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Abstract
Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental 
pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. 
Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, 
these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial 
communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, 
during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher 
soil CO2 effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated 
through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened 
GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via 
pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for 
carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper 
highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials 
as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and 
mitigating the impacts of climate change.
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Introduction

Soil contamination by toxic elements is a pressing 
global issue that has far-reaching implications for the 
environment, human health, and food security (Kong 
et al. 2021; Qin et al. 2021). While toxic elements can 
exist naturally, the influence of human activities (e.g., 
mining, industrial waste disposal, and burning of fossil 
fuels) also has a substantial negative impact (Palansooriya 
et al. 2020; De Almeida Ribeiro Carvalho et al. 2022). The 
high concentrations of toxic elements in industrial waste, 
including chromium (Cr), zinc (Zn), nickel (Ni), cobalt 
(Co), cadmium (Cd), copper (Cu), manganese (Mn), and 
lead (Pb), further exacerbate the problem (Li et al. 2021). 
Additionally, the contaminants can percolate into deeper 
layers, eventually reaching the groundwater. Contamination 
of soil poses a high risk to the ecosystem as the untreated 
waste released recklessly in the soil environment contains 
these persistent and non-biodegradable heavy metals (Sun 
et al. 2020b; Liu et al. 2021).
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Various methods have been developed to remove toxic 
substances from the soil and remediate soil pollution. These 
techniques include adsorption, photocatalytic degradation, 
advanced oxidation, and biodegradation (Yao et al. 2021). 
Adsorption has become increasingly popular due to its 
effectiveness and ease of operation (Zou et al. 2020; Luo 
et al. 2022). Many researchers considered using different 
materials, particularly biochar and hydrochar, to adsorb and 
immobilize soil pollutants.

Biochar and hydrochar possess a microporous structure, 
high aromaticity, plentiful oxygen-containing functional 
groups, and a substantial specific surface area, and are 
accessible economically, making them efficient adsorbents 
for the removal of organic pollutants (Mazarji et al. 2023; 
Ahmed and Hameed 2018). The economic efficiency 
of using biochar and hydrochar is determined by the 
benefits of waste processing, the advantages of carbon 
sequestration (Dickinson et al. 2015), and the cost savings 
associated with reduced irrigation expenses (Kroeger 
et al. 2020). Previous studies investigated the ability of 
biochar to mitigate organic pollutants such as pesticides, 
pharmaceuticals, polychlorinated biphenyls, dyes, and 
polycyclic aromatic hydrocarbons (Liu et al. 2019a). It was 
reported that charred materials are an effective adsorbent 
for removing these organic pollutants from wastewater 
(Ahmed and Hameed 2018). During biochar and hydrochar 
production, different feedstocks, durations of pyrolysis, 
and heating temperatures yield products with varying 
characteristics and adsorption capacities (Chen et al. 2021).

An analysis of published literature was conducted 
by performing a literature search on peer-reviewed 
articles published between 2010 and 2022. Web of 
Science database was queried using various keyword 
combinations: soil remediation; biochar & adsorption; 
hydrochar & adsorption; biochar & greenhouse gas or 
carbon dioxide; hydrochar & greenhouse gas or carbon 
dioxide. According to open data, 2843 articles were 
published on using biochar, and 341 were published on 
using hydrochar. Over the past few years, the number of 
research on biochar and hydrochar (either mechanistic 
study or practical application) has been rapidly increasing 
(Fig.  1a). Figure  1b represents a network based on 
crucial keywords of the literature. Through a thorough 
examination of the network, one can discern patterns 
associated with the volume of publications (indicated 
by the thickness of the lines), the clustering of similar 
topics, and the identification of influential literature 
sources. It can be observed that the most significant 
number of publications is dedicated to studying biochar 
as soil amendments for remediation more than hydrochar. 
Most review papers on biochar and hydrochar focused 
on their influence on pollutant removal and the resulting 

implications for agriculture and soil quality (Dan et al. 
2023; Ji et al. 2022; Mei et al. 2022). Numerous reviews 
are dedicated to comparing biochar and hydrochar on their 
production characteristics (Masoumi et al. 2021; Cavali 
et al. 2022; Kumar et al. 2020; Fu et al. 2019).

This surge in publications and interest is deeply 
connected to the ecological benefits of using biochar and 
hydrochar, particularly in soil applications. It is known that 
soil is critical in regulating the climate as it is both a source 
of greenhouse gas (GHG) emissions and a sink for carbon 
(Lal et al. 2021). The rise in the global average temperature 
is a consequence of the intensification of the greenhouse 
effect caused by the escalation of GHG concentration in the 
atmosphere. Since the carbon pool is susceptible to climate 
change, rising air temperatures increase GHG emissions 
from the soil (Crowther et al. 2016).

Biochar and hydrochar amended in soils have also 
been considered qualified candidates to capture more 
carbon and reduce GHG emissions. Biochar and 
hydrochar as soil amendments exert direct and indirect 
control over nitrification and denitrification processes 
by influencing various environmental factors involved in 
microbial nitrogen cycling, inorganic nitrogen uptake, 
and soil moisture (Chen et al. 2020). These alterations 
subsequently impact nitrogen transformation and the 
release of N2O. Also, the soil amendments improve soil 
structure and accelerate the formation of soil aggregates, 
thus protecting soil organic carbon and potentially reducing 
CO2 emissions.

It is worth noting that soil aggregates are subject to 
change, and the rate of evaporation due to the introduction 
of biochar contributes to the reduction of cracks in 
the soil (Kravchenko et al. 2023). In the end, this also 
affects GHG emissions. Biochar is often used to reduce 
soil degradation and increase mesoporosity and water 
availability in the soil (Bordoloi et al. 2019). In addition, 
numerous studies have revealed that biochar enhances soil 
fertility, leading to sustainable crop yields (Yu et al. 2019; 
Palansooriya et al. 2019). This is attributed to various 
factors, including improved soil structure, increased 
water retention capacity, and the activation of microbial 
processes. Due to its inherent chemical stability and slow 
decomposition rate in soil, soil application of biochar 
has emerged as one of the most effective approaches to 
mitigate climate change.

Nevertheless, the long-term potential of biochar and 
hydrochar in mitigating climate change by reducing 
gas emissions from the soil has not been adequately 
evaluated. In addition, the long-term effects of using 
biochar and hydrochar have not been comprehensively 
assessed in terms of nutrient loss, biodiversity loss, 
invasive species, soil health, and fertility. To enable the 
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practical application of these materials, it is necessary to 
comprehensively assess their potential for soil remediation 
and their ability to emit or sequester GHG from the 
soil. This presents a significant research challenge that 
must be addressed to fully understand the ecological 
consequences of biochar and hydrochar amendments in 
soil. By thoroughly examining the available literature, 
this paper provides valuable insights into the adsorption 
capacity, selectivity, and mechanisms of action of biochar 
and hydrochar, for soil remediation and climate change 
mitigation. Additionally, it assesses the environmental 
impacts and influences associated with biochar and 
hydrochar amendments.

Production and properties of biochar 
and hydrochar

Production technologies

Biochar can be obtained from dry raw materials with a 
moisture content of less than 10% using several well-known 
pyrolysis technologies, such as slow pyrolysis, fast pyrolysis, 
intermediate pyrolysis, and microwave (Safarian et al. 2022). 
The initial biomass must be pre-dried, which increases the 
production cost by incorporating additional equipment into 
the production cycle. However, the energy requirement for 
biomass drying can be met through the energy and heat 

Fig. 1   Publication trends and 
network analysis: from 2010 to 
2022 (according to the search 
results of Web of Science): a 
Number of publications by 
keywords and titles, b network 
of using biochar and hydrochar 
for soil amendments in selected 
literature

(a) Number of publications by keywords and titles

(b) Network of using biochar and hydrochar for soil amendments in selected literature
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generated during the pyrolysis process, making the system 
less energy-intensive (Safarian 2023). During the pyroly-
sis process, biochar’s chemical and physical characteristics 
undergo influence from several factors, such as the maxi-
mum temperature applied, the duration of heating, and the 
rate at which the maximum temperature is attained (Tom-
czyk et al. 2020). According to Blenis et al. (2023), the 
pyrolysis temperature can reach up to 1100 °C, with the 
combustion time of biomass depending on the assigned tem-
perature, ranging from 1 to 5 s for fast pyrolysis to several 
days for slow pyrolysis.

Hydrothermal carbonization (HTC) has been developed to 
address the energy efficiency issue, which eliminates the need 
for pre-drying biomass and allows the production of hydrochar 
at lower temperatures and in a shorter period. HTC is a process 
distinct from pyrolysis and gasification methods commonly 
employed for biomass with low moisture content (Zhang et al. 
2019). It is better suited for treating biomass with high moisture 
content (Lee et al. 2018). HTC offers a cost-effective means of 
producing char, as it involves low temperatures of 180–300 °C 
and operates under pressure in water (Zhang et al. 2019). The 
key factors influencing the product characteristics are reaction 
temperature, pressure, residence time, and water-to-biomass 
ratio. The desired outcome of the HTC process is hydrochar, 
which typically yields around 50–84 wt% (Hu et al. 2023a). At 
lower temperatures of HTC, mineral substances in the feedstock 
can dissolve in the aqueous phase, decreasing ash concentration 
in the hydrochar (Gao et al. 2018).

However, as the temperature increases, more organic 
compounds are transferred to the water phase, leading to a 
higher concentration of inorganic substances in the hydrochar, 
thus increasing the ash content (Djandja et al. 2023). The 
temperature-dependent surface properties of the hydrochar 
are also influenced. For instance, elevated temperatures 
promote the dissociation of water into OH− and H3O+ ions, 
which can impact the colloidal stability and surface tension of 
the hydrochar spheres. This, in turn, may affect the presence 
of specific functional groups, the fusion of spheres, and the 
smoothness of the surface (Ischia et al. 2022). In summary, 
previous studies have consistently demonstrated that the 
hydrothermal carbonization temperature has a significant 
effect on various properties of the hydrochar. Polymerization 
and recombination reactions are likely initiated around 185 °C, 
while a temperature of approximately 220 °C is suggested to 
achieve improved hydrochar properties and control the reaction.

Physicochemical properties of biochar 
and hydrochar

Morphological properties and surface area

The morphological properties of biochar and hydrochar play 
a crucial role in nutrient adsorption, hydrologic processes, 

and soil density when used for land application. In the study 
of Fu et al. (2019), the physical alterations of food wastes 
and their corresponding biochar and hydrochar showed 
varying patterns depending on the feedstock, carboniza-
tion method, and peak temperature. The biochar produced 
at 200 °C showed a smooth surface structure, but as the 
temperature increased, obvious pore and crack structures 
were developed. In contrast, hydrochar exhibited a spher-
ical-shaped structure, which differed among feedstocks. 
For instance, hydrochar produced from fish residue showed 
spherical-shaped structures under low temperatures, which 
fused as the temperature increased. The reaction mechanism 
for the formation of these carbonaceous particles in hydro-
char is highly complex due to the presence of subcritical 
water, which initiates the hydrolysis of biomacromolecules, 
followed by dehydration, condensation, polymerization, and 
other reactions (Kambo and Dutta 2015).

The surface area and porosity of biochar are crucial fac-
tors that determine the quantity and quality of active sites 
available in biochar (Leng et al. 2021). The availability 
of active sites is essential for biochar’s ability to interact 
with the environment and improve soil health. As stated by 
Kumar et al. (2020), the volatilization of organic materi-
als during the production process of biochar creates voids, 
resulting in a porous structure with a high surface area and 
large pore volume. Zhang et al. (2021b) determined that the 
surface area of biochar derived from peanut shells at 700 °C 
can reach 448 m2g−1. The hydrochar exhibits a relatively 
lower surface area due to the deposition of depolymerized 
products during the production process (Kumar et al. 2020).

Ash content, volatile matter, and fixed carbon

Fixed carbon in biochar refers to the portion of carbon that 
remains in the material after volatile matter has been driven 
off through processes such as pyrolysis. During this pro-
cess, volatile compounds like water, gases, and some organic 
substances are released, leaving behind a more carbon-rich 
and stable residue known as biochar. The ash content of 
biochar and hydrochar can vary due to differences in their 
production processes. Depending on the proposed applica-
tion, the ash content of both chars will play an essential role 
in the adsorption processes, as it affects cation exchanges 
and electrostatic interactions (Fu et al. 2019). According to 
Fu et al. (2019), the ash content of biochar typically rises 
with higher peak temperatures due to the concentration of 
minerals and combustion residues from organic matter after 
pyrolysis. In contrast, hydrochar produced under the same 
peak temperatures showed similar or lower ash contents, as 
the inorganic components would be solubilized and leached 
out of the solid product, reducing the overall ash content.

Moreover, as summarized by Kumar et al. (2020), the 
volatiles range of biochar and hydrochar is 12.3–60.6% and 
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49.3–88.6%, respectively, while a fixed carbon content of 
10.7–86.3% in biochar based on a dry basis and 3.0–47.1% 
in hydrochar was observed. Both char materials have a low 
amount of volatiles and a high amount of fixed carbon com-
pared to their feedstock. A decrease in volatile matter was 
also observed for both chars as temperature increased. This 
can be attributed to the degradation of organic components, 
the release of volatiles, and their further transformations (Fu 
et al. 2019).

Elemental composition

The main elemental composition of chars includes carbon 
(C), hydrogen (H), oxygen (O), nitrogen, silicon, phospho-
rus, sulfur, and iron. These elements are present in both 
hydrochar and biochar in different amounts. The level of 
carbonization and aromaticity in biochar and hydrochar can 
be assessed using the char’s H/C ratio, where lower H/C 
ratios typically suggest a higher degree of aromatic struc-
ture within the char (Li et al. 2023). The H/C ratio is com-
monly used as a proxy for biochar and hydrochar stability 
due to its association with increased resistance to microbial 
decomposition in soil, which is linked to higher aromatic 
structure (Burgeon et  al. 2021). Due to higher reaction 
rates of decarboxylation during HTC, higher H/C and O/C 
ratios are observed for hydrochar (Kambo and Dutta 2015). 
Furthermore, it was observed that as the peak temperature 
increased, the H/C ratio decreased, indicating enhanced aro-
maticity and stability of both biochar and hydrochar pro-
duced at higher temperatures (Fu et al. 2019). According to 
Wang et al. (2018) and Zhang et al. (2020b), the H/C molar 
ratio for biochar and hydrochar is > 1.5 and > 2.3, respec-
tively. Masoumi et al. (2021) mentioned that the O/C molar 
ratio for biochar and hydrochar is > 0.7 and > 1.7, respec-
tively. Additionally, the presence of a substantial number of 
oxygen-containing groups was also observed in hydrochar, 
attributed to its affinity for water, making it beneficial for 
increasing soil water retention capacity (Zhang et al. 2019).

Functional groups

Functional groups play a crucial role in determining the 
properties of biochar and hydrochar and are essential for 
removing contaminants by affecting sorption and electron 
transfer (Sun et al. 2018). High temperatures (500–700 °C) 
have lower O-containing functional groups for pyrolysis. 
This leads to increased stability of biochar towards microbial 
and chemical degradation compared to hydrochar (Khosravi 
et al. 2022). Studies have shown that different food wastes 
and their corresponding biochar and hydrochar have similar 
functional group types but differ in some featured functional 
groups. O-containing functional groups, such as hydroxyls, 
carboxyls, ketones, and ethers, are primarily derived from 

the hydrolysis, dehydration, condensation, and polymeri-
zation of organic components, such as carbohydrates and 
lignins, during HTC (Fu et al. 2019; Sun et al. 2018; Liu 
et al. 2019a). This is evident in the study of Zhang et al. 
(2020b), in which a hydrochar derived from coffee ground 
waste at 160 °C contained 13.1–104.0% higher O-containing 
functional groups than the biochar derived from the same 
feedstock at 400 °C and 500 °C.

Biochar and hydrochar stability in soil

Biochar aging can lead to acidification that mobilizes soil 
metals and increases their bioavailability to soil organisms 
and plants. Furthermore, Wang et al. (2020) suggested that 
aging can increase the mobility of small biochar particles 
in the subsurface, potentially resulting in nutrient loss and 
contaminant migration in soils amended with biochar. Bio-
char can either positively or negatively affect agriculture in 
the long term. According to Wang et al. (2021), the natural 
aging process of hydrochar resulted in altered physicochemi-
cal properties, including lower hydrophilic/polarity indices, 
higher porosity, more significant ash content, and better sta-
bility than pristine hydrochar. When hydrochar is directly 
added to soil, it may act as a slow-release fertilizer, releasing 
plant-available nutrients during mineralization (Gronwald 
et al. 2016). This poses the importance of pro-longed biochar 
and hydrochar assessment, especially those that may harm-
fully affect the environment and humans. The production 
parameters and physicochemical properties of biochar and 
hydrochar are summarized in Table 1.

Soil property change after biochar 
and hydrochar amendments

Soil density

Numerous research studies have demonstrated the beneficial 
effects of biochar on soil, including enhancing the phys-
icochemical characteristics, preserving soil organic matter 
(SOM) levels, improving the efficiency of fertilizer utiliza-
tion, and ultimately boosting crop yield (Deenik et al. 2011; 
Jien and Wang 2013). Biochar and hydrochar have been 
proven effective in reducing soil bulk density in various 
agricultural soils with different textures, as demonstrated 
in studies conducted by Abel et al. (2013), Castellini et al. 
(2015), and Mau et al. (2020).

Mau et al. (2020) emphasized that the treatment tem-
perature of hydrochar influenced the bulk density of soil. 
It significantly increased from 180 to 220 °C but remained 
unchanged with further temperature rises to 250 °C. This 
implies that the particle density of hydrochar increased with 
temperature treatment ranging from 180 to 220 °C and then 
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remained constant up to 250 °C. Additionally, the study 
conducted by Ghorbani et al. (2023) underscored that corn 
straw biochar, produced at higher pyrolysis temperatures 
(450–550 °C), had a notable impact on decreasing soil bulk 
density and increasing porosity compared to biochar pro-
duced at lower temperatures (350 °C). One of the primary 
factors behind this observation was the limited volatilization 
of material at lower temperatures, resulting in fewer pores 
forming and, consequently, reducing the internal volume of 
the biochar.

Soil hydraulic conductivity and soil organic matter

Adding porous hydrochar and biochar enhances hydraulic 
conductivity, often leading to increased water retention 
capacity and a reduced risk of nutrient leaching (Kalderis 
et al. 2019). Li et al. (2018a) claim that particles of biochar 
derived from apple branches induce a low intrapore entry 
pressure within the biochar’s pores, resulting in water-per-
meable intrapores’ formation. This phenomenon contributes 
to an increase in saturated hydraulic conductivity. Addi-
tionally, it is argued that the effect of biochar on saturated 
hydraulic conductivity is not primarily due to its internal 
porosity but rather to the tortuosity of the pores, which refers 
to the variations in particle arrangement (Lim et al. 2016). 
Therefore, the shape of the pores and their interconnectivity 
can better explain the influence of biochar on soil hydrau-
lic conductivity. The hydrochar may have a similar impact 
on soil hydraulic conductivity due to its comparable micro-
structural arrangement of pores. However, there is a lack of 
specific research examining this aspect.

Zhang et al. (2020a) found that adding biochar reduces 
quantitative parameters such as the crack ratio, the soil mass, 
and the fractal dimension of clay soil. It was found that the 
biochar amendments to the soil led to a 16% decrease in the 

overall volume fraction of cracks compared to the untreated 
soil (Kravchenko et al. 2023). This decline in crack volume 
can be attributed to the water retention capabilities of bio-
char, which aid in mitigating soil dehydration and shrink-
age. Hydrochar and biochar amendments contribute to 
the increase in the size of soil aggregates, and a dosage of 
5% of the soil weight is considered optimal for preventing 
erosion in highly weathered soils (Jien and Wang 2013). 
Kravchenko et al. (2024) conducted a laboratory incubation 
experiment with soil treated with hydrochar to explore its 
impact on soil crack development. The study demonstrated 
that adding wood hydrochar at concentrations of 2% and 
4% reduced the crack intensity factor by 22% and 43% com-
pared to the untreated control soil. In contrast to the control 
soil, which showed significant expansion of large cracks 
and extensive void spaces, the hydrochar-treated soils dis-
played a greater crack length density with a network of finer 
cracks. This modification reduced water loss in hydrochar-
amended soils due to lower evaporation rates compared to 
the control. Adding hydrochar to soil creates a secondary 
peak in pore size distribution (Abel et al. 2013). This peak 
falls within a range where water is held by capillary and 
adsorptive forces, making it accessible to plants. Introducing 
hydrochar increases medium-sized pores while reducing the 
number of wide pores (Mau et al. 2020). This occurs because 
the hydrochar fills up the wide pores and has smaller pore 
sizes (Abel et al. 2013). This was also confirmed by Zhang 
et al.’s study (2020c) for biochar. However, despite these 
extensive laboratory incubations aimed at understanding 
soil crack development, there remains a significant gap in 
our understanding of how these amendments will perform 
under field conditions. This limitation highlights the need for 
comprehensive field trials to validate laboratory findings and 
ensure the practical applicability of hydrochar in real-world 
agricultural settings.

Table 1   Production parameters and physicochemical properties of biochar and hydrochar

Properties Biochar Hydrochar Reference

Highest reaction temperature 1100 °C 300 °C Blenis et al. 2023; Zhang et al. 2019
Moisture content of feedstock Dry biomass Wet biomass Lee et al. 2018
Total carbon content 58.1–90.1% 39.6–57.6% Bargmann et al. 2013
Proximate: Volatiles 12.3–60.6% 49.3–88.6% Kumar et al. 2020
Fixed carbon 10.70–86.37 wt% 2.66–47.1 wt% Kambo and Dutta 2015
Ash content 0.45–40% 0.23–49.7% Kambo and Dutta 2015; Zhang et al. 

2019; Kumar et al 2020
pH 3–11.3 2–12 Kambo and Dutta 2015; Sun et al. 2020a
Aromaticity Contains aromatic groups Contains alkyl moieties Masoumi et al. 2021
H/C molar ratio  > 1.5  > 2.3 Wang et al. 2018; Zhang et al. 2020b
O/C molar ratio  > 0.7  > 1.7 Masoumi et al. 2021; Wang et al. 2018
Physical: surface area (m2 g−g) 35–448 4–12 Zhang et al. 2021b; Jain et al. 2016
Shape Non-defined Spherical and core–shell type Kumar et al 2020
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SOM turnover can be influenced by storing SOM within 
the porous network of biochar and hydrochar, which reduces 
accessibility to microbial decomposers (Bernard et al. 2022). 
Biochar and hydrochar can enhance microbial proliferation 
and growth by creating a favorable habitat for microorgan-
isms (Giannetta et al. 2023; Deenik et al. 2011). It is a reten-
tion hotspot for labile C, N, phosphorus, and other micronu-
trients, accelerating SOM decomposition.

Soil salinity

Biochar mitigates the harmful impacts of salinity by 
enhancing antioxidant functions, improving photosynthetic 
efficiency, optimizing plant water relations, and boosting 
the accumulation of osmolytes, hormones, and secondary 
metabolites (Huang et al. 2023). On the other hand, it has 
also been demonstrated that biochar can potentially increase 
soil salinity and reduce soil fertility (Dahlawi et al. 2018). 
This is attributed to the rise in alkalinity of the soil pH 
caused by biochar, leading to the precipitation of nutrients 
(Brtnicky et al. 2021).

In the study conducted by Qin et al. in 2023, it was found 
that the use of microbial-aged hydrochar significantly 
impacts the reduction of soil salinity. According to their 
experimental results, this type of hydrochar reduces 
salinity by approximately 35% compared to the use of 
fresh hydrochar. The risks of soil quality deterioration 
when applying biochar and hydrochar should be minimized 
through comprehensive long-term field studies and the 
determination of optimal application rates for practical 
agricultural use.

Enhancing soil health and plant growth: the role 
of soil amendments and rhizobacteria

Biochar and hydrochar addition to soil can effectively immo-
bilize heavy metals through various mechanisms. These 
include increases in soil pH, cation exchange, direct adsorp-
tion, functional group complexation, and metal-hydroxide 
precipitation. Reducing the availability of chemical-extract-
able heavy metals can enhance their extraction through the 
high ash content of biochar that exposes organic matter on 
the surface of the biochar (Zhang et al. 2021a, 2016).

Most root-associated microbes can enhance plant growth 
and are commonly studied for their capacity to boost plant 
yield, nutrient absorption, stress tolerance, and control of 
soil-borne diseases (Rasool et al. 2021). Bacteria such as 
plant growth-promoting rhizobacteria (PGPR) are the most 
abundant among the various soil microbial communities. 
PGPR, such as Bacillus subtilis, Pseudomonas fluorescens, 
Burkholderia phytofirmans, and Azospirillum spp., play a 
vital role in enhancing nutrient availability to plants, as well 
as in suppressing diseases and abiotic stresses that plants 

may face. PGPR presents an eco-friendly alternative for 
enhancing soil fertility, controlling plant diseases, and pro-
moting plant growth in agriculture. It has been suggested 
that the combined application of biochar and compost can 
modify the physical and chemical properties of the soil, 
resulting in improved plant growth and production (Trupiano 
et al. 2017). This co-application of biochar and compost also 
has a synergistic effect on managing soil-borne diseases and 
increasing the activity of beneficial soil microbial popula-
tions, including arbuscular mycorrhizal fungi and PGPR, 
along with other bio-control agents. Biochar has been identi-
fied as an effective carrier for the inoculation of PGPR due to 
its ability to stimulate the growth and activity of microorgan-
isms, creating favorable planting conditions for agricultural 
products. Its slow-release effect can also benefit long-term 
biological control (Tao et al. 2018). Bacteria such as Bacil-
lus subtilis SL-44, combined with biochar, can effectively 
control plant diseases caused by pathogenic fungi. The bio-
film formed by biochar and SL-44 can improve the survival 
of SL-44 in the soil and increase its competitiveness against 
Fusarium wilt (Rhizoctonia solani), as observed in the study 
of radish plants, ultimately resulting in effective prevention 
of damage by Rhizoctonia solani (Chen et al. 2023a).

When corn straw and pig manure-derived biochars were 
combined with a mutant species from Bacillus subtilis (B38), 
they demonstrated the ability to reduce the bioavailability of 
heavy metal contaminants in soil. This effect was notably 
enhanced by the pig manure-derived biochar, which had 
approximately twice the surface area of the corn straw-derived 
biochar, providing more sorption sites for heavy metal ions. 
This increased surface area, coupled with a threefold higher 
ash content in the pig manure-derived biochar than the corn 
straw-derived biochar, significantly improved its capacity to 
immobilize heavy metals such as Cd, Hg, Pb, and Cr. The 
high ash content, primarily composed of mineral impurities, 
acted as the primary adsorption sites for these heavy metals, 
enhancing the biochar’s effectiveness in remediation. 
Additionally, the enriched nutrient content in the pig 
manure-derived biochar supported more robust growth and 
reproductive activities of B38, further utilizing its remedial 
properties. The combination of biochar and B38 not only 
improved the efficiency of heavy metal remediation but also 
led to notable enhancements in plant biomass and significant 
decreases in heavy metal concentrations in the plants. 
Polymerase chain reaction-denaturing gradient gel profiles 
revealed the pig manure-derived biochar’s ability to enhance 
both the exotic B38 and native microbes, indicating their 
potential for the remediation of soils contaminated by multiple 
heavy metals (Wang et al. 2017). Using biochar and beneficial 
microorganisms presents a promising and eco-friendly 
strategy for addressing agricultural and environmental issues, 
with the combined effects of biochar and PGPR leading to 
both environmental and economic benefits.
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In the literature, there are also negative aspects of using 
biochar. Baronti et al. (2010) conducted laboratory incubations 
and observed that the highest increase in dry matter of perennial 
ryegrass (Lolium perenne) was obtained at a biochar rate of 60 t 
ha−1. In addition, it was found that applying biochar at a rate of 
72 t·ha−1 caused a significant decline in corn and wheat yields, 
with reductions of 46% and 70%, respectively. This decline in 
yield at high biochar application rates is due to a micronutrient 
deficiency induced by the increasing soil pH. In addition, Sun 
et al. (2020a) showed that at the amendments of 0.5% and 1.5% 
hydrochar derived from different wheat sources led to increases 
at 0.5% and 1.5% hydrochar derived from different wheat 
sources, which led to the rise in soil pH.

In the study of Egamberdieva et al. (2020), the hydrochar 
produced from maize silage was shown to be a suitable 
carrier for the bacterial inoculant since there was no decrease 
in bacterial populations after 6 and 8 weeks. The hydrochar-
based Bradyrhizobium japonicum increased soybean’s 
symbiotic performance and agronomic traits, especially 
in watered conditions. The porous structure and nutrient 
provision of hydrochar can provide a suitable environment 
for PGPR, sustaining growth and survival. However, due to 
evidence of many macropores for certain types of hydrochar, 
it can be a suitable carrier of PGPR and accounts for further 
exploration (Thunshirn et al. 2021).

Current methods of deploying beneficial microbes into 
the soil, often involving the use of biochar and hydrochar as 
carriers, prove to be ineffective due to a lack of field studies and 
the absence of mechanized application methods, highlighting 
a critical gap in agricultural biotechnology research (Belcher 
et al. 2019). This limitation is concerning because ineffective 
deployment can severely diminish the potential benefits of 
these microbes, such as enhancing plant growth and improving 
nutrient uptake. The inconsistency of these methods makes 
it challenging for researchers to evaluate the effectiveness of 
microbial treatments and for farmers to adopt these biological 
solutions confidently. Consequently, resources invested in 
developing and applying microbial products might not yield 
the expected benefits, leading to economic inefficiencies and 
potentially deterring further investment in this area. Therefore, 
there is a pressing need for focused research to develop more 
reliable and efficient methods for introducing beneficial 
microbes into various soil environments.

Biochar and hydrochar for carbon 
sequestration

Biomass conversion as a route for carbon 
sequestration

Biorefining is a practical approach in the bio-economy 
for utilizing biomass on a large scale, as it enables the 

cost-effective production of bioenergy and bio-based 
products. This strategy ensures favorable socio-economic 
and environmental outcomes (International Energy 
Agency 2022). Biomass is frequently considered a 
byproduct or waste that eventually decomposes and emits 
GHG. Existing agricultural practice of burning biomass 
also results in the release of GHG. This practice releases 
harmful substances, such as particulate matter, carbon 
monoxide, and volatile organic compounds, significantly 
threatening our environment (Abdurrahman et al. 2020). 
However, converting biomass into biochar can decrease 
CO2 emissions by trapping a significant amount of carbon 
in biochar. As a result, producing biochar and hydrochar 
is considered a cleaner process, as waste that would have 
otherwise decomposed is now transformed into biochar 
and utilized for sustainable purposes.

In addition to biochar and hydrochar, biomass materi-
als, through thermochemical decomposition processes, are 
converted to syngas, a mixture primarily composed of car-
bon monoxide and hydrogen, and bio-oil, a complex mix-
ture of organic compounds derived from biomass pyrolysis 
(Sri Shalini et al. 2021). Biomass supplied 10.5% of the 
world’s energy needs in 2019 (Global Bioenergy Statistics 
2021). In terms of volume, the global market of biochar 
was sized at 394.09 kilotons in 2021 and is expected to 
reach 781.09 kilotons by 2028 (Market Research Report 
2022). Biomass-based fuels, using appropriate techniques 
and procedures, can be less harmful to the environment 
than fossil fuels, making bio-energy an essential option 
for short- and medium-term substitution of fossil fuels and 
the mitigation of GHGs (Vamvuka 2011). Pyrolysis has 
benefits for treating food waste but can be more beneficial 
to low-moisture content biomass, avoiding the need for 
pre-drying. Differences in the carbonization processes of 
solid products, biochar, and hydrochar may result in varia-
tions in their physical and chemical properties, such as ash 
content, elemental compositions, and morphological char-
acteristics. Hydrochars can also be produced from various 
waste (wet and dry) materials, allowing waste valorization 
and reducing the need for landfilling or incineration.

Using charred biomass as a soil amendment in agricul-
ture may be a viable solution to combat climate change 
by sequestering atmospheric carbon. Applying biochar in 
soil has gained worldwide interest as a strategy for CO2 
mitigation. Hydrochar produced via HTC may not be sta-
ble in soil, leading to increased greenhouse gas emissions 
due to easier carbon degradation and microbial activity. 
According to Kambo and Dutta (2015), biochar through 
pyrolysis may be a better option for carbon sequestration, 
while hydrochar through HTC may be more suitable as 
a gas adsorbent. Biochar was a highly recalcitrant car-
bon storage medium, with no significant decomposition 
observed during a 19-month field incubation study and a 
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continuous trend of low carbon losses per year (Gronwald 
et al. 2016). Biochar addition may affect native soil carbon 
and its decomposition via priming similar to hydrochar, 
but no priming effects due to biochar were detected in the 
study. Hydrochar amendments can also have positive and 
negative priming effects on soil carbon decomposition, 
depending on the rate of hydrochar decomposition (Rasul 
et al. 2022; Fatima et al. 2021). While positive priming can 
occur in the short term, the protective impact of hydrochar 
carbon on native soil carbon decomposition may prevail 
over long term. The capacity of biochar and hydrochar to 
adsorb GHGs is significantly influenced by their physico-
chemical characteristics, including specific surface area, 
microporosity, aromaticity, hydrophobicity, and the pres-
ence of basic functional groups (Fig. 2). These proper-
ties are determined by the type of feedstock used and the 
conditions under which the char is produced. Both bio-
char and hydrochar have the potential for carbon storage in 
soil, but further assessment is needed to understand their 
long-term effectiveness fully. It is essential to evaluate the 
environmental impact of biochar and hydrochar produc-
tion entirely and ensure that their application benefits in 
enhancing carbon stock outweigh any adverse effects.

Another beneficial use of biochar is its potential to influ-
ence gas fluxes from the soil. Biochar has a porous structure 
with a high specific surface area and thus high CH4 and vola-
tile organic compound adsorption. Liu et al. (2011) claimed 
that biochar treatment reduced CO2 emissions from the soil 
through its effect on carbon cycles in the soil–water-gas sys-
tem. In addition, biochar can stabilize the microbial biomass 
carbon content by lowering the mineralization rate. How-
ever, Xu et al. (2020) proved that total greenhouse gas emis-
sions increased by 19% and 21% when the soil was treated at 
5% and 15% biochar dosages, respectively. This is because 
CO2 fluxes significantly correlate with soil temperature and 
moisture, while the temperature sensitivity value decreases 
with increasing biochar application rates. Applying biochar 
increases the water-holding capacity, significantly correlat-
ing with soil CO2 emissions. Therefore, the higher content 

of water-soluble organic carbon in the soil during biochar 
treatment contributes to the release of CO2 from the soil. 
Other studies have shown that applying biochar to the soil 
can reduce CO2 emissions or not affect gas fluxes (Sack-
ett et al. 2015). Such inconsistency may be caused by the 
difference in the application rate, soil type, feedstock, and 
pyrolysis temperature of the biochar (Brassard et al. 2016) 
and needs to be investigated.

Impact of biochar or hydrochar amendments 
on GHG emissions from soil

Reducing GHG emissions through evaporation control

Soil carbon reservoirs are vast and constantly changing, and 
alterations in soil carbon content can significantly influence 
the concentration of atmospheric CO2. Climate change is 
expected to pose more significant risks and vulnerabilities 
to arid and semi-arid areas, as highlighted by Golla (2021). 
Arid lands cover about 41% of the earth’s terrestrial surface 
and are home to more than a third of all human beings (Mor-
timore et al. 2009). In these areas, agricultural production 
is hindered by various natural and human factors, leading to 
food insecurity. In arid regions, shrink-swell processes cause 
soil cracking during drying, promoting increased gas emis-
sions from the topsoil layer and rapid moisture loss through 
the soil profile.

Additionally, the above procedures enhance the vertical 
redistribution of dissolved substances in the soil environ-
ment. Biochar is commonly applied in agricultural soil in 
arid and semi-arid regions to avoid soil cracking. Further-
more, hydrochar has recently been used in agricultural soil 
amendments (Ebrahimi et al. 2022; Joshi et al. 2022; Adjuik 
et al. 2020).

In clayey soils, biochar and hydrochar can effectively 
inhibit the width of desiccation cracks (Zhang et al. 2020c) 
by reducing the rate of water evaporation through increased 
soil porosity and hydraulic conductivity (Liu et al. 2019b). 
Using biochar and hydrochar contributed to the reduction 

Fig. 2   Conceptual scheme of 
the impact of biochar/hydrochar 
application on GHG reductions
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of crack formation in the soil (Bordoloi et al. 2019), which 
was caused by the formation of soil and coal aggregates 
that prevent the development of cracks. This leads to at 
least two positive effects on the environment. Using bio-
char increases water retention, reducing irrigation costs for 
urban green infrastructure and agricultural land (Mohamed 
et al. 2016; Bordoloi et al. 2019). Secondly, this potentially 
reduces the physical release of GHG from the soil by lower-
ing dry shrinkage and cracking. This was confirmed in the 
study by Kravchenko et al. (2023), which stated that biochar 
amendment reduced cumulative CO2 fluxes from the soil 
by 5% compared to unamended clay soil. This reduction 
was attributed to a decrease in crack opening. Furthermore, 
biochar and hydrochar have a highly porous structure with a 
large specific surface area and the ability to adsorb CH4 and 
volatile organic compounds.

Nevertheless, the effect of biochar or hydrochar amend-
ments largely depends on the soil mineralogy and the condi-
tions of biochar and hydrochar pyrolysis. Jing et al. (2022) 
conducted incubation experiments using different kaolinite 
biochar types. They observed a significant increase in the 
formation of micropores in walnut shells and corn straw 
biochars. This phenomenon can be attributed to the interac-
tion between kaolinite and the surface functional groups of 
the biochar, facilitated by the low expansibility and strong 
hydrogen bonding of kaolinite. When biochar and hydrochar 
come into contact with minerals in the soil, the water present 
causes the pores to expand (Oleszczuk et al. 2016) continu-
ously. Additionally, kaolinite slows down the decomposition 
rate of biochar (Wang et al. 2020). In soils, Ca2+, Fe3+, and 
Al3+ ions act as cationic bridges, forming organo-mineral 
microaggregates with kaolinite on the biochar surface. This 
also has a positive effect on reducing the dynamics of soil 
cracking formation.

Laboratory incubation and field monitoring of GHG 
emissions from amended soil

Table 2 shows the data on the effect of biochar or hydrochar 
amendments on GHG emissions from the soil. Over the past 
5 years, laboratory incubations and field experiments have 
been conducted to study biochar and hydrochar’s impact on 
the soil’s GHG emissions. All methodologies are based on 
mixing the top layer of soil (up to 25 cm) with amendments 
and conducting short-term (around 40 days) and long-term 
monitoring (1 year). The laboratory incubations conducted by 
Fidel et al. (2019), under constant moisture and temperature 
conditions, showed no influence on the CO2 flux from the 
biochar-amended loess-derived soil. During incubation, the 
total N2O emissions from the biochar-amended soil were 
reduced by 50% at 20 °C and 31% soil moisture. Furthermore, 
a long-term field monitoring study conducted by Ginebra 
et al. (2022) on andisol soil did not reveal any influence on 

CO2 flux, which may be associated with soil acidity (Bian 
et al. 2014). However, in soil laboratory incubations, bamboo 
biochar produced at a temperature of 300 °C decreased 
cumulative CO2 emissions by 30% (Zheng et al. 2023), likely 
due to biochar weakening the bacterial network complexity, 
possibly caused by increased environmental stress.

Field experiments conducted by Guo et al. (2020) have 
provided further evidence that cattail biochar, produced 
at 300 °C, can potentially reduce CO2 and N2O emissions 
from the soil while increasing CH4 fluxes. The biochar’s 
high surface pH and alkaline metal content could result in 
the precipitation of CO2 as carbonates. Moreover, biochar’s 
organic matter absorption may hinder its subsequent 
conversion into CO2 (Pokharel et al. 2018). Additionally, 
biochar amendments have been found to decrease the 
abundance of two enzymes, glucosidase and cellobiosidase, 
which are involved in carbohydrate mineralization and 
contribute to reduced CO2 emissions. Hu et al. (2023b) 
conducted a soil laboratory incubation with the addition of 
dairy processing sludge biochar obtained at temperatures of 
450 °C and 700 °C. They found that biochar reduced CO2 
flux from sandy loam soil by 59% and 50%, respectively. 
Since the experiments were conducted under identical 
conditions, it can be concluded that a lower pyrolysis 
temperature leads to a more significant reduction in gas 
flux. However, in a similar experiment with clay loam 
soil, it was found that biochar reduced CO2 flux by 94% 
and 62% at pyrolysis temperatures of 450 °C and 700 °C, 
respectively. Furthermore, in the long-term investigation 
conducted by Cui et al. (2021), it was observed that biochar 
amendment in soil led to a decline in CH4 oxidation. This 
reduction was attributed to utilizing organic compounds, 
instead of CH4, as growth substrates by facultative 
methanotrophs. The increased availability of soil nutrients 
and carbon influenced this shift. The study also noted the 
occurrence of N2O production, which was influenced by 
various biotic and abiotic factors.

This suggests that clayey soils are more susceptible 
to the positive influence of biochar in reducing CO2 
flux. This finding was corroborated in a comprehensive 
analysis of priming effects, which indicated that while the 
application of biochar to sandy soils appeared to promote 
the degradation of organic matter significantly, the use of 
biochar in other types of soils might potentially impede 
the process (Wang et al. 2016). However, according to a 
3-year field monitoring study carried out by Abagandura 
et al. (2019), it was observed that biochar is effective in 
reducing N2O and CO2 emissions in sandy soil but does 
not exhibit the same effectiveness in clayey soil. This 
disparity could be attributed to the higher water-holding 
capacity of clay-rich soils, which can create anaerobic 
conditions and promote increased denitrification activity 
(Shakoor et al. 2021).
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The laboratory incubations conducted by Ebrahimi 
et  al. (2022) and Joshi et  al. (2022) revealed that the 
most significant reduction in CO2 emissions from 
the hydrochar-amended soil occurred when sludge 
hydrochar was produced at higher pyrolysis temperatures 
(up to 240 °C). Ebrahimi et al. (2022) attribute this to 
the finer dispersive structure of hydrochar obtained at 
higher pyrolysis temperatures, leading to a decrease in 
the overall porosity of the amended soil with hydrochar. 
Therefore, the reduced emissions of N2O and CO2, 
accompanied by increased CH4 emissions from soils 
containing hydrochar, can be attributed to more anaerobic 
soil conditions resulting from decreased soil porosity. 
The field experiment conducted by Adjuik et al. (2020) 
also confirmed that hydrochar derived from food waste 
obtained at 200 °C reduced CO2 emissions from silty 
clay loam soil by 34% compared to the soil without 
amendments. This result of CO2 reduction contradicts the 
findings of Malghani et al. (2015) and Kammann et al. 
(2012), which demonstrate that hydrochar amendment 
leads to increased gas emissions from the soil. This 
inconsistency arises due to differences in the rate of 
biomass decomposition used in hydrochar production 
(Adjuik et al. 2020). Another possible explanation for this 
discrepancy is the variation in temperature and processing 
time of hydrochar, resulting in differences in the amount 
of carbon mineralized in the soil (Adjuik et al. 2020).

Under actual conditions of the practical application of 
hydrochar in agricultural soils, moisture variability can 
influence the rate at which microbial organisms decompose 
carbon in hydrochar, leading to lower carbon emissions 
during low soil moisture conditions. Additionally, 
hydrochar exhibits varied effects on fertility and plant 
growth due to its unique interactions with different soil 
types (Cavali et  al. 2023). For instance, when maize 
germination experiments were conducted, it was observed 
that hydrochar derived from vinasse and sugarcane 
bagasse had a more favorable interaction with sandy soil 
compared to clay soil (Fregolente et al. 2021). Although 
biochar remains stable over the long term, its chemical, 
physical, and biological composition changes over time 
(Ghadirnezhad Shiade et al. 2023), and as stated, the aging 
of biochar in soil enhances the availability of nutrients and 
promotes plant growth (Mia et al. 2017). Recent meta-
analyses have shown limited results from long-term field 
experiments on the impact of biochar on GHG emissions 
(Zhang et al. 2020a). Kalu et al. (2021), conducting an 
8-year field monitoring, determined that nitrous oxide 
emission decreased by one-third when biochar was added 
to the soil. However, they were unable to control the impact 
of CO2. The existing literature does not sufficiently analyze 
the long-term use of biochar and hydrochar, highlighting 
the need for research in this area.Ta
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Long‑term potential eco‑environmental 
impacts

Effect of biochar and hydrochar 
on the bioavailability of heavy metals

Adding biochar to soil can reduce the bioavailability of heavy 
metals through specific functional groups on the biochar surface. 
These functional groups included carboxyl, hydroxyl, phenol, 
alcohol, carbonyl, or enol, which can chelate metals and facilitate 
their complexation onto the surface and inner biochar pores 
(Ibrahim et al. 2022). Heavy metals can be grouped in declining 
order Hg > Cu > Zn > Ni > Pb > Cd > Cr > Sn > Fe > Mn > based 
on their toxicity (Zwolak et al. 2019). Zhang et al. (2021a) 
reported that the inclusion of tobacco stem biochar resulted 
in decreased availability of Cu, Ni, and Pb in the soil, along 
with a reduction in the overall content of these metals in plants. 
Additionally, biochar has been shown to significantly lower 
the uptake of Cu, Pb, Ni, Zn, and Cd by plants compared to 
control treatments (Zhang et al. 2016). In a series of experiments 
conducted by Cui et al. (2012), they investigated the effects 
of different rates of biochar (10 t/ha, 20 t/ha, and 40 t/ha) on 
Cd-contaminated soil for 2 years. The results showed that in 
the first year, the biochar content reduced Cd levels in rice and 
wheat grains, ranging from 16.8 to 45.0% and 24.8 to 44.2%, 
respectively. However, these reductions were more substantial 
in the second year, ranging from 39.9 to 61.9% for rice and 
14.0 to 39.2% for wheat. Moreover, Cui et al. (2016a) reported 
the results of a 5-year experimental period, indicating that the 
bioavailability of Cd and Pb was significantly reduced by 8 to 
45% and 14 to 50%, respectively. This reduction was attributed 
to mechanisms such as surface adsorption, oxygen-containing 
functional groups adsorption, mineral phases (Al, Fe, and P) 
precipitation, and cation exchange, as identified in the study of 
Cui et al. (2016b).

Liu et al. (2023) investigated the accumulation of heavy 
metals in mixed sludge hydrochar. They found that heavy metals 
were accumulated in the hydrochar in the following order: 
Zn > Cu > Cr > Pb > Ni, among others. Interestingly, this ranking 
was consistent with a previous study conducted by Wang et al. 
(2019c), which also explored the accumulation rate of heavy 
metals in hydrochar. A critical outcome of Liu et al. (2023) 
study is that the hydrochar’s heavy metal content, particularly 
Zn and Mo, exceeded certain required limits. Specifically, the 
concentration of Zn in the hydrochar was more significant than 
1850 mg/kg, and Mo was above 20 mg/kg. These findings have 
implications for the potential use of hydrochar in agricultural 
applications. According to Liu et al. (2023), the high levels of Zn 
and Mo in hydrochar may limit its suitability for land application 
due to concerns about environmental safety and potential 
impacts on soil and plants. Additionally, the researchers raised 
a concern about the long-term application of hydrochar to the 
soil, as it may lead to an increased accumulation risk of heavy 
metals in the food chain.

Biochar and hydrochar can adsorb or bind heavy metals 
in the soil through specific functions such as complex 
formation, anionic and cationic metal attractions, ion 
exchange, and precipitation (Fig.  3). However, in 
immobilizing heavy metals, biochar, and hydrochar 
may inevitably change the solubility and availability of 
some specific soil micronutrients such as Fe, Mn, Cu, 
and Zn (Xu et al. 2022a). This suggests that long-term 
use of a high dose of biochar and hydrochar can lead to 
soil micronutrient deficiencies, thus decreasing crop 
yields. It was found that the transfer of electrons between 
microorganisms and minerals by biochar and hydrochar 
can regulate redox-mediated reactions, consequently 
influencing various biogeochemical cycles in soils, such 
as Fe and Mn cycles (Kappler et al. 2014). The attachment 
of Cr(VI) to the biochar or hydrochar surface occurs by 

Fig. 3   Interaction mechanism 
between biochar particles and 
heavy metals in soil (adopted 
from Ahmad et al. 2014)
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binding with negatively charged active sites located on 
biochar and hydrochar, which becomes possible after the 
reduction of Cr(VI) to Cr(III) and involves functional 
groups containing oxygen (Bolan et al. 2013). Biochar 
and hydrochar with greater cation exchange capacity can 
release cations like Ca(II) and Mg(II), improving their 
adsorption capacity by exchanging them with heavy metal 
ions. Furthermore, biochar and hydrochar with abundant 
functional groups can offer ample binding sites for heavy 
metals to form complexes, as noted by Yang et al. (2019). 
Recent research on biochar and hydrochar for remediating 
heavy metal-contaminated soil is summarized in Table 3.

After sewage sludge hydrochar is incorporated into the 
soil, there is a significant increase in Cd stability due to 
changes in soil properties (Ren et al. 2017). Subsequent 
research revealed that adding hydrochar to soil resulted in 
a significant reduction (15.4%) in the availability of Cd to 
plants, particularly at lower temperatures. Furthermore, 
hydrochar was found to decrease the uptake of Cd in both 
aboveground and underground plant parts. In addition, 
sludge hydrochar was observed to immediately increase 
the total and oxidable heavy metal fractions in the soil. 
Therefore, caution is needed when amending sludge 
hydrochar in the soil due to the potential increase in 
heavy metal levels and long-term environmental impacts. 
While biochar and hydrochar have shown promise in 
reducing the bioavailability of heavy metals in soil, 
caution is necessary to avoid unintended consequences 
when used as pest and weed control (Eibisch et al. 2015). 
Since pesticides and herbicides mainly function in water, 
sorption by biochar may adversely affect pest control 
efforts (Graber et al. 2011).

Holistic ecological function changes

Many studies have shown the positive impacts of biochar on 
soil fertility and crop productivity. However, it is essential 
to note that some limitations and potential adverse effects 
are still associated with its use. Harmful components from 
biochar can be produced if the chosen parameters for 
production are not appropriate for the desired application 
(Chen et al. 2023b; Xiang et al. 2021). Increased soil pH 
as a result of biochar or hydrochar application may limit 
the supply of certain nutrients to the original soil, leading 
to micronutrient deficiency and negatively impacting crop 
yields (Brtnicky et  al. 2021; Xiang et  al. 2021). When 
biochar produced at 700 °C from poultry litter manure was 
applied to acidic sandy loam, it resulted in an excessively 
raised soil pH. This led to excessive phosphorus (P) 
concentrations and leachate enriched with dissolved P 
(Novak et al. 2013). In addition, the increase in soil pH 
caused by biochar application may also promote the 
hydrolysis of N-acyl-homoserine lactone (AHL), which can 

result in a decrease in the bioavailability of AHL. AHL is a 
signaling molecule used for cell-to-cell communication. This 
reduction in AHL bioavailability may affect plant signaling 
processes, potentially disrupting normal physiological and 
developmental pathways.

In addition to increasing pH, a study by Andrés 
et al. (2019) using corn cob rachis biochar produced at 
450–500 °C applied to sandy loam significantly reduced 
soil microbial biomass, while functional microbial diversity 
remained unchanged. Furthermore, the application of Pani-
cum virgatum biochar produced through two-stage-pyrolysis 
to fine Aridisol soil resulted in a significant decline in fatty 
acid methyl ester and fungi ratio, alteration in soil micro-
bial community composition, and a decrease in crop shoot 
(Kelly et al. 2015). Although biochar may increase fungal 
abundance and function in soil, a negative impact on arbus-
cular mycorrhizal fungal abundance has been observed by 
El-Naggar et al. (2019). Biochar may also contain toxic sub-
stances threatening human health and the environment. This 
includes the presence of heavy metals, volatile organic com-
pounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), 
dioxins and furans, and persistent free radicals (Brtnicky 
et al. 2021; Chen et al. 2021).

The impact of hydrochar on soil microbial communities 
has been sparsely documented in the literature. Nonetheless, 
a few studies have highlighted its positive effects on the 
growth and abundance of various soil microbes. Lang et al. 
(2023) determined that soil microbial metabolism, including 
carbohydrate exchange and amino acid metabolism, 
was enhanced by applying hydrochar derived from cow 
manure and corn stalks. Additionally, they demonstrated 
that the hydrochar amendment accelerated the removal of 
oxytetracycline from the soil and reduced its uptake by 
plants in the soil-Chinese cabbage system. These effects 
were attributed to changes in soil properties, an increase in 
the number of bacteria degrading oxytetracycline, and the 
stimulation of microbial metabolism. When examining the 
association between hydrochar and ectomycorrhizal fungi 
in seedling growth, Eskandari et al. (2019) found a higher 
abundance of ectomycorrhizal fungi with the application of 
hydrochar produced from paper mill biosludge compared 
to the control.

On the other hand, Andert and Mumme (2015) reported 
contrasting results, showing that hydrochar application 
significantly reduced the presence of Acidobacteria, 
up to 5–6 times more than the control. Meanwhile, the 
abundance of Firmicutes was less than one-third compared 
to the control group. Interestingly, the abundance of 
Bacteroidetes and Proteobacteria increased by 2.4 and 1.7 
times more than the control, respectively. These changes 
in the microbial community are likely a result of the 
easily degradable carbon and the low pH characteristics 
of hydrochar.
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According to Buss et al. (2022), toxic PAHs in biochar 
depend on the uneven heat distribution and vapor trapping 
during pyrolysis and chilly zones in the post-pyrolysis 
area. Sobol et al. (2023) discovered that dioxins and furans 
in biochar were predominantly below 20 ng total toxic 
equivalence per kilogram, with processing temperature 
and feedstock type being the primary causes of high dioxin 
concentrations in both biochar and hydrochar. It has been 
discovered that the most significant risk of elevated dioxin 
levels is associated with biochar and hydrochar produced 
within the temperature range of 200–300  °C, mainly 
through methods like torrefaction and hydrothermal 
carbonization. Furthermore, it has been emphasized that 
avoiding biomass and organic waste contaminated with 
chlorinated compounds or preservatives is crucial to 
obtaining dioxin-free biochar and hydrochar. However, 
it is worth noting that trace amounts of dioxins may still 
potentially remain in biochar and hydrochar matrices, even 
in small quantities. Chen et al. (2021) also reported that 
biochar-induced persistent free radicals could inhibit rice 
germination and growth and poison soil organisms due 
to free radical-induced oxidative damage. Additionally, 
persistent free radicals in biochar could trigger neurotoxic 
effects in soil organisms, such as nematode Caenorhabditis 
elegans, limiting its movement and defecation in soil.

The weathering of biochar surfaces and pore edges in 
soil may lead to an enrichment of more oxidized functional 
groups on the biochar surfaces, facilitating interactions 
between biochar and soil minerals (El-Naggar et  al. 
2018). In a field experiment conducted by El-Naggar et al. 
(2018), the particulate organic matter fraction of biochar 
physically interacted with soil minerals in the coarse 
sand fraction, while the biochar formed organo-mineral 
complexes with soil minerals in the clay/silt fraction due 
to the higher presence of exchangeable cations (e.g., Ca, 
Mg, Na, and K) compared to the coarse sand fraction. 
The formation of organo-mineral complexes, coating, and 
pore interactions between biochar and soil minerals or 
other amendments significantly influence the dynamics 
of nutrient release and retention in soils (El-Naggar et al. 
2019). However, this area requires further investigation 
using integrated spectroscopic techniques to understand 
the associated mechanisms and effects on soil nutrients.

Therefore, it is crucial to carefully consider the feedstock 
type, pyrolysis temperature, and pyrolysis unit design 
when producing biochar to minimize the presence of toxic 
substances. Moreover, as the use of hydrochar gains increasing 
attention as a sustainable soil amendment, it is imperative to 
conduct further assessments to evaluate the potential adverse 
effects on soil and the surrounding environment, considering 
the various production parameters involved in comparison 
with biochar production.

Life cycle assessment of biochar and hydrochar 
for soil amendments

Biochar and hydrochar contain a significant amount of carbon 
and act as carbon sinks to mitigate the effects of climate 
change. Life cycle assessment (LCA) is a well-established 
standardized method for assessing the efficiency of products or 
processes. In recent years, many articles have been published 
on the LCA of biochar and hydrochar, and several articles have 
been dedicated to these by-products as soil amendments. All 
studies were performed following ISO 14040:2006. However, 
functional units or system boundaries vary in different works, 
complicating the comparison of results (Matustik et al. 2020). 
Methodology unification would be beneficial for making LCA 
results from different authors comparable.

The results of LCA of biochar production in China indi-
cate a strong preference for using waste biomass materials 
as biochar feedstocks rather than wood or other virgin bio-
mass (Clare et al. 2015). These findings can be explained 
by the high accumulation of waste biomass resulting from 
agricultural activities, particularly straw. By diverting waste 
biomass from traditional waste management practices and 
converting it into biochar, it is possible to reduce greenhouse 
gas emissions and other environmental impacts associated 
with waste disposal. Additionally, the processing of waste 
biomass is supported by policies and regulations, as China 
actively promotes using renewable energy sources and sus-
tainable waste management methods. However, waste from 
the wood processing industry can be a valuable resource for 
biochar production, as this type of biochar has a high carbon 
content and stability.

Roy et al. (2020) conducted the LCA of peat moss and 
miscanthus biomass. They noted that using hydrochar for 
soil improvement carried fewer environmental risks com-
pared to HTC’s energy application. However, the advantages 
of this approach hinged upon the rate at which biomass 
decomposes. Brassard et al. (2018) demonstrated a negative 
balance of GHG emissions −2110 and −2561 kg CO2-eq 
Mg−1 biochar for scenarios with a lower pyrolysis tempera-
ture and a shorter solid residence in the reactor, respectively. 
The authors also confirmed that pyrolysis of switchgrass 
(Panicum virgatum) for biochar production could be a nega-
tive emission technology. However, the pyrolysis operating 
parameters should be chosen carefully. Some studies have 
shown that the carbon sequestration effect when using 1 
tonne of biochar can reduce CO2 emissions by 1153–3769 
kg (Matustik et al. 2022). Table 4 presents the results of 
several LCA studies on using biochar and hydrochar as soil 
amendments. Applying biochar or hydrochar in agricultural 
soils must be combined with other carbon-capturing strate-
gies such as crop rotation, zero tillage, and reforestation to 
achieve sustainable development.



42632	 Environmental Science and Pollution Research (2024) 31:42614–42639

Future directions and challenges

Firstly, the conflicting results of increasing/decreasing GHG 
emissions from the biochar and hydrochar-amended soil 
must be systematized to determine the factors and mecha-
nisms of influence on GHG fluxes. The current literature 
only lists these factors, such as soil structure, biochar and 
hydrochar ratio, and environmental conditions, such as air 
temperature, soil moisture, freezing–thawing cycles, and 
drying-rewetting. Still, it does not provide a precise and 
systematic understanding of how these factors affect GHG 
emissions from amended soils. By understanding these fac-
tors, optimizing soil management practices to reduce GHG 
emissions will be possible. One possible solution to this 
issue could be creating a unified model for predicting GHG 
emissions from soil with biochar or hydrochar amendments, 
which would systematize the factors above.

In addition, further investigation is required to determine 
the appropriate feedstock sources for producing hydrochar 
for various applications. Hydrochars’ properties from vari-
ous feedstock sources can influence how effective they are 
for carbon sequestration and other soil improvement appli-
cations. It is crucial to identify suitable feedstock sources 
and optimize the production process to ensure the produc-
tion of efficient and sustainable biochars and hydrochars. 
This optimization should encompass not only the pyrolysis 
method but also factors such as temperature, humidity of the 
feedstock, and processing time. However, due to the limited 
information available, further research is required to deter-
mine acceptable feedstock sources for achieving the desired 
outcomes. In addition to other environmental management 
techniques, this will help to maximize the potential advan-
tages of hydrochar in soil carbon sequestration.

Furthermore, there is a knowledge gap regarding GHG 
emissions during the cracking of agricultural soil. In arid 
and semi-arid regions, biochar and hydrochar are commonly 
used to increase soil water retention. However, they also 

reduce cracks, thus lowering GHG emissions. Therefore, a 
series of studies are necessary to determine the correlation 
between the following parameters under stable environmen-
tal conditions: measured GHG emission, microbial commu-
nity activity, water evaporation rate, crack intensity factor, 
and crack volume fraction.

Lastly, more studies on the synergistic mechanism of biochar 
and hydrochar and PGPR are required to establish a theoretical 
framework for comprehending the dual effects of this strategy. Such 
a framework will make it easier to understand how PGPR biochar 
and hydrochar interact to improve soil fertility and health and 
how they affect plant growth, nutrient cycling, and soil microbial 
populations. A comprehensive understanding of the underlying 
mechanisms will allow for the full utilization of this method for soil 
remediation and sustainable agriculture. This, in turn, will optimize 
the long-term effects of biochar/hydrochar-PGPR in effectively 
dealing with soil contamination. The final comparison of biochar 
and hydrochar is summarized in Table 5.

Conclusions

This article reviews published peer-reviewed literature on using 
biochar and hydrochar as soil amendments. As by-products of 
green energy biomass processing, the application of biochar 
and hydrochar provides undeniable benefits to society by 
increasing land productivity, adsorbing heavy metals, and 
reducing GHG emissions. It was found that applying biochar 
or hydrochar can have unintended consequences, such as 
limiting the supply of essential nutrients to the soil, leading 
to micronutrient deficiency, and negatively impacting crop 
yields. While both biochar and hydrochar show promise for 
carbon storage in soil, their long-term effectiveness requires 
further assessment. It is crucial to thoroughly evaluate the 
environmental impact of their production and application, 
ensuring that the benefits of enhanced carbon stock outweigh 
any potential adverse effects.

Table 4   LCA results of biochar and hydrochar for soil amendments

Feedstock for biochar/hydrochar Conversion tech-
nology (tempera-
ture)

Biochar/hydrochar 
application rate

Global warming potential Reference

Pinewood biochar Pyrolysis (500 ℃) 25 t/ha 1.4 Mg CO2-eq/Mg feedstock Field et al. (2012)
Rice straw biochar Slow pyrolysis 1–2% (by soil weight)  − 1.35 Mg CO2-eq/odt straw Clare et al. (2015)
Food waste biochar Pyrolysis

Pyrolysis
30 t/ha
30 t/ha

1.07 t CO2-eq/t feedstock Ibarrola et al. (2012)
Wood waste biochar 1.25 t CO2-eq/t feedstock
Hybrid poplar biochar Pyrolysis 50 t/ha  − 17.73 t CO2-eq/ha

 − 1.22 t CO2-eq/t dry biomass feed-
stock

Peters et al. (2015)

Peat moss and miscanthus hydrochar HTC (240 ℃) - 321 kg CO2-eq/t feedstock Roy et al. (2020)
Miscanthus hydrochar HTC (240 ℃) -830 kg CO2-eq/t feedstock
Peat moss hydrochar HTC (240 ℃) 79.51 kg CO2-eq/t feedstock
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Additionally, the effectiveness of biochar in reducing 
heavy metal availability is not universally consistent and 
can vary based on factors such as soil pH, application rate, 
method, and feedstock. This review covers these aspects 
of the benefits of using biochar and hydrochar, making it a 
promising strategy for reducing carbon emissions. However, 
the subsequent impact on soil and crop yields is still the 
subject of future research.
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