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Abstract
Developing a suitable index for Waste Load Allocation (WLA) is essential for both industrial polluters and environmen-
tal organizations. Identifying the index that best describes the quality conditions of the river is the main concern of this 
study. To achieve this purpose, a novel framework incorporating a regret-based index and a bankruptcy-based approach to 
address the impacts of low water quality and pollutant locations within the WLA are introduced. The framework includes 
a simulation–optimization model to minimize river quality regret for environmental organizations and total treatment cost 
for industrial polluters, employing Nash bargaining theory for conflict resolution. Additionally, a new bankruptcy approach, 
the Namin’s rule, is proposed for redistributing the River Quality Regret Index among industrial polluters. Applying this 
methodology to data from the KhoramAbad River, a sensitivity analysis reveals that while there is no significant difference 
between the methodology and fuzzy risk when polluters are close, the methodology provides more accurate results as the 
distance between polluters increases. When the distance between two pollutants was 20 km, the sum of WLA was evaluated 
to be 300 kg per day higher than that in the compared method, potentially enhancing environmental justice.

Keywords Regret approach · Bankruptcy · Nash bargaining · NSGA-II · KhoramAbad River

Introduction

With the industrial development of cities and the large-scale 
discharge of wastewater into water resources, the concerns 
of water resource managers have shifted toward managing 
both the quantity and quality of resources. If we consider 
Liebman and Lynn (1966) pioneering research as one of the 
primary explorations into river quality management, numer-
ous frameworks and methodologies have been introduced 
since then. In the meantime, given the inherent uncertainties 
of qualitative systems (Jolma 1995), uncertain models are 
increasingly preferred (Nouri et al. 2023). The two primary 
categories of management criteria, serving as the basis for 

the development of uncertain models, include regret-based 
models and risk-based models.

While the concept of regret is familiar in management, 
and everyone may have experienced it (Loomes and Sugden 
1982), the Min–Max regret approach to river quality man-
agement was introduced by Burn and Lence (1992). Building 
on the Min–Max Regret concept (Ellis 1988), it minimizes 
the maximum regret across several scenarios encompassing 
hydrological, hydraulic, and qualitative uncertainties. This 
research presented multiple implementations, demonstrat-
ing a quasi-trade-off between budget and quality criteria, 
though dominated solutions appear in most outputs. Subse-
quently, this approach was adopted in other studies on river 
quality management (e.g., Jolma (1995) and Faraji et al. 
(2015)). Other areas of water resources management, such 
as Li et al. (2009), Poorsepahy-Samian et al. (2012), and 
Eyni et al. (2021), also drew inspiration from this view, but 
its wider adoption remained limited. Notable adjustments 
include the conversion of minimum the maximum regret to 
minimum the average regret in groundwater quality man-
agement (Bashi-Azghadi et al. 2016). Following the devel-
opment of regret-based models, the research focus shifted 
toward risk-based models that incorporating uncertainty 
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more effectively. The fuzzy theory proved particularly suit-
able for this purpose, as it goes beyond the limited set of 
scenarios considered in regret-based models, each treated 
with equal probability (Burn and Lence 1992), and offers a 
more comprehensive approach to the state space.

The risk of an event, as discussed in most research, is 
calculated by multiplying the probability of that event by its 
impact (Sadiq et al. 2007; Deng et al. 2011). In river quality 
management spatially Waste Load Allocation (WLA) deter-
mination, a threshold for the low water quality of a water 
quality indicator such as dissolved oxygen (DO) is tradition-
ally considered. Using Monte Carlo Simulations (MCS), the 
probability distribution function (PDF) of the occurrence of 
that threshold is calculated, which allows for the estimation 
of the risk of the river’s low quality (Vemula et al. 2004; 
Ghosh and Mujumdar 2006; Jha and Gu 2010).

It is noteworthy that some researchers have proposed 
fuzzy risk to address the limitations of the strict probabilistic 
definition (Sasikumar and Mujumdar 2000; Mujumdar and 
Sasikumar 2002). While they agree that if, in any simulated 
scenario, the qualitative indicator’s value falls below the 
defined threshold, such as that set by environmental organi-
zations in governments and states, that scenario should be 
considered a failure. However, they argue that values slightly 
higher than the threshold should not be considered entirely 
acceptable, although not complete failures. Therefore, based 
on Fuzzy logic, they developed fuzzy risk by determining 
acceptable low and high thresholds and incorporating the 
fuzzy membership function of low water quality between 
these two thresholds (Mujumdar and Sasikumar 2002). 
Despite these efforts, the mentioned indicators do not fully 
capture the severity of the impact.

By examining the research conducted on the issue of 
determining WLA, it is evident that in most of the devel-
oped frameworks, a model has been placed as an allocator 
and less than the same optimization outputs have been used 
as WLA (Nouri et al. 2023). Each of these studies has its 
strengths, including the variety of conflict resolution meth-
ods at different levels and contexts. For example, Hung and 
show (2005) and Farrow et al. (2005) came up with the idea 
of pollution load trading to minimize the cost of the whole 
system. Niksokhan et al. (2009a, b) and Nikoo et al. (2011) 
presented the idea of game theory to fairly and efficiently 
allocated the waste load based on the polluters’ cooperation. 
Farjoudi et al. (2021), Nouri et al. (2023), and Babamiri and 
Dinpashoh (2024) discussed the use of bankruptcy theory 
in order to redress the justice in complicated environmental 
conflicts. Despite individual strengths, each study exhibits 
weaknesses. These include identifying the primary WLA 
and pollutant rights trading based on linear simulation 
assumptions in qualitative-quantitative simulation process 
of the river (e.g., Mesbah et al. 2009). A further weakness in 
past research is neglecting the impact of pollution discharge 

location on simulations when determining WLA was based 
on bankruptcy theory (Farjoudi et al. (2021) and Nouri et al. 
(2023)). While bankruptcy laws, relying on ethical, equi-
table, and reasonably efficient principles, provide a frame-
work for fair asset distribution (Herrero and Villar (2001), 
Sheikhmohammady and Madani (2008), Li et al., (2020)), 
but other than them, the criteria that may depend on the 
nature of the problem under consideration should be taken 
into consideration. (Herrero and Villar (2001)). Therefore, 
attention should be paid to the nature of what is considered 
“assets” (which is a function of the river’s self-purification 
in the water quality management), because it is possible that 
neglecting this, the developed law is not a fair interpretation 
from the point of view of some representatives (which here 
means the polluters).

In this study, a novel framework to address the limitations 
of existing risk indicators and regret-based indices has been 
proposed using two innovative approaches: a novel regret-
based index termed the River Quality Regret Index (RQRI) 
and the Namin rule. RQRI aims to provide a more compre-
hensive insight into river pollution by assessing the accepta-
ble fuzzy level of pollution along the river. Unlike traditional 
risk indicators (such as Sasikumar and Mujumdar 2000). 
RQRI accounts for the intensity of pollution violations, fill-
ing a critical gap in current methodologies. The Namin rule 
addresses the oversight of bankruptcy rules regarding the 
location of pollution discharge. This novel approach, unlike 
other laws that do not consider this issue (such as Nouri 
et al. (2023) and Babamiri and Dinpashoh (2024)), consid-
ers the contribution of each pollutant relative to its impact 
on degrading water quality in the river, thereby enhancing 
the precision of assessment. This ensues from the recog-
nized shortcomings of existing methodologies in accurately 
assessing and managing the impact of point pollution dis-
charge on river quality. While current risk indicators lack the 
capability to indicate the intensity of violations, regret-based 
indices fail to address uncertainty effectively. By proposing 
the RQRI and the Namin rule, the aim is to overcome these 
limitations and provide more robust tools for environmental 
assessment and management.

The purpose of this study is twofold. Firstly, to investi-
gate whether estimating the intensity of low water quality 
using the RQRI will lead to a change in the WLA of the 
pollutant. Secondly, to explore whether introducing sensitiv-
ity to the location of the pollutant through the Namin rule 
induces a significant change in WLA. By addressing these 
questions, and the proposed methodology can contribute to 
the advancement of environmental assessment and manage-
ment practices.

The advantage of this approach lies in its ability to pro-
vide more accurate and precise assessments of river quality 
and pollution impact. By incorporating the intensity of vio-
lations and considering the spatial distribution of pollutants, 
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the proposed methodology offers a more nuanced under-
standing of environmental risks and opportunities for more 
effective pollution management strategies.

This study presents a novel framework integrating 
a regret-based index for WLA, providing a systematic 
approach to water quality assessment and management. 
The proposed Namin rule enhances fairness and efficiency 
in pollution management strategies. Comparative analysis 
demonstrates the superiority of our methodology over the 
fuzzy risk assessment methods, particularly in scenarios 
involving varying distances between polluters. These con-
tributions advance the understanding and practice of sustain-
able water resource management, offering valuable insights 
for policymakers, environmental practitioners, and industrial 
stakeholders alike.

To achieve these objectives, this paper is structured into 
seven sections. In the “Methodology” section, the mod-
els and implementation of them using case study data are 
introduced. The “Case study” section presents the details 
of the case study data utilized. Following this, the “Result” 
section reports on the results obtained from our analysis. 
Subsequently, in the “Analyses” section, we delve into an 
in-depth analysis of the obtained results. The “Discussion” 
section involves a comparative analysis between the meth-
odology presented in this research and the methodology 
proposed by Nouri et al. (2023). Finally, the “ Conclusion” 
section provides a comprehensive summary and conclu-
sion of the research, highlighting the key findings and their 
implications.

Methodology

The purpose of this research is to establish a methodology 
for determining the WLA using the bankruptcy approach and 
the Regret approach. The various steps involved in develop-
ing this methodology are illustrated in Fig. 1. As shown in 
the figure, following the collection of quantitative and quali-
tative data on the river, economic data on the polluting units, 
and conflict-related goals, a quantitative–qualitative simula-
tion model of the river is constructed. This simulation model 
is then linked and executed with a multi-objective optimiza-
tion model (NSGA-II) to generate non-dominant options. 
Subsequently, the Nash bargaining approach is employed 
to determine the point of agreement among the main stake-
holder groups for these non-dominant options. Finally, a new 
law is developed based on the bankruptcy theory approach 
to determine the WLA for each polluting unit.

Water quality simulation model

The transfer of pollution in the river system occurs via two 
processes: diffusion and advection (Thomann and Mueller 

1987). In a simplified one-dimensional flow scenario, these 
two processes can be modeled by assuming the spreading coef-
ficient, flow intensity, and cross-sectional area of the river to 
be constant as Eq. 1 (Mannina and Viviani 2010).

where C is the general form of pollutant concentration. 
Biochemical oxygen demand (BOD) is a crucial qualitative 
indicator in river quality management due to its interactions 
with various other qualitative parameters (Nouri et al. 2023). 
Accordingly, the quantitative–qualitative simulation of the 
river in this study is based on BOD-DO simulation. The 
Streeter-Phelps Eqs. (1925) represent one of the most widely 
recognized BOD-DO simulation models for rivers and have 
been extensively employed for quantitative–qualitative river 
simulations in various research studies (Nouri et al. 2023). 
Streeter and Phelps (1925) derived the well-known Eqs. 2 
and 3 by applying simplifying assumptions to the one-
dimensional equation of DO mass balance. The items in all 
equations are introduced in Appendix A Table A1.
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Fig. 1  Flowchart of proposed methodology
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River Quality Regret Index (RQRI)

As stated in the introduction, risk-based indicators have 
weak points. For more clarity, refer to Fig. 2 that illustrates 
two scenarios of river DO simulation. In scenario 2, the 
length of the river below the acceptable lower threshold is 
nearly twice as long as in scenario 1. Conversely, DO val-
ues in scenario 2 are significantly lower than in scenario 
1. Nevertheless, both scenarios, in terms of both the tradi-
tional and fuzzy risk definitions, indicate a consequence. 
In contrast, regret theory, which is often used to estimate 
deep uncertainties in economic systems (Bashi-Azghadi 

(3)LC = LC0
⋅ e−kc⋅t

et al. 2016), is a better alternative to risk due to attention 
to details. In this regard, based on the regret approach and 
inspired by the correction that Bashi-Azghadi et al. (2016) 
made on Max–Min Regret approach, we introduce the 
uncertain and fuzzy, RQRI, which equals the average level 
below the DO profile relative to the acceptable threshold in 
the average river level in that interval, as shown in Eq. 4.

RQRI with a dimension equal to M represents the 
oxygen deficiency of the entire reach. The Regretn     is 
the regret value of the  nth scenario of MCS based on the 
definition provided by (Sasikumar and Mujumdar 2000; 
Mujumdar and Sasikumar 2002). It is calculated in Eq. 5.

While �LWQ represents the function of the change in the 
river’s low water quality, which can be calculated using 
Eq. 6.

It should be noted that the acceptable lower limit 
and upper limit in Eq. 6 are considered 4 and 5 mg/L, 
respectively.

(4)
RQRI =

N∑
n=1

∫ ld
0

Regretn(l)dx

N
⋅ A

(5)

Regretn(l) =

⎧
⎪⎨⎪⎩

0�
DOU − DOl,n

�
∗ 𝜇LWQ

DOL − DOl,n

DOl,n ≥ DOU

DOL < DOl,n < DOU∀l, n

DOl,n ≤ DOL

Table 2  Qualitative and hydraulic attributes for the river reaches 
(Ahour 2006)

Check point DO (mg/L) BOD5 (mg/L) V (m/s) Q  (m3/s)

1 4.20 9.47 2.59 3.8
2 4.00 9.88 2.50 3.85
3 3.80 9.88 2.60 3.9
4 3.50 9.26 2.10 3.6
5 4.50 7.82 2.24 3.65
6 4.70 9.88 2.31 3.7
7 4.80 11.93 2.46 3.75
8 4.70 11.94 2.67 3.95
9 4.40 12.61 2.70 4

Table 3  Economic qualitative 
and quantitative data for the 
polluting units (Ahour 2006)

Units Q  (m3/day) BOD5 (mg/L) Temperature 
°C

Classified treatment cost (US$/
Mon)

30% 60% 90%

1 775 129 21 538 900 1750
2 200 195 19 113 225 338
3 1.5 165 19 100 200 350
4 36 362 21 163 363 525
5 250 89 20 538 950 1300
6 37 89 20 438 825 1075
7 150 42,000 51 1138 1700 2650
8 110 95 17 325 400 663
9 45 42,000 51 285 425 663

Table 1  The results of Eqs. 12, 
13, 14 for a numerical example

Steps Gi ΔBODm
i
(kg) BODnew

i
(kg)

Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2

1 0.0007 0.0033 0.82 0.18 81.81 18.19
2 0.0025 0.0039 0.61 0.39 143.03 56.97
3 0.0052 0.0077 0.60 0.40 202.71 97.29
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Multi‑objective optimization model

River quality management, particularly the determination of 
WLA, is inherently a multi-objective issue. Environmental 
organizations and advocates strive to improve river quality, 
while polluters aim to reduce their treatment costs (Nouri 
et al. 2023). If stakeholders seeking to minimize their treat-
ment costs can be grouped due to the commonality and 
alignment of their goals, the WLA determination problem 
can be modeled as a multi-objective optimization prob-
lem (Mahjouri and Abbasi, (2015); Andik and Niksokhan, 
(2020)). In this research, the objective function of Iran’s 
Department of Environment for maintaining river quality 

(6)�LWQ(DO) =

[
DOU − DO

DOU − DOL

]

is to minimize the RQRI (presented in the “River Qual-
ity Regret Index (RQRI)” section). Similar to many other 
studies (such as Niksokhan et al. (2009a, b a and b)), the 
objective function of point pollutants in the river, which are 
industries, is considered to be minimizing the Total Treat-
ment Cost (TTC) in the form of Eq. 8. 

xi represents the wastewater treatment percentage of each 
pollutant and serves as the optimization decision variable in 
the bi-objective optimization problem, ranged between 0 and 
100 with no further constraints in this optimization system. 
In this research, the calculation of the trade-off between  O1 
and  O2 is done by NSGA-II (Deb et al. 2000). NSGA-II is a 
powerful and efficient algorithm for solving multi-objective 
optimization problems, and it has been successfully applied 
in various fields of water resources management (Nouri 
et al. 2022). NSGA-II integrates non-dominated sorting and 
crowding distance calculation with other Genetic Algorithm 
operators (such as crossover and mutation) to assess the 
Pareto front in the Rn space (Deb et al. 2000). For further 
insights, refer to Niksokhan et al. (2009a).

Conflict resolution models

The conflicting objectives presented in Eqs. 7 and 8 lead to 
disputes at two levels. Firstly, the Department of Environ-
ment and polluters disagree on the selection of RQRI and 
TTC from among the non-dominated options generated by 
NSGA-II. Secondly, polluters themselves clash over the allo-
cation of pollution discharge limits to achieve the agreed-
upon RQRI (Nouri et al. 2023). Despite these conflicts, 
there is evidence of collaboration between the parties, for 
example, Nash bargaining, a common method for resolving 
conflicts, is frequently employed in river quality manage-
ment and WLA determination (Nouri et al. 2023).

Let us suppose there are m decision makers involved in a 
scenario, each capable of influencing the decision space, X. 
fi: X → R represent the objective function of decision maker 
i, and the payoff set is defined by Eq. 9 (Saadatpour et al. 
2020).

whereu   is the payoff space and ui is the payoff of player i. 
Nash solution, derived from the principles outlined by Nash 
(1953), requires a closed, convex, and bounded decision 
space, ensuring that no party receives less than their point 
of disagreement. It is calculated using a set of mathematical 
expressions (Kerachian et al. 2012).

(7)O1 = min RQRI

(8)O2 = minTTC = min
∑m

i=1
TCi

�
xi
�

(9)H =
{
u||u ∈ Rm

, u =
(
ui
)
, ui = fi(x) with some x ∈ X

}

Fig. 2  Compare two scenarios of river DO simulation

Table 4  Nash bargaining results and Namin and CEA rules for RQRI 
and fuzzy risk approaches

Fuzzy risk RQRI Items

CEA Nash CEA Namin Nash

0.12 0.12 0.21 0.21 0.20 RQRI (kg)
15.26 15.22 24.12 24.12 23.64 Risk (%)
26.6 26.59 25.69 25.70 26.14 TTC *
99.98 98.29 99.98 99.98 99.94 Unit 1 (%)
39 38.32 39 39 32.24 Unit 2 (%)
0.25 0.24 0.25 0.25 0.25 Unit 3 (%)
13.03 12.88 13.03 13.03 12.95 Unit 4 (%)
22.25 22.21 22.25 22.25 22.15 Unit 5 (%)
3.29 3.29 3.29 3.29 3.29 Unit 6 (%)
420.28 597.98 509.16 505.26 669.27 Unit 7 (%)
10.45 10.40 10.45 10.45 10.40 Unit 8 (%)
420.28 241.34 509.16 513.22 344.34 Unit 9 (%)
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However, as the determination of treatment percentages 
for each polluting unit (WLA) is not inherently equitable, 
various methodologies, such as bankruptcy-based strategies, 
have been proposed to rectify this and rebalance risk and 
responsibilities (Nouri et al. 2023). For example, one of the 
bankruptcy-based rules is the Constrained Equal Awards 
(CEA) Rule.

The CEA rule allocates a system’s assets (in this case, 
the total allowable pollution load that can be discharged into 
the river without exceeding the acceptable threshold) among 
claimants (here, the maximum allowable pollution load for 
each pollutant). As denoted by Eq. 11, the minimal claim 
and λ are apportioned among stakeholders, ensuring that 
the sum of allocations equals the total wealth (Madani & 
Zarezadeh 2012).

In the CEA rule, the modified claim of each claimant 
increases from zero until either the claimants reach their 
maximum claim or the sum of the modified claims equals 
the available assets. This approach prioritizes satisfying the 
demands of smaller claimants, thereby reducing the overall 
number of unsatisfied parties (Herrero and Villar 2001).

It seems reasonable the impact of each pollutant’s BOD 
unit on the RQRI of the entire river is a fair approach to 
determining WLA. The pollutant with the most significant 
impact on raising the RQRI should contribute more to its 
own wastewater treatment to maintain a low RQRI. Based 
on this principle, we expanded the Namin rule using the 
bankruptcy approach to enhance the environmental justice. 
First, the partial RQRI per the partial BOD of the ith pollut-
ant are calculated, considering the pollution discharge of all 
pollutants except pollutant i (represented as i− in Eq. 12). 
Next the ratio of the calculated partials of each pollutant per 
total partials of all pollutants is determined. By multiplying 
this ratio by the delta BOD changes calculated in Eq. 12, the 
contribution of each pollutant to increasing the RQRI in that 
step is determined (Eq. 13). The BOD value for pollutant i in 
this step is calculated by adding this contribution to the BOD 
calculated previously (Eq. 14). This process (execution of 
Eqs. 11 and 14) is repeated until the RQRI value reaches the 
 RQRI* value (the value obtained from Nash bargaining). The 
resulting BODs represent the creation of the RQRI agreed 
upon in the Nash bargaining between industrial polluters and 

(10)

Maximazation
∑m

i=1

�
fij − di

�
Subject to ∶

fij ≥ di ∀i, j

fij ∈ H ∀i, j

(11)

CEAi(Acceptable threshold, BOD
max) = min

{
BODmax

i
, �
}

Subject to ∶

To apply (CEA)
Consequence

→ Acceptable threshold

the environmental organization. These calculated BODs are 
considered the WLA for each pollutant.

For further elucidation, the specified procedures are exam-
ined with the help of a numerical example in three steps and 
the results are presented in Table 4. Equation 12 is utilized 
to calculate the impact share of BOD changes of ith pollutant 
on RQRI.  G2 is nearly five times more than  G1 that means 
unit 2 has a greater share in raising RQRI. Next, we need to 
determine the ratio of each pollutant’s impact on RQRI to 
all pollutants, so Eq. 13 is used to calculate the increasing 
BOD share of i pollutant. According to Table 1, unit 2 that 
has a grater share in increasing RQRI, has less △BODm

i
  

compared to unit 1. Finally, The BOD calculated in this 
step 

(
△BODm

i

)
 is added to the BOD calculated in the pre-

vious step 
(
BODlast

i

)
 and steps are repeated. After three steps, 

the permitted BOD for unit 1 is equal to 202.71 kg/day while 
this value is 97.29 for unit 2. If there are equal BOD shares 
for two units, the values are the same and equal to 150 kg/
day.

Case study

The methodology presented in this article was implemented 
by of the quantitative and qualitative data of the KhoramA-
bad River. KhoramAbad City, having a share of 28% of 
the total industries in Lorestan Province, is considered a 
semi-industrial city. This has led to many industrial units 
being put into operation near the KhoramAbad River. The 
passage of several kilometers of this river through the city 
of KhoramAbad, along with the pollution and discharge of 
industrial effluents into it, has caused the increasing sensi-
tivity of the quality conditions of this river-factory system. 
The location of the research area and the quantitative and 
qualitative data of the river and its adjacent pollutants are 
presented in Fig. 3, Tables 2 and 3, respectively.

According to Fig. 3, our research area encompasses nine 
distinct industrial pollutants, each impacting to the over-
all environmental landscape. These pollutants have been 
systematically categorized into groups of minor and major 
polluters, a classification meticulously detailed in Table 3. 

(12)Gi =
�RQRI

�BODi

∀i|cons tan t i−

(13)△BODm
i
=

⎛
⎜⎜⎜⎝

1

Gi∑
i

1

Gi

⎞
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(14)BODnew
i

= BODlast
i
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Notably, units 7 and 9 emerge as major polluters, character-
ized by their significantly elevated BOD concentration of 
4200 mg/L. The remaining pollutants are classified within 
the minor group. This stratification not only delineates the 
varying degrees of impact exerted by each pollutant but also 
underscores the robustness of our methodology in accurately 
assessing and categorizing pollutants for the purpose of 
determining WLA.

Result

Optimization‑simulation model running

The methodology developed in this project was applied to the 
quantitative and qualitative data of the study area, as described 
in the “Case study” section. The first step involved simulat-
ing the desired river both quantitatively and qualitatively. 
This was achieved using a calibrated qualitative-quantitative 

simulation model of the KhoramAbad River (Nouri et al. 
2023), based on Eqs. 2 and 3. Since the aim of this research 
was to present an uncertain model, MCS was used to generate 
the required scenarios of uncertain parameters after collecting 
the necessary quantitative and qualitative data. The scenarios 
presented by Nouri et al. (2023) were used for the MCS.

Next, the simulator model and MCS scenarios were 
linked with NSGA-II, a multi-objective optimizer model. 
This resulted in a simulator-optimizer model with the objec-
tives presented in Eqs. 7 and 8, which was ready for imple-
mentation. In this research, a population of 50 chromosomes 
was selected. The probability of mutation and crossover was 
set to 0.01% and 80%, respectively. The evaluation process 
of non-dominated procedure was subjected to sensitiv-
ity analysis with respect to the number of generations. No 
change was observed from the 100th generation onwards. 
Therefore, the 100th generation, presented in Fig. 4 with the 
legend “RQRI-TTC,” was set as the criterion for continuing 
the research.

Fig. 3  Case study area
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Conflict resolution result

Based on the considerations presented in the “Conflict Res-
olution Models” sections, the Nash bargaining model was 
employed to resolve the conflicts between the Department of 
Environment and the polluters. The model was implemented 
using the set of Eqs. 10, and the results are presented in 
Table 4. The Nash bargaining application yielded  RQRI* 
and TTC *, which are functions of nine pollutant treatment 
percentage, a decision variable.

After determining the  RQRI* agreed upon by the pollut-
ers and the Department of Environment, the WLA was deter-
mined using the rule developed in this research (Namin’s 
rule). Formulations 10 to 12 were used in an iterative pro-
cess with an initial value of zero. The process continued 
until the pollution permit value calculated in Eq. 13 did not 
cause the RQRI of the river to exceed 0.2 kg  (RQRI*). The 
amount of pollution that led to the closest RQRI to  RQRI* 
was introduced as WLA. This value for nine pollutants is 
presented in Table 4.

Analyses

This research introduces a novel uncertain index for measuring 
river quality and a groundbreaking bankruptcy-based approach 
for allocating the waste load of pollutants. To further examine 
and analyze these methodologies, fuzzy risk (for comparison 
with RQRI) and CEA rule (for comparison with Namin’s rule) 
were also applied using the developed data. These methods 
will be compared and contrasted in the following section.

This advantage, which incorporates the fuzzy risk of the 
river’s low water quality as a fuzzy membership function, 
removes the obtained index from the rigid state and makes 
it a more accurate measure than the conventional risk for 
low water quality. To determine the fuzzy risk in this study, 
the PDF of the river quality index was required, which was 

obtained from the MCS and the dataset used to calculate 
the RQRI. For more information on fuzzy risk, refer to 
Niksokhan et al. (2009a). Based on this, the output trade-off 
from running the simulator-optimizer model with the objec-
tives of minimizing fuzzy risk and TTC is presented in Fig. 4 
with the legend “Risk-Cost.” To better compare the trade-
off of “RQRI-TTC” with “Risk-TTC,” the fuzzy risk values 
corresponding to RQRI, which can be calculated using the 
percentage of nine pollutant treatments (as a decision vari-
able), are shown in Fig. 4 with the legend “RQRI2Risk”.

Upon examining Fig. 4, it is evident that the overall forms 
of the two graphs exhibit remarkable similarity. Notably, the 
values of “RQRI2Risk” closely align with those of “Risk-
TTC”. This implies that the pollutant treatment percentages 
associated with the non-dominated “RQRI-TTC” options are 
nearly identical to those that comprise “Risk-TTC”. The pri-
mary distinction between the trade-offs of “RQRI2Risk” and 
“Risk-TTC” lies in the vicinity of fuzzy risk = 100, where 
the number of the former’s options is several times greater 
than that of the latter. This disparity arises from the fact that 
in fuzzy risk, a failure is calculated as one unit if the critical 
point of the DO profile in each MCS scenario falls below the 
standard limit (in this case, 4 mg/L).

In contrast, RQRI considers all scenarios where the DO 
level falls below the standard limit. Consequently, at a spe-
cific threshold (precisely located on the “RQRI-TTC” trade-
off point), all MCS scenarios fall below the standard line, 
resulting in a corresponding risk of 100. Meanwhile, RQRI 
remains sensitive to increasing pollution levels, enabling it 
to calculate and consider higher values than  RQRI*.

To further compare the two approaches, the Nash bargaining 
outcomes for the “Risk = TTC” trade-off was evaluated against 
those for the “RQRI-TTC” trade-off (presented in Table 4). Based 
on this comparison, it can be concluded that under the conditions 
of this study, the risk-based approach is somewhat stricter than the 
regret-based approach, as the risk associated with  RQRI* is lower 
than the  Risk* corresponding to “Risk-TTC.”

Fig. 4  The trade-off between 
objectives, output of multi-
objective optimizer model 
(RQRI-TTC represent trade-off 
between RQRI and TTC, 
Risk-TTC represent trade-off 
between fuzzy risk and TTC 
and RQRI2Risk represent trade-
off between the fuzzy risk cor-
responding to RQRI and TTC)
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Another approach to comparing RQRI with fuzzy risk 
is to utilize Sensitivity Analysis (SA). This method allows 
us to understand how changes in input parameters affect 
the outcomes of both indices, providing insights into their 
robustness and reliability in evaluating river quality. In this 
research, we employed the one-at-a-time method to conduct 
SA for both RQRI and fuzzy risk. Apart from simplicity, 
another significant advantage of this method is that any 
observed changes can be attributed to the alterations in that 
single factor, whereas statistical methods necessitate some 
kind of formal analysis (Ferretti et al. 2016).

Inputs such as upstream flow, upstream DO, upstream 
BOD, and pollution discharge of units were incorporated 
into MCS to assess their uncertainty. The remaining param-
eters, including  k2,  kc, and the level of treatment of BOD 
of each unit, were selected for SA. The sensitivity analysis 
for determining parameters was assessed using Equation B1 
for both indices, and the outputs are reported in Fig. 5. As 
shown in Fig. 5, units 7 and 9 exhibited high sensitivity, 
while sensitivity for other units was close to zero. However, 
these sensitivity values were higher for unit 7 in the case of 
RQRI, primarily due to BOD levels of the units. Only kc for 
RQRI showed minimal sensitivity in comparison.

Subsequent analysis using the CEA rule revealed simi-
lar WLA values for pollutants compared to the method 
proposed by Nouri et al. (2023). The claimants’ WLA val-
ues resulting from CEA implementation are presented in 
Table 4. As anticipated, the small polluters received their 
maximum claims, while the two macropollutants received 
equal shares of 509 kg/day. This value closely resembles 
the results obtained using the Namin rule methodology pre-
sented in this research.

Discussion

The method presented in this research bears a close resem-
blance to the corresponding methods, fuzzy risk and CEA 
rule, introduced by Nouri et al. (2023). However, due to the 
enhanced accuracy of RQRI calculations compared to popular 
methods, it emerges as a more reliable measure than fuzzy 
risk. On the other hand, the mechanism for determining credi-
tor shares in CEA rule, like many other bankruptcy approach 
laws, adheres to the equality procedure. While this approach 
is appropriate in many situations, it may not be suitable in 
cases where the impact of increasing a creditor’s claim on the 
property value is variable. One such instance is the determina-
tion of WLA in the river-pollutant system, where the river’s 
self-purification capability influences the pollutant discharge 
sites differently. In other words, the assumption of linearity 
in the qualitative simulation of the river within the CEA rule 
may lead to WLA values that diverge from those obtained 
from the non-linear simulation of the river in the Namin rule.

To discuss the developed methods, we assume that the 
studied river has only two pollutant sources. The first source 
discharges at point 1 of the main case, while the second 
source discharges in four scenarios at distances of 2, 5, 10, 
and 20 km from the first pollutant. In these four scenarios, 
the CEA rule and Namin rule were applied to achieve an 
RQRI of 0.2 kg per day. The results of the WLA for two 
hypothetical pollutants and the corresponding fuzzy risk for 
each scenario are depicted in Fig. 6. As the distance between 
the two sources increases, the WLA assigned to the two 
pollutants in the Namin rule diverges, while according to 
the CEA rule, the WLA remains constant for both sources. 
On the other hand, the river’s overall pollution acceptance 

Fig. 5  Results of SA: A RQRI, 
B fuzzy risk. Ci is the concen-
tration of pollutant i and  Co 
represented other units
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capacity generally increases with the distance between the 
two pollution sources. However, the Namin rule utilizes the 
pollution acceptance capacity more extensively than the 
CEA rule. Consequently, the total WLA in the scenario with 
a distance of 20 km between the two pollution sources was 
approximately 2000 kg per day for the CEA rule, while the 
Namin rule calculated a total WLA of approximately 2,300 
kg per day. This increases environmental justice with the 
help of a mechanism based on the method, while in some 
studies, they have intended to achieve it with the help of 
an objective function similar to inequity (e.g., Andik and 
Niksokhan (2020) and Haghdoost et al. (2023)).

Meanwhile, in the realm of research literature concerning 
the determination of WLA through bankruptcy approaches, 
notable studies include Babamiri and Dinpashoh (2024), who 
conducted a case study involving three major pollutants with 
significant spatial dispersion, one situated more than 30 km 
away from the other two. Similarly, Moridi (2019) and Farjoudi 
et al. (2021) undertook studies in analogous areas where pol-
lutant sources were spread over distances exceeding 15 km. In 
all instances, WLA was determined solely by traditional bank-
ruptcy approaches, yielding results comparable to those of this 
research. It is worth mentioning that implementing the Nemin 
rule in these cases could potentially enhance the river’s self-
purification capacity, akin to the findings of this study.

Another aspect to consider is the variation in fuzzy risk 
across the scenarios. Figure 6b depicts the fuzzy risk associ-
ated with various pollution discharge distances. Despite having 

the same RQRI and a corresponding real-world risk of 23%, 
increasing the distance resulted in an underestimation of the 
fuzzy risk. In other words, if fuzzy risk criteria were used 
for WLA allocation, the self-purification of the river’s upper 
reaches would be taken into account as the distance increases, 
leading to an RQRI greater than 0.2 kg per day and placing the 
river in a critical quality state. Therefore, due to its finer details, 
RQRI provides a more accurate assessment of fuzzy risk.

To elucidate the underlying mechanism, Fig. 7 pre-
sents the frequency diagram of MCS for four scenarios 
representing the distance between two pollution sources 
and the two aforementioned methods, both with an RQRI 
of 0.2 kg. The shape of graphs a to d, associated with the 
2 and 5 km scenarios, closely resembles that reported 
by Nouri et al. (2023) for the simulation of a river with 
nine pollutants located in close proximity and with the 
minimum occurring approximately 10 km from the first 
source. However, as the distance increases (graphs e to 
h), the graphs exhibit two local minima. RQRI exhibits 
greater differentiation than risk, as a wider range of MCS 
scenarios falls within the non-standard Fuzzy area.

On the other hand, since the CEA rule allows for equal pollu-
tion discharge from the two sources, once the RQRI reaches the 
 RQRI* (here due to the increase in pollution to 0.2), it ceases to 
increase the share allocated to the second source. Between the 
first and second sources, the river’s self-purification process will 
lead to a relative improvement in the river’s condition, and the 
downstream of the second source still possesses the potential to 

Fig. 6  Compare distance 
between two pollutants of 
virtual case, A WLA for Namin 
and CEA rules, B fuzzy risk for 
Namin and CEA rules

0

300

600

900

1200

1500

1800

2 5 10 20

W
LA

 (k
g/

da
y)

Distance between unit 1 and 9 (km)

1Namin
1CEA
9Namin
9 CEA

A

0

5

10

15

20

25

2 5 10 20

Fu
zz

y 
ris

k 
(%

)

Distance between unit 1 and 9 (km)

Namin
CEA
Risk=23%

B



37742 Environmental Science and Pollution Research (2024) 31:37732–37745

absorb pollution. Based on this, graphs f and h clearly demon-
strate that the Namin rule, adhering to its principle of allocating 
pollutant shares proportionally to the changes they induce in the 
river’s WLA state, slightly adjusts the pollution from the first 
source while simultaneously augmenting the amount of pollution 
discharged by the second source. It is worth noting that because 

the river’s qualitative simulation process is not linear, the amount 
subtracted from source 1 is not exactly equal to what is added to 
the second source. However, the self-purification effect of the 
river in the reach between the first and second sources results in 
an overall increase in pollution capacity greater than the amount 
taken from source 1 and added to source 2.

Fig. 7  MCS scenario frequency for different distance for apply WLA 
based on Namin and CEA rules. Note: A, C, E, and G for CEA rule 
and B, D, F, and H for Namin rule, distance between two virtual pol-

lutants in A and B is 2 km, in C and D is 5 km, in E and F is 10 km, 
and G and H is 20 km
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Conclusion

The main achievement of this research is the development of 
a novel methodology encompassing two key methods: one 
for establishing an uncertain river quality index, RQRI, using 
the regret approach, and another for determining the WLA 
of point-source polluting units through an environmentally 
just approach based on the bankruptcy approach, referred 
to as Namin. This methodology integrates Streeter-Phelps 
Eqs. (1925) and a multi-objective optimization model such as 
NSGA-II to achieve a minimal trade-off between environmen-
tal and polluter perspectives. RQRI captures the environmen-
tal organization’s viewpoint, while minimizing total treatment 
cost (TTC) serves as a proxy for the polluter’s opinion. The 
methodology, implemented using data from the KhoramAbad 
River in Iran, aligns with previous models, including that of 
Nouri et al. (2023), and is analyzed from two perspectives: 
fuzzy risk versus RQRI and CEA rule versus Namin’s rule.

Initially, when comparing the outcomes of the methodol-
ogy presented in this study and the methodology of Nouri et al. 
(2023), no significant divergence is observed in terms of the 
Nash-agreed solution and WLA. The primary cause for this 
lack of distinction is the extremely short distance between the 
two major river pollutants (pollutants 7 and 9) – less than one 
kilometer. As a result, RQRI and Namin do not have sufficient 
space to showcase their abilities. To address this, a hypothetical 
scenario was developed based on the characteristics of the main 
case, involving two polluting sources: the first source positioned 
at the location of the first pollutant in the main case and the 
second source situated in four scenarios at distances of 2, 5, 10, 
and 20 km from the first pollution source. The analysis showed 
that when comparing the RQRI values for the fuzzy risk, the 
method proposed by Nouri et al. (2023) tended to yield slightly 
more cautious results than the approach used in this study.

Additionally, it was observed that as the distance increased, 
the fuzzy risk values calculated using identical RQRIs exhib-
ited a diminishing increase across four different scenarios. This 
indicates that when the pollutants are close together and the 
DO profile along the canal exhibits only one concave area, the 
method of Nouri et al. (2023) holds true. However, for cases 
involving large distances between pollutant sources, RQRI is 
a more reliable indicator of river quality status.

This argument held true for WLAs as well. In the instance 
of WLA allocation based on the CEA rule, there was little dis-
tinction from Namin’s rule. However, with the increase in the 
distance between the two pollution sources in the hypothetical 
case, significant discrepancies emerged between the WLAs 
assigned from the two standpoints. As the distance between the 
two sources increased, the amount of self-purification potential 
taken into account by Namin’s rule was more substantial than in 
the CEA rule. Therefore, this methodology impacts stakehold-
ers in two significant ways: providing a clearer interpretation 

of the river’s quality situation, which persuades environmental 
organizations, and reducing TTC by increasing the WLA for 
the entire system, thereby persuading polluters and effectively 
implementing environmental justice.

Nevertheless, a rule grounded on the bankruptcy approach 
should not only be logical and understandable but also simple. 
Although Namin’s rule adheres to environmental justice and 
avoids making linear assumptions, its main limitation lies in 
its complexity compared to other fair rules. Another limita-
tion is that RQRI significantly increases the computational 
costs. In this research, Namin’s rule is only compared to CEA. 
Future research could explore comparisons with other signifi-
cant bankruptcy rules. Additionally, alternative water quality 
parameters such as electrical conductivity could be considered.

Appendix A.

Table A1  Nominations used in equations 
 
Items Description

Lc BOD at the end of the reach
kc BOD at the end of the reach
k2 The Reaeration coefficient (1/day)
DO Dissolve Oxygen (DO)
D Dissolve Oxygen (DO) Deficiency 

(mg/L)
D0 DO deficiency at the entry reach
L
c
0

BOD at the entry of the reach
N Monte Carlo Simulations scenario 

number

A Average cross section of the river

ld A length of the river that is in 
state low water quality

μLWQ Low water quality membership 
function

DOU Upper limit of unacceptable DO
DOL Lower limit of unacceptable DO
Oi Objective function  ith

TCi Treatment cost of pollutant i
fij Target function for stakeholder i
di The disagreement points for 

stakeholder i
H Solution space
Gi The ratio of RQRI partial to BOD 

of pollutant i partial

i All pollutant except pollutant i

ΔBODm

i
Increasing the BOD share of i 

pollutant
BOD

last

i
BOD share of i pollutant in the 

previous step
BOD

new

i
BOD share of i pollutant in the 

current step
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Appendix B. Sensitivity analysis
Sensitivity analysis (SA) is an essential tool in mathemati-
cal modeling, aiming to understand how changes in input 
parameters impact model outcomes. It assesses the extent to 
which variations in inputs lead to changes in outputs, help-
ing to identify sources of errors and key parameters (Ma 
et al. 2000). SA evaluates the significance of uncertainties 
or inaccuracies in model inputs, crucial for assessing model 
reliability and precision (Andik and Niksokhan 2020). There 
are two main categories of SA methods: local, such as one-
at-a-time (OAT) (Chang et al. 2020; Wang et al. 2023; Xu 
et al. 2024), and global, such as MCS (Nakane and Heydari 
2010; Dehghani et al. 2024). Local methods examine the 
effect of individual variables on the output, while global 
methods consider the influence of all parameters simultane-
ously (Yong et al. 2023). Conducting sensitivity analysis 
is critical for assessing a model’s behavior, determining its 
utility, and identifying areas for improvement in the model 
development process (Ma et al. 2000; Wagener and Kol-
lat 2007). These methods are characterized by their ease 
of operation, interpretability, and low computational cost.

One way to accomplish this assessment is through the 
OAT method, widely employed in the sensitivity analysis of 
water quality models due to its high computational efficiency 
and simplicity (Timalsina et al. 2023). In the OAT method, 
each parameter is perturbed one-at-a-time to a constant pro-
portion (e.g., 90 to 110%) of its calibrated value, the sen-
sitivity index (Si) is calculated as Eq. B1 (Sun et al. 2012).

where yi is the perturbed output; yo is the reference output; 
xi is the parameter value and �xi is the perturbation of the 
ith parameter.
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