the impact of various parameters on the WQI. These 

insights should help in the development of targeted pol-
lution reduction strategies, such as tailored treatments for 
specific pollutants identified as critical at different loca-
tions. The practical application of XAI in our study is in 
line with recent research findings such as those of Park 
et al. (2022b), Alshehri and Rahman (2023) and Mia et al. 
(2023), which collectively emphasise the utility of XAI 
in improving the interpretability of ML models for more 
informed water management decisions. Building on our 
findings, it is recommended that similar XAI applications 
be integrated into national water quality monitoring sys-
tems to provide a framework for continuous improvement 
of environmental management practices. These systems 
should not only focus on routine assessments, but also 
enable adaptive management strategies that can respond 
to real-time data to optimise interventions to effectively 
improve water quality.

The novelty of our study lies in the comprehensive appli-
cation of XAI to interpret ML models specifically optimised 
for WQI prediction in Saudi Arabia. Our approach not only 
identified the most influential water quality parameters, but 
also enabled a deeper understanding of their interactions 
and impacts on water quality at various locations. This level 
of detailed analysis is particularly novel given the unique 
environmental challenges in Saudi Arabia. Furthermore, 
our study advances the field by demonstrating the practi-
cal application of XAI in environmental management and 
setting a precedent for future research and application in 
similar contexts. Therefore, the application of XAI in the 
interpretation of WQI-ML models in our study represents a 
significant advance for the management of water pollution. 
By providing a clear understanding of how different parame-
ters influence WQI, we have paved the way for more targeted 
and effective strategies to improve water quality, ultimately 
contributing to sustainable water resources management. 
Given the significant differences in water quality and the 
identification of key parameters such as conductivity and 
nitrate as critical factors, policy makers can focus on specific 
areas that require immediate attention. Implementing strict 
regulations on industrial discharges and agricultural runoff, 
which are the primary contributors to the elevated levels of 
these parameters, is critical. Furthermore, our study argues 
in favour of integrating advanced machine learning models 
into national water quality monitoring systems. This would 
enable real-time, data-driven decision making to respond 
quickly to scenarios of deteriorating water quality. Investing 
in the infrastructure to support these technological imple-
mentations, as well as educating and engaging the pub-
lic in efforts to protect water and prevent pollution, could 
significantly improve the effectiveness of these measures. 
Ultimately, these strategies are in line with Saudi Arabia’s 
Vision 2030 for environmental sustainability and ensure the 
protection of water resources for future generations.
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Conclusion

This study represents a crucial step in improving water qual-
ity assessment methods in Saudi Arabia, an area severely 
affected by water pollution and scarcity. Our approach, 
which uses advanced data-driven modelling including 
machine learning and XAI, offers a paradigm shift in the 
interpretation and use of water quality data for sustainable 
management. The use of XAI in conjunction with advanced 
machine learning models such as random forest and deep 
neural networks introduces a new level of transparency and 
reliability to environmental science. This methodological 
innovation is fundamental as it enables a deeper understand-
ing of prediction mechanisms and increases stakeholder 
confidence by making model decisions clear and under-
standable. Furthermore, the integration of these advanced 
technologies supports the development of robust, evidence-
based strategies for water management. It enables policy 
makers and environmental managers to make more informed 
decisions tailored to address both the immediate and long-
term challenges of water sustainability in arid regions. Our 
research methodology and its application provide valuable 
insights that could be adapted and replicated in other regions 
around the world facing similar environmental challenges.

While this study provides valuable insights into water 
quality management, it has limitations due to the small 
sample size and the influence of seasonal and geographi-
cal variability on water quality. Future research should aim 
to collect more diverse data across different seasons and 
regions to improve the model’s robustness and predictive 
accuracy. Incorporating real-time data together with satel-
lite imagery and IoT-based sensors could further refine our 
understanding of water quality dynamics. The potential of 
these approaches in Saudi Arabia, with its arid climate and 
scarce water resources, is considerable. Our findings pro-
vide an important framework for policy makers and environ-
mental managers to make informed decisions for sustainable 
water management. This research paves the way for more 
sophisticated, data-driven strategies to address water scarcity 
and pollution, which are critical for environmental sustain-
ability and public health in the region.
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