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Abstract
Ruminal fermentation is a natural process involving beneficial microorganisms that contribute to the production of valuable 
products and efficient nutrient conversion. However, it also leads to the emission of greenhouse gases, which have detrimen-
tal effects on the environment and animal productivity. Phytobiotic additives have emerged as a potential solution to these 
challenges, offering benefits in terms of rumen fermentation modulation, pollution reduction, and improved animal health 
and performance. This updated review aims to provide a comprehensive understanding of the specific benefits of phytobiotic 
additives in ruminant nutrition by summarizing existing studies. Phytobiotic additives, rich in secondary metabolites such 
as tannins, saponins, alkaloids, and essential oils, have demonstrated biological properties that positively influence rumen 
fermentation and enhance animal health and productivity. These additives contribute to environmental protection by effec-
tively reducing nitrogen excretion and methane emissions from ruminants. Furthermore, they inhibit microbial respiration 
and nitrification in soil, thereby minimizing nitrous oxide emissions. In addition to their environmental impact, phytobiotic 
additives improve rumen manipulation, leading to increased ruminant productivity and improved quality of animal prod-
ucts. Their multifaceted properties, including anthelmintic, antioxidant, antimicrobial, and immunomodulatory effects, 
further contribute to the health and well-being of both animals and humans. The potential synergistic effects of combining 
phytobiotic additives with probiotics are also explored, highlighting the need for further research in this area. In conclu-
sion, phytobiotic additives show great promise as sustainable and effective solutions for improving ruminant nutrition and 
addressing environmental challenges.
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Introduction

Greenhouse gases (GHGs) such as carbon dioxide (CO2), 
methane (CH4), nitrous oxide (N2O), and fluorinated gases 
accumulate in the atmosphere and cause global warming, 
which influences climate change and poses serious environ-
mental risks (Zandalinas et al. 2021). Approximately 14.5% 
of global GHG emissions are attributable to the livestock 
industry (Kristiansen et al. 2021). More than 90% of the CH4 
emissions from livestock and 40% of the agricultural GHG 
emissions are generated by the enteric fermentation process 
(Tubiello et al. 2013). Additionally, ruminant GHG emis-
sions have a detrimental effect on the economy because they 
reduce energy availability for ruminant productivity (Bekele 
et al. 2022).

To achieve better fermentative efficiency, manipulat-
ing rumen fermentation has become an important area of 
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research in animal nutrition to reduce GHG emissions, 
improve nutrient utilization, and enhance animal perfor-
mance (Gislon et al. 2020). Because forage alone cannot 
support high levels of animal productivity and rumen fer-
mentation manipulation, feed additives must be used to 
optimize rumen function by changing the composition and 
activity of the microbial population in the rumen (Almeida 
et al. 2021).

Ionophores are effective feed additives in ruminant diets 
that reduce nitrogen (N) excretion and CH4 emissions into 
the environment, improve animal productivity, and modify 
rumen fermentation (Marques and Cooke 2021). However, 
the use of ionophores has been banned in the EU (Direc-
tive 1831/2003/EC) due to the potential passage of residues 
into milk and the increased risk of the emergence of multi-
drug-resistant bacteria in human health (Abadi et al. 2019; 
Ayyat et al. 2021). As a result, most recent investigations 
have focused on using natural alternatives for antibiotics, 
such as phytobiotic additives.

Phytobiotic additives contain a high concentration of nat-
ural bioactive components, which have a variety of activities 
such as antioxidant, anthelmintic, anti-inflammatory, and 
immunostimulant properties, as well as antimicrobial activ-
ity against some pathogenic organisms and promote the pro-
liferation and growth of beneficial bacteria in the gut (Alsaht 
et al. 2014; Sharma et al. 2022). In light of this, the main 
objective of this review is to discuss recent findings on the 
potential benefits of phytobiotic additives in terms of envi-
ronmental impact, rumen fermentation, animal performance, 

and product quality, as well as their effects on animal health 
status. Additionally, we discuss the synergistic effect of phy-
tobiotic additives and other feed additives.

Overview of phytobiotic additives and their 
use in ruminant nutrition

Phytobiotic additives are rich plant secondary metabolites 
(PSMs), organic substances known as phytochemicals, phy-
tobiotics, or herbal and botanical compounds found in plant 
tissues that form byproducts of various emergency meta-
bolic processes that occur in various plant tissues (Franz 
et al. 2020). Secondary metabolites are found in legume 
trees, medicinal plants, and spices, as well as agricultural 
byproducts from industrial processing (García-Ruiz et al. 
2012). There are approximately 100,000 PSMs synthesized 
in plants. These compounds are similar in many vital activi-
ties, metabolic behaviors, and many natural and chemical 
properties. They can be classified into four major classes: 
phenolics, terpenes, nitrogen-containing compounds, and 
sulfur-containing compounds (Sharma et al. 2022), as shown 
in Fig. 1. In recent years, research has focused on the use 
of phytobiotic additives as an alternative for ionophores in 
ruminant diets, thereby avoiding toxic residues in products 
(e.g., milk and meat) and microbial resistance, thus render-
ing it safe for both animals and humans (Abadi et al. 2019). 
Phytobiotic additives in ruminant diets can take the follow-
ing forms: (i) Herbs are solid, dry, or ground or extracts 

Fig. 1   Classification of plant 
secondary metabolites
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(crude, concentrated, or dry) (Franz et al. 2020). (ii) Essen-
tial oils are volatile plant compounds extracted from plant 
material via steam distillation using either water or aqueous 
alcohol (O’Bryan et al. 2015). (iii) Oleoresins are semi-solid 
extracts containing resin and essential or fatty oils extracted 
from spices using a hydrocarbon solvent (An et al. 2023). 
Previous research has shown that phytobiotic additives have 
a positive effect on animal nutrition, as shown in Table 1. 
Phytobiotic additives are used as flavor enhancers due to 
their odor properties, and they also modify rumen fermenta-
tion and the microbial population in the rumen due to their 
antimicrobial activity (Ricci et al. 2021).

Phytobiotic additives are used to improve livestock pro-
ductivity, product quality, and health status due to their anti-
oxidant, antimicrobial, anthelmintic, anti-inflammatory, and 
immunostimulant properties (Sharma et al. 2022). Addition-
ally, some phytobiotic additives can reduce environmental 
pollutants caused by ruminant N excretion and CH4 emis-
sions (Gao et al. 2022; Montoya-Flores et al. 2020).

Mechanisms of action and catabolism 
of phytobiotic additives in the rumen

The rumen is a large fermentation chamber located in rumi-
nant animals’ digestive systems that is home to billions of 
microorganisms such as bacteria, protozoa, and fungi. These 
microorganisms break down plant material into microbial 
biomass and fermentation end products that can be utilized 
by the host animal (Owens and Basalan 2016). Phytobiotic 
additives have been proposed as good candidates for modify-
ing the population of specific bacteria groups in the rumen 
to maximize energy and protein utilization (Dey et al. 2021; 
Tian et al. 2023). Phytobiotic additives have been shown 
to act in the rumen similarly to antibiotics, with strong 
broad-spectrum effects against microorganisms, including 
Gram-positive and Gram-negative bacteria (Dias Junior 
et al. 2023). Phytobiotic additives’ antimicrobial activity 
may be attributed to the hydrophobicity of PSCs, which may 
influence microbial cell surface properties such as electron 
transport, ion gradients, protein translocation, and enzyme-
dependent reactions, all of which cause induced changes in 
bacterial morphology, reduced nutrient transport into the 
cell, and decreased bacterial growth (McSweeney et al. 
2001; Smith et al. 2005). The effect of phytobiotic additives 
on ruminal microbe activity is dependent on the dose, type, 
and chemical profiles of the compounds in plants (López 
et al. 2010), as well as differences between compounds 
within each class of compound on rumen bacteria, as dem-
onstrated by Seradj et al. (2016), who found that there was 
variation between flavonoid substances on lactic acid pro-
ducer S. bovis, which was significantly decreased with neo-
hesperidine, poncirine, and isonaringine and significantly 

increased with neoeriocitrine compared to control. Further-
more, the molecular weight of phytobiotic compounds was 
linked to ruminal microbes; tannins with a low molecular 
weight inhibit rumen microbes more effectively (Patra 
and Saxena 2011). The procyanidin/prodelphinidin (PC/
PD) ratio, degree of polymerization, and cis/trans ratio are 
important factors that influence the impact of phytobiotic 
compounds, such as condensed tannins (CTs), on ruminal 
microbe activity. The PC/PD ratio can affect the biological 
activity of CTs, as demonstrated in sainfoin (Onobrychis 
viciifolia) (Hatew et al. 2016). The degree of polymerization 
and cis/trans ratio also play a role in the biological activity 
of CTs, as shown by a negative correlation between nitro-
gen solubility and these factors in sainfoin (Lagrange et al. 
2021).

Phytobiotic compounds, especially phenolic compounds, 
were reported to be absorbed directly through the rumen 
wall and entered the circulatory system, exhibiting anti-
oxidant effects on host animals and friendly environmen-
tal conditions, while others were partially catabolized by 
rumen microbes via catabolic pathways (Bao et al. 2018; 
Kim et al. 2021). For instance, Kim et al. (2021) observed 
that hydroxycinnamic acids such as coumaric acid, ferulic 
acid, and caffeic acid decreased after 12 h of in vitro incu-
bation in rumen fluid and were more than 70% decreased 
at 72 h. This reduction is explained by the ruminal deg-
radation of hydroxycinnamic acids by rumen microbes via 
reduction, demethylation, dihydroxylation, or decarboxyla-
tion pathways into natural products, which are commercial 
and environmentally friendly renewable energy sources, as 
reviewed by Wang et al. (2022c).

Flavonoid ring systems (e.g., quercetin and kaempferol) 
and phenolic glycosides such as rutin and naringin could 
be partially hydrolyzed by rumen microbiota by hydrox-
ylic ring cleavage into acetate, butyrate, 3,4-dihydroxy-
phenylacetic acid, phloroglucinol, and 4-methylcatechol 
during in vitro inoculum (Berger et al. 2015) and then 
likely absorbed in the small intestine (Gohlke et al. 2013). 
The mechanisms involved in the transport of flavonoids in 
the rumen and intestines are not well understood. How-
ever, Murota and Terao (2003) provided an overview of 
the proposed mechanisms for the absorption and transport 
of quercetin glucosides in the intestines. The mechanism 
of quercetin absorption in the intestine involves several 
steps. Firstly, it needs to be solubilized by bile salts and 
other emulsifying agents present in the gut lumen. This 
solubilization allows for better interaction with the absorp-
tive surfaces of the intestine. Once solubilized, quercetin 
can pass through the intestinal epithelial cells via two main 
pathways: passive diffusion and active transport. Passive 
diffusion occurs when quercetin glucosides can be broken 
down by lactase phloridzin hydrolase, an enzyme found in 
the brush border membrane, resulting in aglycones that can 
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be absorbed through lipophilic simple diffusion. Active 
transport mechanisms also play a role in quercetin mono-
glucoside absorption, but they are then cleaved by cyto-
solic β-glucosidase hydrolysis. These mechanisms involve 
carrier proteins located on the surface of intestinal cells 
that actively transport quercetin molecules from one side 
of the cell membrane to another against their concentration 
gradient. Once inside intestinal cells, quercetin aglycones 
can undergo further metabolism, where the compound can 
be conjugated with various molecules, such as glucuronic 
acid by UDP-glucuronosyltransferase or sulfate by phenol 
sulfotransferase, to form water-soluble metabolites. These 
metabolites are then transported out of the cells and into 
the bloodstream.

Additionally, rumen microbes such as Selenomonas rumi-
nantium and Streptococcus spp. can break down hydrolyz-
able tannins (HT) by producing esterase and tannin acylhy-
drolase to generate gallic acid and ellagic acid (Goel et al. 
2005). The gallic acid in beef cattle is decarboxylated in the 
rumen to pyrogallol, which is then converted into resorcinol 
as urinary metabolites with their respective inhibitive effects 
on decreasing urine N2O-N emissions (Bao et al. 2018; Zhou 
et al. 2019).

Condensed tannins have the potential to bring about posi-
tive changes in the rumen through various mechanisms. 
They can regulate proteolysis during forage preservation and 
ruminal digestion, prevent bloat, decrease intestinal parasite 
burdens, and mitigate methane and ammonia emissions from 
ruminants (Zeller 2019). By incorporating CTs into the ani-
mal feed at appropriate levels, ruminants can optimize pro-
tein utilization and minimize losses due to excessive protein 
breakdown in the rumen. It is crucial to strike a balance so 
that the added CTs do not adversely impact microbial pro-
tein synthesis in the rumen. Furthermore, the amount of CT 
supplementation should be carefully controlled to ensure it 
remains within safe limits for animal consumption, avoiding 
any potential toxic effects (Besharati et al. 2022).

On the other hand, the degradation of CTs in rumen fluid 
remains unclear. An earlier study found that rumen microbes 
are unable to degrade CTs due to a lack of enzymes and the 
fact that their phenolic hydroxyl groups are combined with 
other macromolecules (Naumann et al. 2017). Notwithstand-
ing, Rira et al. (2022) investigated the relationship between 
the disappearance of the free and bound CT fractions of 
tropical tannin-rich plants in vitro and in situ. The findings 
showed that free CT from all plants completely disappeared 
after a 24-h incubation in the rumen. Condensed tannins that 
were protein-bound disappeared at varying rates, from 93% 
in Gliricidia sepium to 21% in Acacia nilotica. Contrarily, 
the disappearance of CTs bound to fiber averaged 82% and 
was consistent across all plants. More research is needed to 
get a better understanding of the microbial degradation of 
CTs.Ta
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Influence of phytobiotic additives 
in mitigating the environmental impact 
of ruminant production

Global warming is caused by the accumulation of GHGs 
in the atmosphere, specifically CO2, CH4, N2O, and fluori-
nated gases (e.g., hydrofluorocarbons, perfluorocarbons, 
sulfur hexafluoride, and nitrogen trifluoride) (Zandalinas 
et al. 2021). The infrared radiation emitted by the planet’s 
surface after sunlight has been absorbed is what is causing 
the alarming trend of an ongoing rise in ocean and surface 

temperatures (Zandalinas et al. 2021). According to the 
intergovernmental panel on climate change (IPCC 2019), the 
average land surface air temperature increased by 1.53 °C 
(1.38–1.68 °C) between 1850 and 2015, while the average 
global surface temperature (land and ocean) increased by 
0.87 °C (0.75–0.99 °C). Climate change brought about by 
global warming has resulted in increased rainfall intensity, 
flooding, drought frequency and severity, heat stress, dry 
spells, wind, sea-level rise, wave action, and permafrost 
thaw, with the effects being influenced by land management 
(IPCC 2019).

Around 13% of CO2, 44% of CH4, and 81% of N2O emis-
sions from human activities worldwide between 2007 and 
2016 were attributed to agriculture, forestry, and other land 
use activities, making up 23% of all net anthropogenic GHG 
emissions (IPCC 2019) as shown (Fig. 2). Crop production 
and enteric fermentation produce the most GHGs, account-
ing for 45 and 39% of total sector emissions, respectively, 
while manure storage and processing and animal product 
transportation contribute 10 and 6%, respectively (Gerber 
et al. 2013) (Fig. 3). The livestock industry contributes sig-
nificantly to GHG emissions, accounting for 14.5% of global 
emissions (Kristiansen et al. 2021).

Approximately 80 to 95 million tonnes of CH4 are pre-
dicted to be released annually into the atmosphere by rumi-
nant livestock, as reviewed by Bačėninaitė et al. (2022). 
Methane forms as a byproduct of this fermentative pro-
cess when hydrogen (H2) and CO2 are released and used 
by methanogenic archaea (Boadi et al. 2004). Methane is 
primarily expelled from the rumen through eructation and 
absorbed into the blood system (Boadi et al. 2004), but it 
is also emitted from manure storage (Gerber et al. 2013). 
According to the latest evaluation by the National Oce-
anic and Atmospheric Administration (NOAA 2022), the 
atmospheric CH4 concentration has set another record in 
2021. The report states that the global average atmospheric 

Fig. 2   Total anthropogenic greenhouse gas (GHG) emissions in giga-
tons of CO2 equivalent per year (Gt CO2 eq./year) and the proportion 
of anthropogenic GHG emissions from agriculture, forestry, and other 
land use (AFOLU; average for 2007–2016) according to the Intergov-
ernmental Panel on Climate Change (IPCC 2019)

Fig. 3   Greenhouse gas emis-
sions derived from crop produc-
tion, manure storage, processing 
and transportation and energetic 
fermentation, according to 
Gerber et al. (2013)

Crop
production

Manure
storage

Processing
and

transportation

Energetic
fermentation

45%

10%
6%

39%



37951Environmental Science and Pollution Research (2024) 31:37943–37962	

methane concentration reached a new high of 1895.7 parts 
per billion (ppb) in August 2021, which is an increase of 
15 ppb from the previous year. Based on data from NOAA 
(2022), scientists estimate that global methane emissions 
were 15% higher in 2021 compared to the period between 
1984 and 2006. Methane is a potent greenhouse gas with a 
warming potential that is more than 28 times greater than 
CO2 (IPCC 2013). The increase in atmospheric CH4 con-
centration is, therefore, a cause for concern as it contrib-
utes significantly to global warming and also has a negative 
impact on the economy as it can lead to a decrease in energy 
availability for ruminant animals and lower feed utilization 
efficiency (Bekele et al. 2022).

Nitrous oxide is also a powerful greenhouse gas, with 
a warming potential of over 265 times that of CO2 (IPCC 
2013). In livestock production, 70–80% of dietary protein 
is hydrolyzed to ammonia (NH3) in the rumen, and a low 
protein ratio leaves the rumen undegraded (Hristov et al. 
2011). When the rumen produces too much NH3, it absorbs 
N from the rumen wall, converts it to urea in the liver, and is 
then eliminated in the urine by the kidney, resulting in N loss 
(Gao et al. 2022). The amount of nitrogen to be excreted by 
the kidney is closely related to the protein balance (quantity 
and type) and energy offered to the ruminant in the diet, 
among other factors such as passage rate and metabolism 
according to growth or production stage. An unbalanced diet 
with a higher protein content will promote a higher release of 
N (Chadwick et al. 2018). Meanwhile, when urea is released 
into the environment, microbial urease converts it to NH3, of 
which a large portion is converted to ammonium (NH4), and 
any remaining NH3 quickly undergoes simple chemical reac-
tions, primarily with atmospheric acids such as sulfuric and 
nitric acid, to form ammonium sulfate, ammonium bisulfate, 
or ammonium nitrate, all of which are harmful to human 
health and contribute to environmental pollution (Hristov 
et al. 2011). On the other hand, NH4

+ in excreta and soil is 
converted into N2O by microbial processes of nitrification 
and denitrification, which contribute to global warming (Gao 
and Zhao 2022).

Effects of phytobiotic additives on methane 
emission

Several studies have reported that phytobiotic additives are 
used as antimethanogenesis agents in the rumen, which 
is thought to directly inhibit the population of methano-
gens and microbes that produce hydrogen, lowering CH4 
emissions (Alayón-Gamboa et al. 2023; Chen et al. 2021). 
According to Rira et al. (2022), archaea diversity decreased 
in high-tannin-containing Calliandra calothyrsus and Acacia 
nilotica at 12 h of incubation. Furthermore, using phyto-
biotic plants in ensiling form, such as Neolamarckia cad-
amba and grape pomace, reduced the relative abundance 

of Methanobrevibacter, particularly Methanobrevibacter 
curvatus, Ruminococcaceae NK4A214, Ruminococcaceae 
UCG-010, and Christensenellaceae R-7, while increas-
ing the abundance of Succiniclasticum (Zhang et al. 2022; 
Zhou et al. 2021). The bioactive components of these plants 
may explain their inhibition effect on methanogenic bac-
teria; Al-Sagheer et al. (2018) observed a negative linear 
correlation between CT and CH4 production in vitro when 
guava leaves were used instead of berseem hay contain-
ing 1.60, 2.40, 3.14, and 3.10 g CT/kg DM. Moreover, it 
has been reported that phytobiotic additives do not affect 
methanogens, although CH4 production decreases (Chen 
et al. 2021; Wang et al. 2022a). In reality, there is a more 
indirect pathway to reduce CH4 production. For example, 
using microbiota and Pearson correlation analysis data, it 
was demonstrated that using tannin acid as a feed additive 
in alfalfa silage reduced rumen CH4 emissions by inhibiting 
protozoa, anaerobic fungi, and cellulolytic bacteria rather 
than methanogens (Chen et al. 2021), because these micro-
biotas are H2 suppliers as well as biosynthesis of acetate, 
butyrate for methanogenesis (Abarghuei and Salem 2021). 
On another pathway, phytobiotic additives increased the 
relative abundance of propionate-producing species such 
as Succiniclasticum (Zhang et al. 2022). The propionate-
producing bacteria can compete with methanogenic bacte-
ria for H2 in the rumen, which consequently decreases CH4 
production (Boadi et al. 2004).

Additionally, several studies found that certain phytobi-
otic additives had specific effects on CH4 production. For 
instance, according to Fagundes et al. (2020), tannin-rich 
forages such as Flemingia macrophylla, Leucaena leu-
cocephala, Stylosanthes guianensis, Gliricidia sepium, 
Cratylia argentea, Cajanus cajan, Desmodium ovalifolium, 
Macrotyloma axillare, Desmodium paniculatum, and Les-
pedeza procumbens mitigated enteric CH4 in vitro, and the 
lowest CH4 production was observed with Leucaena leu-
cocephala. Furthermore, Aragadvay-Yungán et al. (2022) 
evaluated different tropical forage legumes, including Clito-
ria arborea, Erythrina fusca, Bauhinia forficata, Erythrina 
poeppigiana, Cratylia argentea, Gliricidia sepium, Cassia 
tora, and Flemingia macrophylla. The results indicated that 
the lowest CH4 production was found with C. arborea. On 
the other hand, some studies have shown that phytobiotic 
additives such as oak tannin extracts (Focant et al. 2019) 
and artichoke bract silage (Ahmed et al. 2023) had no sig-
nificant effect on enteric CH4 production in vivo and in vitro, 
respectively.

Differences in CH4 production responses of phytobiotic 
additives in various research could be attributed to several 
factors, including (i) dietary composition (Ahmed et al. 
2021) and forages (e.g., type of forage, chemical composi-
tion, and maturity) as well as the quality of the fermentation 
process during silage-making if phytobiotic additives are 
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ensiled (Evans 2018), (ii) phytobiotic compound type and 
concentration in the diet, which has been reported that diets 
with a high HTto CT ratio reduce CH4 emissions (Bhatt 
et al. 2023; Rira et al. 2019), (iii) animal species also have 
an impact on CH4 emissions; Alvarado-Ramírez et al. (2023) 
found that co-ensiling maize with Moringa oleifera reduced 
CH4 (mL g−1 DM degraded) in steers when compared to 
sheep as inoculum sources.

Effects of phytobiotic additives on nitrous oxide 
emission

Phytobiotic additives have been shown to be effective at 
reducing N excretion and thus N2O emissions. This is due 
to the presence of PSMs such as tannin, anthocyanins, aucu-
bin, and glucosinolates (Gao and Zhao 2022; Lazzari et al. 
2023). Plantain leaf extract and aucubin solution, when 
applied to a ruminant urine patch, reduced N2O by 50% and 
70%, respectively, according to Gardiner et al. (2018). The 
inhibition effect of phytobiotic additives on reducing urine 
N2O emission can be explained by the shift of N excretions 
from urine to feces in beef cattle; Gao et al. (2022) evaluated 
different levels of rapeseed cake containing high glucosi-
nolates at four levels (0, 2.7, 5.4, and 8.0% DM) in the diet 
of steers. The study’s results showed an increase in the ratio 
of fecal N to urinary N, linearly increased the urinary excre-
tions of allantoin and the total urinary purine derivatives, 
and decreased the urea-N-to-urinary N ratio. Uushona et al. 
(2023b) found that adding Acacia mearnsii leaf meal up to 
100 g/kg DM in lamb increases fecal N and decreases urine 
N because fecal N2O emissions are much lower than urinary 
N2O emissions (de Klein and Ledgard 2005). Recently, stud-
ies on tannic acid as a source of HT revealed that the ratio 
of hippuric acid-N to urinary N increased and decreased 
urine N2O-N emissions (Zhou et al. 2019). Hippuric acid 
is thought to be an inhibitor of the soil nitrification process, 
reducing N2O formation. Furthermore, the hydrolysis of 
PSMs by microbial enzymes in the digestive tract of animals 
into bioactive products may contribute to the inhibition of 
urine N2O emission (Gao and Zhao 2022). For instance, thi-
ocyanates, metabolites of glucosinolates that have an inhibi-
tory effect on microbial respiration and nitrification in soil, 
were found to be higher in the plasma and urine of steers 
fed rapeseed cakes high in glucosinolates (Gao et al. 2022).

Effects of phytobiotic additives on rumen 
fermentation

Effects on ruminal pH

Although the rumen pH allows variations ranging from 
5.5 to 7.0, it still requires regulation (Owens and Basalan 

2016). The pH level in the rumen is influenced by several 
factors, including nutritional (e.g., diet composition, feeding 
frequency, feed intake, and saliva production) and environ-
mental (e.g., heat stress) (Sales et al. 2021). The regulation 
of rumen pH is essential for maintaining a healthy rumen 
environment and optimal microbial activity, thereby pro-
moting overall animal health and performance (Owens and 
Basalan 2016).

Phytobiotic additives have been shown to be effective in 
maintaining ruminal pH and improving ruminal fermenta-
tion, particularly in high-grain production (Rivera-Chacon 
et al. 2022). For example, using phytobiotic additives such as 
plant-derived alkaloids (Mickdam et al. 2016), β-sitosterol 
(Xia et al. 2020), tannic acid (Zhao et al. 2021), and phenolic 
plant extracts (Ahmed et al. 2022) inhibits the growth of 
lactate-producing bacteria and promotes the growth of lac-
tic acid utilization bacteria, thereby increasing ruminal pH 
and reducing lactate concentration and lipopolysaccharide 
accumulation.

Recently, it has been suggested that botanical compounds 
(e.g., essential oils) may stimulate salivation due to their 
smell properties as well as improve the physicochemical 
composition of the salivary and salivary proteome, which 
are linked to rumen function, host metabolism, and immune 
response in animals fed a high-concentrate diet (Castillo-
Lopez et al. 2023; Ricci et al. 2021). According to Ricci 
et al. (2021), analysis of stimulated saliva revealed that 
garlic oil and ginger increased phosphate concentration, 
while thyme oil increased osmolality and capsaicin and 
thymol increased buffer capacity. Although some research 
has shown that phytobiotic additives have a selective effect 
on lactate-producing bacteria (Ahmed et al. 2022; Seradj 
et al. 2016), this mechanism could be explained by the types 
and concentrations of active components as well as the 
antagonistic effect of active components on rumen bacteria 
(Hajimehdipoor et al. 2014; Seradj et al. 2016) and bacterial 
resistance to active components (Kim et al. 2021).

Effects on ruminal volatile fatty acids

Ruminal volatile fatty acids (VFA) produced during microbial 
fermentation of plant materials meet the majority of ruminant 
energy requirements (Owens and Basalan 2016). The effects 
of phytobiotic additives on VFA production range from no 
change (Khurana et al. 2023; Safari et al. 2018) to increased 
production (Tian et al. 2023; Yaxing et al. 2022) to inhibition 
of VFA production (Della Rosa et al. 2022; Pech-Cervantes 
et al. 2021). Furthermore, numerous studies (Khurana et al. 
2023; Ma et al. 2020; Orzuna-Orzuna et al. 2022) have shown 
that phytobiotic additives, either plant extracts or active com-
ponents—shift VFA molar proportions like monensin (i.e., 
decrease acetate and increase propionate). Propionate serves 
as an energy source for some anabolic functions in ruminants, 
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so it is hypothesized that phytobiotic additives improve the uti-
lization of energy to achieve better productivity performance 
(Chen et al. 2020). Meanwhile, propionate serves as the main 
alternative H+ sink and consequently reduces methane produc-
tion (Wang et al. 2018). The increase in propionate proportions 
caused by phytobiotic additives could be explained by altering 
the ruminal bacterial community, such as Succinivibrionaceae, 
which was increased by garlic and citrus extract (Khurana et al. 
2023) and ensiling grape pomace (Zhang et al. 2022). This 
bacterium is associated with improved feed efficiency, lower 
CH4 emissions, and higher propionate concentrations due to 
competition with hydrogenotrophic methanogens for substrate 
and propionate produced via the succinate pathway (Ramayo-
Caldas et al. 2020). Some studies, on the other hand, found 
that phytobiotic additives such as curcumin (Tian et al. 2023), 
Allium mongolicum Regel essential oil (Yaxing et al. 2022), 
and citrus flavonoid extracts (Zhao et al. 2023) increased rumi-
nal acetate concentration, which is associated with improved 
fibrinolytic bacteria and enzyme activities in the rumen with 
strong fiber degradation ability (Yaxing et al. 2022).

Effects on ammonia concentration and microbial 
protein synthesis

Likewise, there are significant benefits of phytobiotic addi-
tives in the rumen, such as reduced protein degradation to 
NH3, which increases escape protein to the duodenum, as 
well as improved efficiency of microbial protein synthesis 
and bacterial N flow from the rumen, which is the main 
supplier of amino acids for ruminants and is critical to ani-
mal performance (Abarghuei and Salem 2021, Abd’quadri-
Abojukoro and Nsahlai 2023, Al-Sagheer et al. 2018).

Various mechanisms could explain the reduction of NH3 
concentrations and enhance microbial protein synthesis in 
the rumen by phytobiotic additives. As an illustration, tannin 
forms a complex with protein via hydrogen bonding, and its 
hydrophobic nature protects it from hydrolysis by rumen 
microbial enzymes (Mueller-Harvey et al. 2019), as well 
as tannins’ inhibitory effects on proteolytic bacteria (Abar-
ghuei and Salem 2021). Furthermore, secondary metabo-
lites such as saponin and tannins may have antiprotozoal 
properties that contribute to NH3 reduction, which is likely 
due to decreased bacterial lysosome activity or an increase 
in NH3-N uptake for microbial protein biomass synthesis 
(Abarghuei and Salem 2021; Kholif 2023; Tian et al. 2023).

Influence of phytobiotic additives on animal 
performance

Several studies have shown that phytobiotic additives 
enhance growth performance and increase the efficiency of 
ruminant milk or meat production, as outlined in Table 1. 

Phytobiotic additives such as essential oils (Dorantes-Itur-
bide et al. 2022; Yaxing et al. 2022) and high tannin-con-
taining forage (Wang et al. 2022b; Xie et al. 2020) improved 
dry matter intake (DMI), nutrient digestibility, average daily 
gain (ADG), and feed conversion ratio in beef production.

However, there are limits to the responses of phytobi-
otic additives to growth performance, as demonstrated by 
Dezah et al. (2021) that replacing Glycine max with Acacia 
mearnsii at 500 g/kg DM of diet steers reduced DMI, ADG, 
feed efficiency, and carcass weights. Avila et al. (2020) 
observed that CT extracts from black wattle (A. mearnsii) 
did not affect nutrient utilization in steers fed 0, 5, 10, 15, 
and 20 g/kg diet DM. In contrast, Costa et al. (2021) found 
that including CT from A. mearnsii extract up to 40 g CT/
kg dietary DM improves DMI and ADG, thereby improving 
utilization efficacy in lambs. A variety of factors contribute 
to this, including their level of inclusion in the diet, the type 
and concentration of PSCs in plants (Pech-Cervantes et al. 
2021), and the physiological status of the consuming species 
(Benchaar et al. 2008).

Furthermore, phytobiotic additives have been shown to 
improve lactation performance by increasing energy-cor-
rected milk yield and milk composition of fat, protein, and 
total solids and improving feed utilization efficiency for milk 
production, such as citrus flavonoids extracts (Zhao et al. 
2023), Capsicum oleoresin (An et al. 2023), high tannin-
containing forage (Dey et al. 2021; Gannuscio et al. 2022), 
and essential oils (Kalaitsidis et al. 2021; Silvestre et al. 
2022).

In general, phytobiotic additives improve growth per-
formance and milk yield by increasing energy utilization 
efficiency in the rumen, reducing energy loss in the form 
of methane, and redirecting it to milk and meat production 
(Cohen-Zinder et al. 2016). Meanwhile, PSMs, especially 
tannin and flavonoids, improve N utilization by decreas-
ing protein degradation in the rumen and increasing bypass 
protein in the small intestine, resulting in better ruminant 
performance (Herremans et al. 2020). Furthermore, phyto-
biotic additives promoted ruminal bacteria associated with 
meat and milk production (Li et al. 2020). For example, 
Hassan et al. (2020) reported that buffaloes were fed a mix-
ture of phytogenic substance-promoted bacteria that have 
been correlated with milk and fat yield (e.g., Firmicutes-to-
Bacteroidetes ratio, Pseudobutyrivibrio, Butyrivibrio, and 
Succinivibrioanceae).

The properties of antiprotozoa agents of PSMs, such as 
tannin and saponin, increase microbial protein biomass and 
thus increase microbial protein bypass to the intestine, pro-
moting amino acid absorption in the gut (Abarghuei and 
Salem 2021). Furthermore, phytobiotic additives improve 
animal metabolic status by controlling the secretion of vari-
ous endocrine hormones via the hypothalamus-pituitary 
axis, such as prolactin and growth hormone, and modulating 
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the insulin/like growth factor-I(IGF-1) signaling pathway, 
which is related to better lactation performance, as reported 
in a study by Li et al. (2020) when buffaloes were fed mul-
berry leaf flavonoids.

Effects of phytobiotic additives on product 
quality

In recent years, research has focused on reducing saturated 
fatty acids (SFA) and increasing n-3 polyunsaturated fatty 
acid (n-3 PUFA), conjugated linolenic acid (CLA) in animal 
products such as milk and meat (Shingfield et al. 2013). The 
presence of n-3 PUFA and CLA in animal products benefits 
humans by preventing a variety of disorders and diseases 
(e.g., muscular degeneration, asthma, psychiatric disorders, 
hypertension, psychiatric disorders, cardiovascular diseases, 
antiatherosclerosis, antidiabetic, anticancerogenic, and 
antiobesity), as reviewed by (Lin et al. 2016).

Previous research has shown that phytobiotic additives 
alter the fatty acid profiles of animal products, which is asso-
ciated with improved human health outcomes (Makmur et al. 
2022). For example, feeding Acacia cyanophylla leaves to 
dairy ewes reduced oleic acid while increasing minor (n-6) 
fatty acids such as linolenic acid (C18:3 cis6 cis9 cis12 
(n-6)) and docosapentaenoic acid (Maamouri et al. 2019). 
According to Huang et al. (2022), feeding ensiled paulownia 
leaves to dairy cows increased proportions of α-linolenic 
acid, CLA, C18:1 trans-11 fatty acid, PUFA, and reduced 
n6/n3 ratio and SFA proportion in milk.

On meat fatty acid profiles and quality, Arend et  al. 
(2022) found that finishing cattle fed on 58% grape pomace 
had high content Longissimus lumborum and semimembra-
nosus muscle of fatty acids such as 18:2 n-6, 18:2 c9t11, 
CLA, and PUFA and reduced lipid oxidation. Uushona et al. 
(2023a) indicated that the inclusion A. mearnsii leaf-meal 
at 200 g/kg DM in lamb finisher diets enhanced meat fatty 
acid composition by reducing individual and total SFA and 
increased rans (t)-monounsaturated fatty acid (MUFA) 
mainly t10/t11–18:1, individual and total CLA, n-3 and n-6 
PUFA contents as well as improved meat antioxidant capac-
ity, lightness, oxymyoglobin content and decreased deoxy-
myoglobin content, lipid oxidation and shear force.

Several factors could explain the alteration of fatty acid 
profiles in milk and meat caused by phytobiotic additives. 
First is the modification of the ruminal biohydrogenation 
process, specifically the inhibition of the final step in the 
biohydrogenation of vaccenic acid to stearic acid (Khiaosa-
Ard et al. 2009). For instance, Emami et al. (2015) observed 
a linear increase in vaccenic acid, CLA, and punicic acid 
concentrations in subcutaneous and intramuscular fat with 
increasing pomegranate seed pulp levels in the diet of 
kids. More recently, Birkinshaw et al. (2022) reported that 

tannin-containing feeds, such as vine leaves, lowered the 
n-6:n-3 fatty acid ratio and increased concentrations of vac-
cenic and rumenic acids in the milk of dairy cows. On the 
contrary, according to Baila et al. (2023), phytobiotic addi-
tives inhibit ruminal biohydrogenation in the early stages, 
indicating that lactating ewes fed sainfoin proanthocyanidins 
had higher milk PUFA contents and a decrease in MUFA 
intermediates such as vaccenic acid. Further, Dias Junior 
et al. (2023) observed that essential oil from Arnica montana 
decreased linearly the C17:0, C18:0, C18:1 trans-11, C22:6 
n3, and the sum of SFA, and linearly increased the C18:2 
cis-9, cis-12; C18:3 cis-9, cis-12, cis-15, the sum of PUFA, 
and the sum of n6 in the meat of lambs.

Several factors, including the dose and chemical structure 
of botanical compounds (Patra and Saxena 2011), interac-
tions between diet ingredients (Vasta et  al. 2009), and 
possibly between-animal variability Harnly et al. (2022), 
may explain the variation between phytobiotic additives 
inhibiting ruminal biohydrogenation in several stages. Sec-
ond, phytobiotic additives alter the composition of rumen 
microbes and metabolic pathways, resulting in the accumu-
lation of PUFA and CLA in the products (Denninger et al. 
2020). For example, adding mulberry leaf silage to lamb 
diets increases the content of unsaturated fatty acids in the 
longissimus dorsi muscle by increasing the relative abun-
dance of Christensenellaceae (R-7), Bifidobacterium, and 
Lactobacillus in the rumen, which has a positive correlation 
with n-3 PUFA, CLA, and eicosapentaenoic acid in rumi-
nant products, according to Xiong et al. (2021) and Wang 
and Luo (2021).

Effects of phytobiotic additives on animal 
health

As a natural alternative to anthelmintic drugs, phytobiotic 
additives have been used to treat gastrointestinal parasit-
ism (Busari et al. 2021; Pech-Cervantes et al. 2021). This 
is because drug residues can pass into products (e.g., meat 
and milk), which might negatively impact humans and make 
worm populations resistant to anthelmintics (Sutherland and 
Leathwick 2011).

Numerous studies have been accomplished on the anthel-
mintic properties of phytobiotic additives, whether they are 
whole plants, active components, or plant extracts (Alow-
anou et al. 2019; Tchetan et al. 2022). Various plant extracts 
(Artemisia campestris, Salix caprea, and Punica granatum) 
have been used to treat gastrointestinal nematodes (GIN) 
in lambs, according to Castagna et al. (2021). The results 
showed that a P. granatum-based remedy reduced GIN egg 
output by 50%. Furthermore, according to Pelegrin-Valls 
et al. (2022), feeding suckling lambs sainfoin has a positive 
effect on reducing coccidian oocysts. Phytobiotic additives, 
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particularly those with high polyphenol content (e.g., tannins 
and flavonoids), triterpenoids, and saponin, have anthelmin-
tic effects by forming complexes with protein in the rumen 
and increasing amino acid absorption by the small intestine 
(Tchetan et al. 2022), which improves host homeostasis and 
immunomodulatory of the host against various parasites 
(Min et al. 2003). Given their protein-binding capability, 
it appears probable that tannins possess a broad-spectrum 
action rather than targeting specific components, enabling 
them to effectively combat various structures within nema-
todes (Greiffer et al. 2022). In addition to their nematicidal 
effects, tannins also demonstrate other anthelmintic activi-
ties, such as the inhibition of egg hatch, suppression of larval 
motility, and prevention of larval exsheathment (Spiegler 
et al. 2017). Saponins have potential applications in control-
ling internal parasites in ruminants (Kholif 2023). They pos-
sess inhibitory effects on proteases, lipases, and chitinases, 
enzymes responsible for degrading egg membranes crucial 
for nematode egg hatching. Disruption of these enzyme 
activities interferes with the hatching process, leading to 
the elimination of infectious worms (Botura et al. 2013).

Inflammation, immunodeficiency, and oxidative stress 
have all been shown to harm farm animals, particularly dur-
ing the transitional period in dairy cows, when changes in 
endocrine and metabolic status are required to prepare for 
parturition and lactogenesis (Sordillo and Aitken 2009). 
There is an imbalance between the production of oxidants 
(radicals and non-radicals) and their detoxification by 
the antioxidant system during this period, which impairs 
immune responses and causes diseases (Halliwell 2007). 
Furthermore, rumen non-adaptation to starch-rich diets or 
insufficient dry matter intake for the animal, as well as heat 
stress during this period, will expose the animal to meta-
bolic disorders such as rumen acidosis and hyperketonemia, 
which are all factors contributing to high oxidative stress 
(Guo et al. 2013).

Phytobiotic additives have antioxidant and immune-
enhancing properties that reduce oxidative stress, lipid 
peroxidation, and the inflammatory response in Holstein 
steers fed on botanical blends such as micro-encapsulated 
cinnamon and oregano essential oils, free turmeric extract, 
and tannic acid, as demonstrated by Brunetto et al. (2023). 
According to Safari et al. (2018), feeding dairy cows with 
pomegranate seed pulp during the postpartum period 
enhanced antioxidant status, which was related to a decrease 
in lipid oxidation (free fatty acids and β-hydroxybutyrate) 
and malondialdehyde (MDA) as well as an increase in super-
oxide dismutase activity, hence preventing cells from oxida-
tive stress. In a study by Vizzotto et al. (2021), it was found 
that feeding Jersey cows oregano extract at a rate of 10 g/
cow/day during prepartum and postpartum reduced the lev-
els of reactive oxygen species (ROS) in the erythrocytes by 
40% and that feeding green tea extract at a rate of 5 g/cow/

day reduced the levels of reactive species during prepartum 
and postpartum by 24 and 29%, respectively. In dairy cows 
with hyperketonemia, Ma et al. (2021) found that supple-
menting with green tea polyphenols from 15 days prepar-
tum to 30 days postpartum reduced somatic cells count and 
improved antioxidative status by lowering concentrations of 
oxidative stress biomarkers like ROS, hydrogen peroxide, 
and MDA while promoted concentrations of interleukin-6 
and interleukin-10 and diminished concentrations of tumor 
necrosis factor-α, interleukin-1β, interleukin-2, interleu-
kin-8, and interferon-ϒ in plasma.

Phytobiotic additives’ antioxidant properties are 
explained by increasing the activity of antioxidant enzymes 
that eliminate free radicals and decreasing the accumula-
tion of MDA and ROS by activating the NFE2L2/heme oxy-
genase-1 (HMOX1) pathway, which improves cell growth 
and metabolism (Ma et al. 2019). Also, phytobiotic addi-
tives modulate the inflammatory response by increasing 
anti-inflammatory cytokine concentrations and decreasing 
pro-inflammatory cytokine concentrations in plasma, which 
protects host tissue from damage (Ma et al. 2021).

Furthermore, the modulation of ruminal and hindgut 
microbiota that interacts with host metabolism and physiol-
ogy may explain the increase in animal antioxidant capacity 
or immunomodulatory effects of phytobiotic additives (Xie 
et al. 2020). According to Wang and Luo (2021), lambs fed 
mulberry leaf silage had higher levels of Bifidobacterium, 
Lactobacillus, and Schwartzia. The authors of the previ-
ous study have established that the presence of Schwart-
zia bacteria is positively correlated with antioxidant func-
tion; this is due to competition with methanogenic bacteria, 
whereas Bifidobacterium and Lactobacillus are associated 
with a highly positive correlation with serum IFN-ϒ, which 
is involved in the initiation and regulation of the immune 
response. Furthermore, citrus-derived flavonoids with high 
flavanones and O-polymethoxylated flavones improve dairy 
cow inflammatory status by promoting hindgut fermenta-
tion and increasing probiotics Bacteroides, Phascolarcto-
bacterium, Bifidobacterium spp., and F. prausnitzii, while 
decreasing Clostridium cluster XIVab, E. coli, and Rumino-
coccus torques group according to Zhao et al. (2023).

The combination of phytobiotic additives 
with other feed additives

In recent years, researchers have looked into the potential 
benefits of the synergistic effect of phytobiotic additives 
and probiotics in the livestock industry to achieve the best 
growth performance and health status. Despite this, there 
are very few papers that report the synergistic effect of two 
additives, with the majority of studies focusing on claves. 
For example, Seifzadeh et al. (2017) found that combining 
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a medical plant mix with probiotics did not improve clave 
growth performance. On the other hand, Liu et al. (2020) 
found that adding essential oils and prebiotics to starter feed 
at 44 mg/calf/day improved calf growth, ruminal develop-
ment, gut health, nutrient digestibility, and immunity. Addi-
tionally, Stefańska et al. (2021) observed that combining 
50 mg of rosmarinic acid per calf per day with a multi-strain 
Lactobacillus probiotic (250 mg per calf per day) during 
the preweaning period in neonatal calves had antiparasite 
effects, increased ruminal VFA, bacteria, and protozoa, and 
increased blood insulin-IGF-1 and β-hydroxybutyrate. The 
disparity between studies was most likely caused by differ-
ences in dose, the bacterial strain composition of the pro-
biotics, and the chemical structure and concentrations of 
the bioactive compounds in the herbal extracts, as well as 
different ration compositions and animal management strate-
gies, such as a milk replacer feeding model (Schären et al. 
2017; Uyeno et al. 2015). In young ruminants, probiotics 
have been suggested to improve intestinal health by increas-
ing mucosal immunity and preventing the proliferation of 
pathogenic bacteria (Ayyat et al. 2023) by producing a vari-
ety of antimicrobial compounds such as bacteriocins, hydro-
gen peroxide, VFA, and nitric oxide, allowing the probiotic 
bacteria to compete with other gut bacteria (native or patho-
genic species) and induce the equilibrium between intestinal 
microorganisms and promote rumen fermentation (Sun et al. 
2016; Uyeno et al. 2015). Meanwhile, phytobiotic additives 
had antimicrobial, anti-inflammatory, antioxidant activities 
and endocrine stimulants (Kumar et al. 2022; Zhao et al. 
2023), all highlighted a positive synergistic effect between 
phytobiotic additives and probiotics. However, further stud-
ies are needed to investigate measures of ruminal fermenta-
tion and rumen development when young ruminants are fed 
a combination of probiotics and phytobiotics as well as their 
impacts on animal productivity and measure CH4 emission 
in adult ruminants (Jia et al. 2022).

Safety and regulatory considerations 
for phytobiotic additives in ruminant diets

Although phytobiotic additives are rich in valuable com-
pounds that can improve animal health, productivity, and 
feed efficiency, their use in animal feed requires careful con-
sideration of safety and regulatory requirements to ensure 
the health and welfare of the animals as well as the safety 
of the resulting products. One of the main safety considera-
tions for phytobiotic additives in ruminant diets is the risk 
of toxicity. Despite having positive health effects at low con-
centrations, the presence of bioactive components like tan-
nin, saponin, alkaloids, cardiac glucosides, and cyanogenetic 
glucosides can have detrimental effects on animals when 
consumed in large quantities (An et al. 2023; Costa et al. 

2021; Mickdam et al. 2016; Seyedin et al. 2023). There-
fore, it is important to carefully select phytobiotic additives 
that have been shown to be safe and effective in ruminant 
diets. The use of phytobiotic additives should be based on 
scientific evidence and should follow recommended dosage 
guidelines. Also, safety considerations should require resi-
due to determine whether any harmful residues from phyto-
biotic additives remain in animal products such as meat or 
milk (Franz et al. 2020).

Another safety consideration for phytobiotic additives is 
the risk of contamination with harmful substances, such as 
heavy metals, pesticides, and mycotoxins. The use of con-
taminated phytobiotic additives in animal feed can have 
negative impacts on animal health and product safety (Franz 
et al. 2020). Therefore, it is important to source phytobiotic 
additives from reputable suppliers and to test them for con-
taminants before use. Regulatory considerations for phyto-
biotic additives in ruminant diets include compliance with 
feed safety regulations and labeling requirements. In many 
countries, the use of phytobiotic additives in animal feed 
is regulated by government agencies, such as the Food and 
Drug Administration in the United States or the European 
Food Safety Authority in the European Union. These agen-
cies set standards for feed safety and require that phytobiotic 
additives be labeled accurately and clearly (EFSA 2020). 
The labeling requirements may include accurate ingredient 
listing, dosage instructions, storage conditions, withdrawal 
periods (if applicable), and any cautionary statements 
regarding potential side effects or contraindications.

Other factors to consider include the metabolization (Kim 
et al. 2021) or adaptation (Benchaar et al. 2008) of micro-
biota to phytobiotic additives over time by the formation of 
an extracellular polysaccharide coat and the formation of 
the electro-dense layer commonly seen at the cell surface of 
bacteria (Smith et al. 2005). Because of the variety of active 
component types and chemical profiles, bacteria may lack 
the ability to develop protective mechanisms against each 
compound (López et al. 2010). As a result, long-term studies 
on phytobiotic additives are needed to determine the start 
of the bioactive effect as well as adaptation to the natural 
additives.

Conclusion and future directions

Phytobiotic additives are safe and effective alternatives to 
antibiotics in animal feed, with benefits for both animal 
nutrition and the environment. These additives reduce nitro-
gen excretion and methane emissions from animals, protect-
ing the environment. They also manipulate rumen fermen-
tation, increasing ruminant productivity by maintaining a 
higher ruminal pH, reducing ruminal protein degradation, 
and increasing energy. Phytobiotic additives have additional 
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benefits, including anthelmintic, antioxidative, and anti-
inflammatory immunomodulatory activity, improving ani-
mal product quality and human health. However, further 
research is needed to understand the effects of phytobiotic 
additives on the microbiome, the PSM conversion rate and 
final products of native PSM, and the mechanisms by which 
probiotics and botanical additive formulation inhibit rumi-
nal methanogenesis and nitrogen utilization in dairy cows. 
Similarly, more studies are required to uncover the effects 
of citrus flavonoid intake on hindgut fermentation, microbi-
ome, and metabolites in dairy cows, as well as the regulatory 
mechanisms involved in the metabolic health effects of phy-
tobiotic additives and their metabolites in the gastrointestinal 
tract of dairy cows.
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