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Abstract
Ecosystem carbon storage (ECS) is a critical consideration in reducing the impact of global warming and tackling envi-
ronmental challenges, positioning it at the forefront of contemporary research. Due to the significant differences in the 
influence of land usage patterns on ECS in various policy contexts and China’s commitment to attaining a carbon-neutral 
status, a model simulating different scenarios is needed to analyze the spatiotemporal characteristics and evolutionary 
process of carbon storage in terrestrial ecosystems accurately. To address this challenge, this study established a coupling 
model of “Geographical analysis -Evolution analysis -Predicting (GEP)” for assessing ecosystem ECS and analyzing its 
spatial characteristics and evolutionary patterns and projecting the spatial distribution of ECS under various developmental 
scenarios, which analyzed variations in ECS across different levels of magnitude and delineated the changing areas across 
a range of varying scenarios in the future additionally. The outcomes suggested that the ECS decreased by 1.17 ×  106 t from 
1990 to 2020, which pertaining to the utilization transfer of land in the area, whose change in ECS levels with a positive 
trend. It is predicted that the ECS will grow by 1.15 ×  106 t and 1.44 ×  106 t, in 2030 and 2060 compared with 2020 within 
the framework of natural development scenario (NDS), while within the framework of ecological protection scene (EPS), 
ECS will increase significantly, increasing by 3.06 ×  106 t and 4.44 ×  106 t. There will be more areas where ECS increases 
within the framework of EPS, by comparing with the NDS. This study offers a comprehensive analysis of Hanzhong City’s 
carbon storage trends, demonstrating its significant impact on climate change mitigation and serving as a predictive model 
for similar regions, which underscores the importance of localized carbon management strategies, offering valuable insights 
for local governments in formulating effective climate adaptation and mitigation policies.
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Introduction

Ecosystem carbon storage (ECS) denotes the quantity of 
carbon that is accumulated within diverse natural ecosys-
tems, such as forests, wetlands, grasslands, and oceans 
(Guddaraddi et al. 2023; Mengist et al. 2023), which holds 
a crucial position in alleviating the effects of climate change, 

supporting biodiversity, and enhancing the ability to cope 
with environmental challenges by providing a range of eco-
system services that benefit the environment and human 
society (Gao et al. 2022a; Vicca et al. 2022). Researching 
and managing ecosystem ECS is critical to sustainable envi-
ronmental management and climate change efforts (Ruehr 
et al. 2023). The government of China has pledged to reach 
the maximum level of carbon dioxide emissions by the 
year 2030 and to attain a state of carbon neutrality by 2060 
(Jiang et al. 2022; Ke et al. 2023). To achieve the “dual car-
bon” goal requires maintaining the equilibrium of carbon 
within land-based ecosystems (Ma et al. 2023; Zhang et al. 
2023). Enhancing is viewed as a highly environmentally 
sustainable and economically viable approach to alleviate 
the greenhouse effect. The huge contribution of forest is 
the key to attain national objectives of realizing a carbon 
emission peak and carbon neutrality (Sun et al. 2023). Prior 
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studies demonstrate the enhancement in carbon capture in 
Chinese forests is mainly due to efforts in forest restoration 
and afforestation (Piao et al. 2022; Zhu et al. 2022), and 
Shaanxi Province acts as one of the earliest provinces of 
China to pilot the “grain to green” project (Qian et al. 2019), 
while the area is an important ECS region in China, which 
is located in the Qinling Mountains National Key Ecologi-
cal Functional Zone and has a large number of forest and 
grassland resources within its region (Liu et al. 2019). How 
to assess the ECS of terrestrial ecosystems quantitatively, 
delineate different levels of zoning, and predict future ECS 
are issues that need to be solved urgently.

Various methodologies have been developed for evalu-
ating ECS, with significant advancements made by schol-
ars in areas such as direct measurement, allometric equa-
tions, model simulation, atmospheric, and remote sensing 
inversion (Nandal et al. 2023). Given the strong correlation 
among different types of land utilization and ECS (Gong 
et al. 2023), the Integrated Valuation of Ecosystem Services 
and Tradeoffs (InVEST) model, developed by the Natural 
Capital Project, has gained popularity. This model assesses 
the worth of environmental assets and ecological benefits, 
making it a preferred tool for ECS evaluation (Zhong and 
Wang 2017; Xiang et al. 2022). These services include car-
bon storage and sequestration, water regulation, biodiver-
sity conservation, and crop pollination (Nelson et al. 2009). 
The InVEST model carbon storage simulates the impacts 
of potential land-use and management scenarios. A model 
designed to assess the roles of changes in land usage in the 
ECS offers numerous benefits, including ease of use and 
adaptable parameters, and fast response speed (Xiang et al. 
2022). Certain academics assess the ecosystem carbon 
storage of land-based ecosystems using the InVEST car-
bon storage framework. Someone evaluated ecosystem ser-
vices along the Atlantic coast (Caro et al. 2020). The others 
evaluated the ECS in Uva Province, Sri Lanka (Piyathilake 
et al. 2022); There were also some scholars evaluating the 
spatiotemporal allocation of ECS in Guangdong Province 
from 1990 to 2020 (Ren et al. 2023). It can be seen that the 
InVEST model has higher accuracy and wider application in 
ECS assessment. Despite the advancements in ECS research, 
there remains a lack of extensive study on ECS within spe-
cific areas, notably during the critical “dual carbon” period. 
Consequently, this research aims to fill this gap by forecast-
ing ECS within this timeframe, thereby offering valuable 
insights and guidance for the effective implementation of 
carbon peaking and carbon neutrality policies (Gao et al. 
2022c).

Analytical models such as CA-Markov (Zhao et al. 2019), 
FLUS (Li et al. 2022b), and PLUS (Luan and Liu 2022) 
have been developed to examine transitions in land usage. 
Notably, the PLUS model stands out for its exceptional accu-
racy in forecasting land usage/land cover (LULC) changes 

at a patch-scale (Liang et al. 2021; Yu et al. 2023). It has 
been widely adopted for forecasting future patterns of land 
utilization, as evidenced by its application in forecasting 
the landscape dynamics of the Fujian delta by 2050 (Zhang 
et al. 2022a) and projecting the future of production-living-
ecological spaces in Ningbo (Li et al. 2022a). While the 
PLUS model is renowned for its precision in mapping future 
land configurations, accurately assessing ecosystem carbon 
storage (ECS) under various scenarios remains a challenge, 
highlighting a complex aspect of modern environmental 
studies.

With the development of spatial technology, GIS and 
RS are widely used in environmental assessment (Ma et al. 
2022), and forest, as the main factor in increasing ECS, 
greatly influence the achievement of the “double carbon” 
goal. Hence, we need to research the variations in land 
usage, the variations in ECS in the past 30 years, and pre-
dict the ECS in 2030 and 2060, so as to offer guidance for 
the for the development of “dual carbon” work in the area. 
This study built a coupling model named GEP based on 
geographical analysis, evolution analysis, and predicting 
and evaluated the historical and future ECS of Hanzhong 
City where there without previous relevant research under 
different scenarios. The research contents of this article 
are shown below: (1) explore the transition in land utiliza-
tion from 1990 to 2020; (2) evaluate the geographical and 
chronological spread of carbon reserves by using Moran’s I 
and determine the ECS level zone and analyze its evolution 
law within the framework of the hierarchical transforma-
tion model; (3) divide two scenarios predict ECS changes in 
2030 and 2060, delineate zones, and provide recommenda-
tions for different zones (Fig. 1). This research framework 
of “Geographical analysis -Evolution analysis -Predicting 
(GEP)” provides an approach for analyzing the spatial char-
acteristics and evolutionary process of ECS under differ-
ent scenarios, offering a practical method for conducting 
research on global carbon sinks.

Materials and approaches

Research area

H a n z h o n g  C i t y  ( 1 0 5 . 4 8 7 2 ° E – 1 0 8 . 2 8 0 3 ° E , 
32.1478°N–33.8794°N) lies in the southwest of Shaanxi 
Province (Fig. 2). Positioned at the source of the Han River, 
it serves as a crucial water conservation area for the South-
to-North Water Diversion Middle Route Project (Gao et al. 
2020). It also plays a significant role in Shaanxi Province’s 
initiative to transfer water from the Han River to the Wei 
River (Tian et al. 2021). The city is nestled in the west-
ern part of the Qinling and Daba Mountains (Zhang et al. 
2019). This region falls under the subtropical climate zone. 
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Shielded by the Qinling Mountains to the north, it is pro-
tected from cold currents, resulting in a climate that is both 
mild and humid (El Kateb et al. 2013).

The area under its jurisdiction is mainly mountainous, 
making up 75.2% of the entire land area. The Qinling 
Mountains lie to the north of the research area, while the 
Micang Mountains of the Daba Mountains are situated to 

the south. It has natural geographical advantages and is 
an important forest resource area in Shaanxi Province 
(Chen and Yao 2022; Su et al. 2023), and the city’s forest 
coverage rate is 63.79%, which is higher than the aver-
age forest coverage rate in Shaanxi Province. Lately, as 
economy develops continuously, the construction land has 

Fig. 1  Research framework diagram

Fig. 2  Location map of Hanzhong City
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continuously expanded, and the city’s urban construction 
land area has reached 59.60  km2 by 2021.

Data source

The data sources of the research mostly include the aspects 
below:

1. Land usage type data: sourced from the Resource and 
Environment Data Center of the Chinese Academy of 
Sciences. This dataset has a spatial resolution of 30 m, 
where the original land types have been recategorized 
into forest land, construction land, cultivated land, water 
bodies, grassland, and unused land. The dataset includes 
data for six specific years: 1990, 2000, 2005, 2010, 
2015, and 2020 (https:// doi. org/ 10. 12078/ 20180 70201).

2. The carbon density data: the cultivated land data and 
unused land data come from the “2010s China Terres-
trial Ecosystem Carbon Density Data Set” collected 
from journal literature (https:// doi. org/ 10. 11922/ scien 
cedb. 603.). The carbon density information of the 
research area, including aboveground carbon density of 
underground carbon density, vegetation, and soil organic 
carbon density, were acquired by consulting the data set. 
The water and construction land data and dead organic 
matter carbon density data adopt the revised data of 
research of Wang et al. (2022c). The above-ground car-
bon density information of forest land comes from the 
study on above-ground forest biomass in Xi’an (Zhao 
et al. 2020). The root-shoot ratio of forestland comes 
from the study of root-shoot ratio of Chinese forests 
(Guo et al. 2022). The underground carbon density of 
forest land is obtained from the aboveground carbon 
density and the root-shoot ratio. The soil organic car-
bon in forest and grassland comes from the study of 

soil organic carbon density in forest on the southern 
slope of Qinling Mountains. The grassland root-shoot 
ratio comes from the study of grassland root-shoot ratio 
(https:// doi. org/ 10. 5846/ stxb2 02011 202984.). The soil 
organic carbon in forest and grassland comes from the 
study of soil organic carbon density in forest on the 
southern slope of Qinling Mountains (https:// doi. org/ 
10. 11707/j. 1001/ 7488. 20190 502.).

3. Driving elements of the PLUS Model required: on basis 
of the classification criteria of social economy and natu-
ral environment, 12 driving element information were 
selected as training data for the PLUS model (Table 1).

Research methods

InVEST model ECS module

ECS at the plot level is predominantly determined based 
on the size of four critical carbon reservoirs: aboveground 
biomass, belowground biomass, soil, and dead organic mat-
ter (Paul et al. 2021). Calculate ECS using land use data, 
according to the following equation:

where C
total

 represents the total ECS in the research area 
(unit: t); A

k
 denotes the area of the kth land kind within the 

research area; k is from 1 to n ; n means the number of land 
kinds; C

above
 , C

below
 , C

soil
 , and C

dead
 are the aboveground bio-

mass carbon density, underground biomass carbon density, 
soil organic matter carbon density, and the carbon density of 
dead organic matter (Wang et al. 2022d), and all of the unit 

(1)C
total

=

n
∑

k=1

A
k
× (C

above
+ C

below
+ C

soil
+ C

dead
)

Table 1  Driver data source table of PLUS model

Data type Data Data sources

Socio-
economic 
factors

Population The Resource and Environment Data Center of the Chinese Academy of Sciences (http:// www. resdc. 
cn/https:// doi. org/ 10. 12078/ 20171 21102)GDP

Railway OpenStreetMap (https:// www. opens treet map. org/)
Trunk road
Secondary road

Climate and 
environ-
mental 
factors

Soil kind National Qinghai Tibet Plateau Scientific Data Center (https:// data. tpdc. ac. cn/)
Annual mean temperature National Tibetan Plateau / Third Pole Environment Data Center. (https:// doi. org/ 10. 11888/ Meteo ro. 

tpdc. 270961)
Annual mean precipitation European Centre for Medium-Range Weather Forecasts (https:// cds. clima te. coper nicus. eu/)
DEM Geospatial Data Cloud (https:// www. gsclo ud. cn/)
Water OpenStreetMap (https:// www. opens treet map. org/)
NDVI National Aeronautics and Space Administration (https:// www. earth data. nasa. gov/)
Night light index National Earth System Science Data Center (https:// www. geoda ta. cn/ main/)

https://doi.org/10.12078/2018070201
https://doi.org/10.11922/sciencedb.603
https://doi.org/10.11922/sciencedb.603
https://doi.org/10.5846/stxb202011202984
https://doi.org/10.11707/j.1001/7488.20190502
https://doi.org/10.11707/j.1001/7488.20190502
http://www.resdc.cn/
http://www.resdc.cn/
https://doi.org/10.12078/2017121102
https://www.openstreetmap.org/
https://data.tpdc.ac.cn/
https://doi.org/10.11888/Meteoro.tpdc.270961
https://doi.org/10.11888/Meteoro.tpdc.270961
https://cds.climate.copernicus.eu/
https://www.gscloud.cn/
https://www.openstreetmap.org/
https://www.earthdata.nasa.gov/
https://www.geodata.cn/main/
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is t/hm2. Calculate ECS using collected soil carbon density 
(Table 2).

Geographical and evolution analysis model

Moran’s I is a statistical measure for assessing the similar-
ity among observed values in spatial data, which is used to 
identify spatial patterns, such as clustering or dispersion, 
aiding in the assessment of whether adjacent observations in 
geographical space are similar, whose range is [− 1,1], and 
the closer the absolute value is to 1, the stronger the corre-
sponding positive or negative correlation (Chai et al. 2023). 
In this study, the study area was divided into 3 km × 3 km 
grids to conduct spatial autocorrelation assessment. Moran’s 
I was used to clarify the spatial autocorrelation of ECS in 
the study area, determine whether there is accumulation of 
carbon storage, and divide it accordingly.

After exploring spatial autocorrelation and aggregation, 
the obtained ECS spatial distribution is divided into three 
levels within the framework of the hierarchical transforma-
tion model based on the natural breakpoint method and an 
evolutionary analysis is conducted between different levels 
(He et al. 2023a; Qi et al. 2023).

Prediction and verification of land usage varies 
with the PLUS model

On basis of raster image information, the PLUS model 
adopts a novel land expansion discussion measure and a cel-
lular automaton multiclass random patch seeding (CARS) 
model on basis of cellular automata (CA) (Liang et al. 2021; 
Wang et al. 2023c). The LEAS and CARS operations of 
the PLUS model are completed in the PLUS v1.4 boxed 
software.

The LEAS module selected 12 driving factors in the 
study, including factors related to society and the economy, 
as well as climate and environmental factors. Among them, 
socioeconomic factors include the population of 2010, the 
GDP of 2010, the distance to railways, the distance to trunk 
roads, and the distance to secondary roads; while soil kind, 
historical annual mean temperature, historical annual pre-
cipitation, DEM, night light, and distance to water bodies 

and Normalized Difference Vegetation Index are climatic 
environmental elements (Gao et al. 2022b; Liang et al. 2021; 
Zhang et al. 2022a).

CARS integrates random seed production and threshold 
decrease mechanisms. Meanwhile, the automatic production 
of patches over time and space can be dynamically simulated 
by the PLUS model, adhering to transition probabilities and 
constraints (Liang et al. 2021; Xu et al. 2022).

Parameter settings under different development scenarios

Due to the unique geographical location of the research area, 
two development scenarios are established in this research, 
which are the natural development scene (NDS) and the eco-
logical protection scene (EPS) (Wang et al. 2023b). Under 
the framework of NDS, the social development from 2020 to 
2030 remains unchanged from the economic development, 
energy utilization, ecological protection, and land usage 
policies from 2010 to 2020. Under the framework of EPS, 
according to the Hanzhong City 14th Five-Year Ecological 
Environment Protection Plan, the ecological environment 
protection of “two mountains” (Qinling Mountains and 
Bashan Mountains) and “two rivers” (Hanjiang River and 
Jialing River), water and forest land cannot be converted 
to other land usage kinds. Protect the spatial distribution of 
existing forests, grasslands, and water bodies unchanged, 
and strictly limit the change of forests and water bodies into 
other land use types, reduce the over-development of con-
struction land, and allow the conversion of construction land 
into forests. In conclusion, protecting the ecological environ-
ment for development is the main target.

• Natural development scene: under the scene, Markov 
chains are adopted to predict the land usage need in 2030 
and 2060. The land usage transfer matrix and neighbor-
hood weights remain unchanged from the settings from 
2010 to 2020.

• Ecological protection scene: on basis of the natural 
development scenarios from 2020 to 2030 and 2060, the 
mutual change between forest and grassland is allowed, 
and the change of forest and grassland to other land 
usage kinds is restricted (Sun et al. 2022); the probabil-
ity of water being transformed into construction land is 
decreased by 50%, and the possibility of cultivated land 
being transferred to construction land is reduced by 30% 
(Wang et al. 2023a). According to the policy of returning 
cultivated land to forest and grassland, the possibility of 
transforming cultivated land to forest and grassland is 
grown by 30%, and the possibility of changing construc-
tion land to forest land is increased by 30% and the tran-
sition possibility from grassland to forestland increases 
by 30% (Gu et al. 2022), then change the conversion 
possibility of every land usage kind, and forecast land 

Table 2  Soil carbon density table in Hanzhong City (t/hm2)

Land-use type C
above

C
below

C
soil

C
dead

Cultivated land 4.87 36.58 78.92 0.74
Forest land 59.2 15.45 125.41 1.95
Grassland 6.24 48.67 122.2 0.46
Water 2.26 11.25 0 0
Construction land 0.72 0 6.37 0
Unused land 0.99 1.2 0 0
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usage demand and neighborhood weight with Markov 
chains in 2030 and 2060. In line with the ecological pro-
tection scenario’s criteria for land use conversion and 
considering the specific conditions of Hanzhong City, 
the neighborhood weights for various land usage kinds 
were established (Table 3). Furthermore, the land usage 
transfer matrix under the framework of EPS was deter-
mined (Table 4), where “1” signifies transferable, and “0” 
indicates non-transferable.

Result

Research results on land use type transfer

The land usage kinds are mostly forest and grassland, occu-
pying 71.16% of the total. From 1990 to 2020, the overall 
land usage variations were dominated by forestland, grass-
land, and construction land. The area of forestland and grass-
land declined, but the area of construction land grew, which 
had a negative impact on the increase of ECS. From 1990 to 
2020, the land usage kind had been converted from arable 
land to forest, grassland, and construction land with a larger 
area of 126.44  km2, 381.36  km2, and 130.21  km2 respec-
tively (Fig. 3). This was related to the transfer of arable land 
to forest and grassland and the occupation of cultivated land 
as construction land. The mutual change between forest and 
grassland was also at a high level, with 133.95  km2 con-
verted from forest to grassland and 660.46  km2 converted 
from grassland to woodland. The major source of construc-
tion land expansion was arable land. From 1990 to 2020, 
the construction land area had grown by 113.51  km2, and 
part of the construction land had returned to cultivated land, 
forest, and grassland, whose area reached 27.9  km2. The 

main source of construction land was arable land occupying 
91.6% of the grown construction land area. All of these had 
a greater impact on changes in ECS.

Temporal and spatial variations in ECS

Variations in ECS quantity

It was showed that the total ECS, underground biomass, 
aboveground biomass, soil organic carbon, and total dead 
organic matter (Fig. 4). The spatial distribution of ECS 
obtained by the ECS module of the InVEST model from 
1990 to 2020 had occurred a series of changes (Fig. 5). 

Table 3  Land usage 
neighborhood weights for 
different land use types

Scenario Cultivated land Forest Grassland Water Construction land Unused land

Natural development 0.9 0.286595 0.028285 0.017608 0.565087 0.01
Ecological protection 0.977060 0.090429 0.9 0.003980 0.063510 0.01

Table 4  Land usage transfer 
matrix in the context of EPS

Land usage kind Cultivated 
land

Forest Grassland Water Construction 
land

Unused land

Cultivated land 1 1 1 0 1 1
Forest 0 1 1 0 0 0
Grassland 0 1 1 0 0 0
Water 0 0 1 1 0 0
Construction land 0 0 0 0 1 0
Unused land 1 1 1 1 1 1

Fig. 3  Transference of land usage kinds from 1990 to 2020
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The total ECS in 1990 was 452.6650 ×  106 t, the total ECS 
in 2000 was 452.5338 ×  106 t, the total ECS in 2005 was 
452.4890 ×  106 t, the total ECS in 2010 was 451.6323 ×  106 t, 
and the total ECS in 2015 was 451.4173 ×  106 t, and the total 
ECS in 2020 was 451.4929 ×  106 t. ECS generally displayed 
a declining tendency from 1990 to 2020, and increased 
slightly from 2015 to 2020. The aboveground biomass of 

vegetation displayed a total growing tendency from 1990 
to 2020, while the aboveground biomass decreased slightly 
from 2015 to 2020. Since there was a certain proportional 
relationship between aboveground biomass and underground 
biomass of vegetation, called the root-to-shoot ratio, the 
changes in vegetation underground biomass were consist-
ent with the changes in aboveground biomass. Soil organic 

Fig. 4  Annual changes in total ECS in Hanzhong City
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carbon occupied the overwhelming majority of the total car-
bon reserves. Soil organic carbon gradually decreased from 
1990 to 2015, while the total soil organic carbon increased 
slightly from 2015 to 2020.

Spatial changes in ECS in the study area

High ECS areas were allocated in the north and south, 
mainly forest and grassland, accounting for 74.4% of total 
ECS (Fig. 5). The central location was a low-ECS area, 
occupying 25.6% of the total ECS. The high ECS area in 
the northern part of the research area included all of Liuba 
County, etc. To the south that was the Bashan Mountains, 

the land usage kinds were mostly forest and grassland. It was 
a significant carbon sink area and also contains huge ECS. 
The high ECS area in southern area included most area of 
Ningqiang County, etc. The center was located in the Han-
zhong Basin plain area and was the political and economic 
center, so it had lower ECS. The Loess Plateau, land deser-
tification, and Hanzhong urban agglomeration in northern 
Shaanxi had resulted in lower carbon sinks. The ECS of 
Shaanxi Province was mainly in southern area of Shaanxi, 
and the ECS accounted for 15.0% of the total region’s ECS, 
making it an important ECS area (Wang et al. 2022c).

Spatial autocorrelation analysis of ECS from 1990 to 
2020 was performed by creating spatial weight matrix 

Fig. 5  Spatial distribution map 
of ECS
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of adjacency effect, and the Moran’s I were obtained 
as 0.75905, 0.76037, 0.76214, 0.76511, 0.76669, and 
0.75831 respectively (Gong et al. 2023), indicating that 
the distribution of ECS showed a high positive association 
with the geographical location of the research area and 
the spatial distribution is clustered (Fig. 5). High-high 

ECS areas were allocated in a small part of the north and 
south from the LISA cluster map in 2020 (Fig. 6), where 
the Qinling Mountains and Daba Mountains located in 
and there was a large distribution of forests, accounting 
for 21.31% of the total area. While low-low ECS areas 
were allocated in the central part that was the Hanzhong 

Fig. 6  Moran scatter plot t of ECS from 1990 to 2020
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Plain area, which was an area where humans gathered, 
and agriculture and industry were relatively developed, 
accounting for 13.70%. The location of high-low area in 
a small part of the south and north of the low-low area 
was found, showing the characteristics of discrete distri-
bution (Fig. 7).

Changes in ECS in counties and districts of the area

The changes in ECS were more obvious from 2005 to 2010 
and from 2015 to 2020 (Fig. 8). From 2005 to 2010, ECS in 
most counties showed a decrease, and Lueyang County and 
Foping County showed an increase. The increase in Lueyang 
County was larger, at 262,000 tons. The ECS in Xixiang 
County and Yang County decreased significantly, 235,800 
t and 211,800 t respectively, accounting for 38.91% of the 

Fig. 7  LISA spatial clustering chart of ECS from 1990 to 2020
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ECS reduction. From 2015 to 2020, the ECS of Hantai Dis-
trict and Nanzheng District showed a large decrease, and 
Yangxian county, et.al showed a large increase, while the 
ECS of other counties showed less changes. Hantai District 
and Nanzheng District were located in the Hanzhong Plain, 
and their construction land areas had increased significantly, 
reaching 10.07  km2 and 7.72  km2 respectively. Yangxian 
County, on the other hand, experienced a larger increase in 
ECS due to an increase in grassland area of 20.33  km2.

Changes in ECS levels from 1990 to 2020

The spatial allocation of ECS in the research area from 1990 
to 2020 was divided into low ECS areas, medium storage 
areas, and high ECS areas, and the ECS distribution levels 
are defined as three levels: I, II, and III respectively using 
natural breakpoint classification (NBC) (Wu et al. 2021).

• Level I areas were mainly human activity areas and 
waters and some unused land, accounting for a small 
area.

• Level II areas were medium ECS areas, which were 
mainly grassland, cultivated land, and a small number of 
human activity areas. They also played a significant role 
in ecosystem carbon sinks. As China have strengthened 
the protection of ecosystems, some of these areas would 
be converted into high ECS areas and urban expansion 
would occupy cultivated land and grassland, leading to 
the reduction of medium ECS areas.

• Level III areas, forests were mainly distributed, and tak-
ing 2020 as an example, the high ECS area was a national 
key protected area with a large amount of forest resources 
distributed. It was an important area for carbon sinks in 
Shaanxi Province, China, in terms of ecosystem carbon 
sinks, the area played a key role in realizing carbon neu-
tralizing targets.

Between 1990 and 2020, the three levels of ECS distribu-
tion areas had basically remained unchanged (Fig. 9). Level I 
areas, that was, lower ECS areas accounted for a smaller pro-
portion, about 1.4% of the total area. Level II areas occupied 
about 68.6% of the entire area, it was the main ECS distri-
bution area, and level III areas accounted for approximately 
30.0%. This result was due to that there were vast forests and 
grassland resources in the north and south mountains, and 
relatively few human active areas. From 1990 to 2020, level 
II areas had shown a slight downward trend, which might 
be related to the occupation of arable land by converting 
cultivated land to forest and grassland, while level III areas 
had shown a slight upward trend.

Between 1990 and 2000, the land use changes during this 
period were negligible; therefore, the changes in ECS levels 
were small, and there were only changes in a small number 
of areas. For example, the changed area from level II area to 
level I area was only about 10  km2.

As China’s policies including returning cultivated land 
to forest and developing the western region are adopted, 
the ECS level had changed significantly from 2000 to 

Fig. 8  Changes in ECS over 
time in various counties and 
districts
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2005, evolving from level II areas to level I and level III 
areas with areas of 34.0  km2 and 98.4  km2 respectively 
and the area that evolved from level III area to level II 
area was 73.3km2. Between 2005 and 2010, a discernible 
shift occurred in the ECS classification of various areas. 
Specifically, 34.0  km2 of level II zones advanced to level 
I, while another 98.4  km2 was downgraded to level III. 
Concurrently, an expanse of 73.3  km2 transitioned from 
level III to level II. As the decade progressed, the pattern 
of change became more pronounced. In the span leading 
up to 2010, level II areas yielded 76.9  km2 to level I and 
relinquished 163.5  km2 to level III. Conversely, level III 
areas saw a reduction, with 86.7  km2 elevating to level II 
status. The interval from 2010 to 2015 marked a continu-
ation of this trend, albeit at a modified pace. Level I wel-
comed 29.3  km2 from level II, and level III incorporated an 
additional 89.2  km2 from the same. Interestingly, level II 
zones recovered slightly by absorbing 91.0  km2 from level 
III. In the final 5-year period leading up to 2020, the trans-
formations intensified. A considerable 87.6  km2 of level 
II territory ascended to level I, and a significant surge saw 
276.0  km2 relegated to level III, highlighting a dynamic 
landscape of ECS capabilities across the regions. Overall, 
from 1990 to 2020, the distribution area of ECS levels had 
varied greatly, and the areas that had evolved from level 
II areas to level I and level III areas were 165.2  km2 and 
316.4  km2 respectively. The areas that had evolved from 

level III areas to level II areas were 273.3  km2. Overall, 
the ECS showed a better trend.

Prediction of ECS in 2030 and 2060

Contribution of various influencing factors 
in the PLUS model

The study predicts future land usage spatial distribution on 
basis of the PLUS model, using land usage information in 
2010 and 2020 as the basis for model prediction. The LEAS 
module selects 12 driving elements and obtains the land 
usage development potential map through the random forest 
algorithm. The root means square errors of the prediction 
of arable land, forest land, grassland, water, construction 
land, and unused land are 0.1489, 0.1098, 0.1577, 0.0245, 
0.0403, and 0.0077. For the expansion of cultivated land, 
elevation, night light index, and GDP have the greatest con-
tribution, accounting for 35.8% of the total contribution; 
for forest land expansion, elevation and precipitation have 
the greatest contribution, accounting for 27.2% of the total 
contribution, which are closely related to the growth of for-
ests (Fig. 10). Elevation, population density, and distance to 
trunk road are the main contributing elements to grassland 
expansion, accounting for 34.7% of the contribution factors 
to grassland expansion. Elevation is the main contributing 
factors to water body expansion, accounting for 32.9% of 

Fig. 9  1990–2020 ECS grade evolution and total change in the research are as follows: (a) 1990–2000; (b) 2000–2005; (c) 2005–2010; (d) 
2010–1015; (e) 2015–2020; (f) the proportion of each grade and the change in ECS in each year
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the total contribution, which is consistent with the facts. The 
major contributing elements to the expansion of construc-
tion land are night light index, elevation, and distance to 
railway, accounting for 41.8% of the overall development 
contribution. The night light index represents the density 
of human activity areas, thus having a significant impact on 
the expansion of construction land. The elements that have 
the greatest influence on the overall land use transfer are 
elevation, population density, distance to railway, and GDP.

Prediction precision of PLUS model

The land usage allocation in 2020 under the framework of 
NDS was predicted with the PLUS model, and by comparing 
with the land usage data in 2020 of the CAS in the PLUS 
v1.4 boxed software, the Kappa parameter of the model was 
obtained to be 0.88, and the total precision is 0.92. When 
the Kappa parameter is above 0.75, we consider the pre-
cision of the model to be higher (Jescovitch et al. 2021). 
This shows that the PLUS model in this research has high 
model precision and can be employed to forecast future land 
usage changes. There are some slight differences between 
the detailed drawings forecast by the PLUS model and the 
actual land usage map (Fig. 11).

Spatial distribution of ECS predictions for 2030 and 2060

The PLUS prediction model in the study has high prediction 
precision and can be adopted to forecast future ECS. Accord-
ing to the forecast outcomes, in 2030, under the framework 
of NDS, the total ECS will be 452.6475 ×  106 t, and under 
the framework of EPS, the total ECS will be 454.5506 ×  106 
t. Under the framework of NDS in 2060, the ECS will reach 
452.7730 ×  106 t, and under the framework of EPS, the ECS 

will reach 455.9290 ×  106 t. Under the framework of NDS 
in 2030, ECS will grow by 1.1546 ×  106 t compared with 
2020, while the ECS under the framework of EPS will have 
3.0577 ×  106 t more total terrestrial ECS than the NDS. In 
2060, under the framework of NDS, ECS will increase by 
1.4361 ×  106 t compared with 2030, while the ECS under the 
framework of EPS will have a total ECS that is 4.4361 ×  106 
t above the NDS. The prediction results of ECS show that 
under two development scenes (NDS and EPS) in 2030 and 
2060, ECS will show growth changes, which plays a positive 
role in the achievement of the “double carbon” objective. 
Under the framework of the EPS, the increase in ECS is 
much greater than the NDS. The future development path 
should coordinate the development of economy and ecologi-
cal environment protection, and make ecological protection 
a priority for future development.

The CARS module of the PLUS model obtained the 
land usage distribution maps in 2030 and 2060, and the 
ECS module of the InVEST model was adopted to obtain 
the spatial distribution maps of ECS for the two develop-
ment scenarios (Fig. 12). The ECS prediction map under 
two development scenarios in 2030 and 2060 divides each 
pixel point according to its value using the Jenks method 
and divides it into a low ECS area ( 0 ≤ C

cell
≤ 1.2159 ), a 

medium ECS area ( 1.2159 < C
cell

≤ 10.8999 ), and a high 
ECS area ( 10.8999 < C

cell
 ), and the unit is ton (Fig. 13). 

Under the two prediction scenes, the high ECS areas in 2030 
and 2060 are distributed in the forest and grassland regions 
in the north and south, including northern Lueyang County. 
Medium ECS area is located in the central, western, and 
eastern regions, including southern Lueyang County and 
southern Mianxian County. The low ECS areas are distrib-
uted in the central human activity region, including Hantai 
District.

Fig. 10  Contribution diagram 
of driving factors for land use 
expansion
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Fig. 11  Actual and predicted 
land use maps of PLUS model; 
(a) the land use map from the 
Resource and Environment Data 
Center of the Chinese Acad-
emy of Sciences; (b) land use 
predicted by PLUS Model
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Fig. 12  Spatial distribution map 
of predicted ECS in the research 
area in 2030 and 2060

Fig. 13  Partition maps of ECS 
prediction under different 
scenarios
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Compared with the ECS in 2020, under the framework of 
NDS, the ECS will decline in a large region in 2030, with a 
reduction area of 595.26  km2, distributed in the central area 
(Fig. 14). While under the framework of EPS, the area of ECS 
increase is 321.76  km2, which is distributed in the human 
activity area in the center. Because of the optimization of land 
usage in the ecological protection scene, the ECS increases 
(Ren et al. 2023). Compared with 2020, in 2060, under the 
framework of NDS, ECS will also decrease in a large area, 
with a reduced area of 1231.42  km2, mostly allocated in the 
central Hanzhong Plain area. Under the framework of EPS, the 
research area’s ECS increased significantly, with an increase 
area of 759.01  km2, allocated in the central, western, and east-
ern parts of the area. These areas contain a lot of arable land 
and construction land, which are of human activity areas (Wei 
et al. 2023). Due to in the ecological protection scenario, the 
protection of forest and grassland and the restriction of the 
expansion of construction land into forest and grassland will 
lead to a larger area of ECS increase (Yang et al. 2023).

Discussion

Practical analysis of coupling ECS model analysis 
in environmental management

In this study, the integration of the InVEST model with 
geographic evolutionary analysis and the PLUS model 
marks a significant methodological advancement in simu-
lating land use changes and assessing ECS capabilities 
within environmental management frameworks (Wang 
et al. 2022d). The combination of these models utilizes 
the precision of the InVEST model in obtaining detailed 
carbon density information and its analysis of spatial char-
acteristics and evolutionary processes. At the same time, 
it benefits from the simplicity and high accuracy of the 
PLUS model, enhancing our predictive capabilities regard-
ing land use changes (He et al. 2023b; Zarandian et al. 
2023). This synergistic effect signifies a pioneering step 

Fig. 14  Changes in ECS predic-
tion for 2030 and 2060
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in simulating land use changes and evaluating ECS within 
the scope of environmental management. We applied this 
integrated approach to Hanzhong City, providing a practi-
cal case study. The city can tackle its unique challenges 
in land use and environmental management by referenc-
ing the model suggested. This case study demonstrates 
the model’s effectiveness in real world scenarios, show-
ing its practical applicability and potential scalability 
in similar urban environments, which underscores the 
importance of localized carbon management strategies, 
offering valuable insights for local governments in for-
mulating effective climate adaptation and mitigation poli-
cies. This study extends beyond Hanzhong City, offering 
global applicability. Considering various urban densities, 
climatic conditions, and ecological diversities, the versa-
tility of the integrated model is evident in its potential to 
adapt to diverse urban settings globally (Shao et al. 2023). 
The model provides a scalable framework for planning 
and managing ECS in different urban environments (Guo 
et al. 2024). Quantitatively, there is an increase in the 
accuracy of predictions related to land use changes and 
carbon sequestration. Qualitatively, the model contributes 
to a better understanding of decision-making processes, 
assisting policymakers and stakeholders in developing 
more effective environmental strategies (Li et al. 2023a). 
The results of this study have significant implications for 
environmental policy at both local and global levels (Fer-
nandes et al. 2020). The insights derived could lead to 
more informed policy decisions, emphasizing sustainable 
development and conservation, and could inspire new ini-
tiatives aimed at environmental stewardship and sustain-
able urban planning. While the integration of the models 
marks a significant step forward, there are challenges and 
limitations inherent in this approach (Tao et al. 2023). 
Future research should focus on refining these models, 
exploring additional integrations, and expanding their 
application to diverse urban environments globally to fur-
ther validate and enhance their efficacy.

Analysis of changes in historical ECS

Land use change directly determines the change in ECS. 
High ECS is distributed in areas with lush vegetation and 
good ecological environment, while low ECS areas are 
located in ecologically fragile areas (He et al. 2023a, b; Li 
et al. 2023b; Wei et al. 2023). From 1990 to 2020, with 
the continuous economic growth and urban expansion, the 
construction land continued to increase (Liu and Xin 2022). 
The main source of conversion of construction land in the 
research area was cultivated land, accounting for 91.6% of 
the source, which was related to the research area’s eco-
nomic growth and ecological protection policies in the past 
30 years (Wei et al. 2023; Zhang et al. 2022b). The north and 

south of the research region were covered by large areas of 
forest and grassland, which were restricted areas for human 
activities, while the central part was the Hanzhong Plain, 
which was the center of human activities (Yang et al. 2022). 
As Shaanxi Province continued to promote the Qinling 
Mountains protection policy, and the research region was 
located at the southern foot of the Qinling Mountains, with 
the Daba Mountains southern, and there were few human 
activities (Li et al. 2022c). Therefore, as construction land 
expands, less construction land being converted from forest 
and grassland had been resulted in. Shaanxi Province is the 
earliest pilot province in the country to convert farmland into 
forests, and with the execution of the natural forest resource 
protection policy (Ding and Yao 2022), the area of arable 
land in the region had declined (Wang and Gong 2022), 
while the area of forest and grassland had grown, which was 
beneficial to the area’s ECS increasing. In 2020, forest land 
increased by 7.3% compared with 1990, while the grassland 
area decreased by 4.6%, while due to the advancement of 
ecological projects in Shaanxi Province, the main source 
of forest land expansion was grassland (Zou et al. 2022). 
From the ECS variations in the research region in the past 
30 years, it could be seen that with high ECS correlated with 
regions of dense vegetation and robust ecological environ-
ments (Ning et al. 2021). This aligns with and builds upon 
previous studies by offering a detailed exploration of land 
use transformations in Hanzhong and their implications for 
ECS over a 30-year timeline (Li et al. 2022a). While cor-
roborating general trends identified in earlier research, this 
study also uncovers the nuanced effects of urban expansion 
and ecological conservation policies on ECS within this spe-
cific urban context (Wang et al. 2022b). The detailed analy-
sis underscores the importance of continuous ecological 
conservation efforts and highlights the potential impacts of 
urban planning decisions on the region’s ecological sustain-
ability. By offering localized yet globally relevant insights 
into ECS dynamics, the study contributes to the broader 
discourse on sustainable urban development and ecological 
conservation.

Some suggestions of terrestrial ECS in the research 
region

The essence of carbon storage prediction lies in its ability 
to inform tailored management strategies for different fore-
casted zones, a concept which warrants further elaboration. 
For the areas with high ECS in the ecological protection sce-
nario of the prediction results (Fig. 13), the focus would be 
on preserving and enhancing the existing ecological assets. 
This would involve stringent conservation efforts, such as 
the enforcement of strict regulations against land degrada-
tion activities, along with proactive measures like reforest-
ation or the restoration of degraded lands to their natural 
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state (Wang et al. 2022b). These areas, being critical carbon 
sinks, require a heightened level of protection to maintain 
and possibly increase their carbon sequestration potential 
(Huang et al. 2021). In contrast, areas with moderate carbon 
storage might necessitate a different set of actions. These 
regions could benefit from balanced approaches that com-
bine conservation with sustainable land use. Strategies could 
include controlled afforestation, selective logging practices 
that ensure regeneration (Fu et al. 2022), and the integration 
of sustainable agricultural practices that help maintain or 
moderately increase carbon storage without compromising 
the land’s usability for human purposes (Ding et al. 2022). 
For areas with low carbon storage, which is generally an 
area of human activity, the approach shifts towards trans-
forming these regions into more efficient carbon sinks. This 
could be realized by adopting innovative land use planning 
with carbon sequestration as a central goal, coupled with 
the implementation of energy-saving and emission-reduction 
strategies in construction zones, and the development of 
renewable energy sources (Cheng et al. 2022). Urban plan-
ning, for instance, can integrate green spaces effectively, 
promoting urban forestry and rooftop gardens, which not 
only enhance the esthetic appeal of the city but also con-
tribute to carbon storage (Raihan et al. 2022). For areas 
with increased ECS in the ecological protection scenario 
(Fig. 14), policies should be implemented to protect forest 
and grassland, limit the change of forest and grassland to 
other land usage kinds, and keep the carbon sink capacity 
of forests and grassland (Pan et al. 2023). For areas with 
reduced ECS, the expansion of construction land into this 
area should be restricted and forest, grassland, and cultivated 
land should be protected (Wang et al. 2022a).

Research prospect analysis

This study conducted a quantitative analysis of the area’s 
ECS from a land use perspective, and provided reference 
opinions for the implementation of the area’s “dual carbon” 
policy. The global relevance of the findings lies in the dem-
onstration of how urban areas, through strategic planning 
and policy implementation, can effectively manage and 
improve their ECS, contributing to global climate change 
mitigation efforts. However, this approach had limitations, 
including its simplified representation of carbon cycling 
and its reliance on linear projections for carbon sequestra-
tion changes (Tao et al. 2023). Future research directions 
should focus on overcoming its limitations by incorporat-
ing more complex representations of carbon cycling and 
predictions of non-linear changes. Moreover, there was a 
lack of information on the impact of ecological protection 
projects executed over the past 30 years, such as the con-
version of farmland to forest project. Future ECS research 
can embark on the viewpoint of ecological engineering and 

detail the impact of ecological protection projects on the 
changes in ECS in the research area (Wang et al. 2022b), 
and provide specific opinions on the research area’s future 
carbon sink policy from the viewpoint of ecological protec-
tion engineering (Gu et al. 2022). Two different prediction 
scenes were set up in this research, namely the NDS and 
the EPS, but the parameter settings of these two scenarios 
are still quite different from the actual future development 
(Sun et al. 2022). Therefore, combining local policies and 
future development planning to set a more realistic future 
land usage demand and setting the parameters of the PLUS 
model more reasonably are the research directions for future 
ECS prediction (Ren et al. 2023). Since the ECS module of 
the InVEST model uses the average carbon density of the 
first-level classification of each land usage kind, the research 
results will deviate from the actual ECS to a certain extent 
(Li and Zhu 2022). The land use remote sensing data used 
has a resolution of 30 m, providing high resolution, but due 
to the limitations of remote sensing and the particularity of 
the study area being in a mountainous region, this data still 
cannot accurately reflect the actual land use changes. Other 
data such as socio-economic, climate, and carbon density 
data are derived from national data interpolations, so there 
may be deviations from actual data. Future ECS research 
should focus on finely classifying the vegetation growing in 
each land use, developing more accurate above-ground and 
underground biomass models of forest trees and herbaceous 
plants, and soil carbon density models, and finely classify-
ing land use types, using two-level classification to optimize 
ECS calculations (Ding and Yao 2022). Integrating tree and 
vegetation growth equations to transform the assessment of 
carbon storage from a static to a dynamic process represents 
a future research direction (Zhao et al. 2022).

Conclusion

This study analyzed the land usage transfer, adopted the cou-
pling model GEP to calculate and explore the historical ECS 
and analyzed its geographical spatial characteristics and evo-
lutionary patterns, and predicted the ECS in 2030 and 2060 
on the framework of the NDS and EPS, and obtains the fol-
lowing conclusions:

1. The land usage transfer from 1990 to 2020 was mostly a 
growth in construction land and a decline in forestland 
and grassland areas, which had an adverse impact on 
ECS.

2. The region area is an important carbon reservoir in 
Shaanxi Province. High ECS areas were distributed in 
northern and southern areas where there are forest and 
grassland areas, while low ECS areas were distributed 
in the central human activity area. Overall, the ECS 
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showed a better trend from 1990 to 2020 on an evolu-
tionary perspective, which was related to economic and 
urban development policies.

3. The PLUS model was employed to forecast future land 
usage, whose Kappa coefficient is 0.88, had high predic-
tion accuracy.

4. Under the framework of NDS in 2030, ECS increases 
slowly compared with 2020, while under the framework 
of EPS, the ECS increases more. Under the framework 
of NDS in 2060, ECS will increase less than in 2030, 
while under the framework of EPS, ECS will grow sig-
nificantly. Therefore, the future development should 
focus on ecological protection, focusing on protect-
ing the Qinba Mountains, optimizing land use layout, 
restricting the change of forest and grassland to other 
land usage kinds, and restricting the occupation of forest 
and grassland by human activities.
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