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Abstract
Marine pollution by trace elements is a global concern due to potential toxicity to species and ecosystems. Copper is a fun-
damental trace element for many organisms; however, it becomes toxic at certain concentrations. The green turtle (Chelonia 
mydas) is a good sentinel species, due to its circumglobal distribution, long life cycle, coastal habits when juvenile, and is 
subject to environmental pollution. Quantifying and comparing copper levels makes it possible to understand the availability 
of this trace element in nature. During this research, comparisons were made between the levels of copper found in the liver, 
kidneys, and muscles of 35 turtles, from the United States (Hawaii and Texas), Brazil, and Japan. Copper was found in all 
specimens. In the liver, animals from Hawaii (91.08 µg  g−1), Texas (46.11 µg  g−1), and Japan (65.18 µg  g−1) had statistically 
equal means, while those from Brazil (16. 79 µg  g−1) had the lowest means. For the kidney, copper means were statistically 
equal for all Hawaii (3.71 µg  g−1), Texas (4.83 µg  g−1), Japan (2.47 µg  g−1), and Brazil (1.89 µg  g−1). In muscle, the means 
between Texas (0.75 µg  g−1) and Japan (0.75 µg  g−1) were the same, and the mean for Brazil (0.13 µg  g−1) was the lowest. 
Among the organs, the highest levels of copper were found in the liver (28.33 µg  g−1) followed by the kidney (2.25 µg  g−1) 
and with the lowest levels in the muscle (0.33 µg  g−1). This is the first study of copper levels among marine vertebrates in 
distant parts of the globe using similar comparative filters between different locations. Similar levels in turtles from such 
distant locations may indicate that there is a pantropical pattern of copper distribution in the biota, and that these animals 
are subject to the process of bioavailability of this metal in the environment and metabolic regulation.
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Introduction

Trace elements may become environmental pollutants, 
especially in areas that suffer great anthropic pressure, due 
to their toxicity, human, and ecological health relevance 
(Nagajyoti et al. 2010; Prashanth et al. 2015). Estuaries and 

coastal regions are areas highly impacted by these pollut-
ants being used for industrial and urban effluents, generating 
water pollution and negative impacts on marine biota (Maia 
et al. 2006).

Two main sources of trace elements are of natural origin, 
i.e., river input, leaching processes and sediment transport, 
volcanic eruptions, and atmospheric transport, and anthropic 
origin, i.e., industrialization, boat paints, mining residues, 
dust, production fertilizers, and domestic and industrial sew-
age (ATSDR 2022), making these trace elements including 
copper (Cu) present at the continent-ocean interface.

Of the trace elements that occur in the oceans, copper is 
of great relevance, as it is a trace element that brings ben-
efits to biota from the cellular, organismal, and ecological 
levels. According to Niencheski (2015), Cu in trace concen-
trations is indispensable as a constituent of hemocyanin in 
marine invertebrates, enzymes, and chloroplasts; however, 
it becomes toxic at high concentrations.
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Copper inhibits the photosynthetic activities of phy-
toplankton (USEPA), which trophic webs are based on 
these activities, in addition to playing an important role in 
iron metabolism by limiting oceanic primary production 
(Roshan et al. 2020; Moore et al. 2013). According to Mil-
lero (2006a, b), elements such as copper (Cu), iron (Fe), 
manganese (Mn), and zinc (Zn) act to limit the growth of 
these organisms, in addition to being necessary for the 
functioning of proteins (Fe) and enzymes (Mn, Mo, Cu, 
Zn, and Co). The copper is also toxic in polychaetes and in 
some species of algae, whose toxicity is similar to mercury 
(USEPA 1977).

Many regional and global studies have already been car-
ried out quantifying Cu in marine organisms, both inverte-
brates (Rivera-Duarte et al. 2005; Marrugo-Negreti et al. 
2021) and vertebrates, such as cetaceans (Marcovecchio, 
et al. 1990), pinnipeds (Gerpe et al. 2009), seabirds (Espejo 
et al. 2017), and sea turtles (Lam et al. 2004; Gardner et al. 
2006; Barbieri 2009; Shaw et al. 2021). However, the studies 
do not present uniformity of data (such as species, size, age, 
sex, chemical analyses, and organs) and when they present 
this compatibility, they do not involve other distant points 
on the planet for analysis. This makes them inconclusive 
for visualizing Cu distribution patterns at geographically 
broader levels.

Green turtles are “endangered” according to the IUCN 
(2023) and are cosmopolitan, long-lived species inhabiting 
neritic habitats as a juvenile. These characteristics make 
green turtles subject to local and global anthropic impacts 
and a good bioindicator that can reflect bioaccumulation for 
years. Two studies were recently published on the global dis-
tribution of trace elements, specifically cadmium and zinc, 
using green turtles as sentinel species (Fraga et al. 2018, 
2023).

To the best of our knowledge, there is only one global 
model about the distribution of Cu in the water column 
(Richon & Tagliabue 2019a, b), and there is a gap in studies 
at a broader level spatially about the bioaccumulation of Cu 
in vertebrate tissues, relevant due to its toxicological action 
at an individual and ecological level. Therefore, it is impor-
tant to understand the distribution of Cu in marine biota 
and compare patterns of global distribution that can provide 
information for the long-term conservation of the species 
and determination of comparative patterns for future studies.

The objective of this was to compare copper concentra-
tions in green turtles from four different locations around the 
world: Rio Grande do Sul, Brazil; Texas, USA; Japan; and 
Hawaii, USA. These locations were chosen to cover both 
the Pacific and Atlantic regions. This study is innovative in 
that it performs analyses with a standardized approach to 
data collection at geographically distant sites in both oceans, 
providing comprehensive information on copper distribution 
in green turtles on a pantropical scale.

Materials and methods

Summary of the methodology used in the work

This work was carried out through a compilation of data 
and comparative analysis of Cu concentration in 103 speci-
mens of green turtles from which liver, kidney, and pec-
toral muscle tissues were collected. These data were pro-
vided by da Silva et al. (2014) from Brazil; Aguirre et al. 
(1994) from Hawaii; Faust et al. (2014) from the Texas; 
and Sakai et al. (2000) from Japan and in addition to pro-
viding biometric data for each animal with measurements 
performed using standards such as curvilinear carapace 
length (CCL) measured in centimeters (cm).

The previous studies that gave rise to the data of the 
present study for the determination of Cu have the relevant 
methodology for the analyses of this present work; there-
fore, these methodologies were described and simplified 
with their respective citations at each locality.

Only raw data such as biometric data of animals and 
Cu levels were used in this work for comparative analyses, 
not using the interpretations and results that the authors 
performed in their study, so this study consists of a new 
use of data, a new approach and results found.

This study was separated into two stages of compari-
sons to determine levels of Cu contamination: direct 
and additional analyses (Fig. 1). The first analysis was 
performed for the direct analyses, which compared the 
levels of samples from the Texas, Japan, and Brazil; for 
additional analyses samples from Hawaii were used. This 
separation was carried out using Hawaii as additional data 
due to the absence of certified reference material in the 
chemical analyses of samples from this location.

In addition, for both analyses, an initial filtration was 
performed on the animals, where specimens of green 
turtles of CCL less than 60 cm were selected, forming 
a sample N of 72 individuals. This selection was due to 
alterations in the pattern of bioaccumulation of trace ele-
ments among sea turtles that are in the juvenile stage and 
as adults at reproductive age.

According to Godley et al. (1999), reproductive activi-
ties such as oviposition by females may be an important 
metal excretion route. And levels of metals such as cad-
mium were found with differences between adults and 
juveniles by Storelli et al. (1998) that might be associated 
with sexual maturity. In sea turtles, increased hormonal 
activity may interfere with metabolic processes associated 
with both the absorption and distribution of metals in these 
animals. Due to these issues, turtles of reproductive age 
were not used in the present study.

Furthermore, after selecting the 72 individuals for 
the analysis, the sizes of the specimens from each site 
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were statistically different. With CCL size averaging in 
45.75  cm Japan, 46.77  cm in Texas, and 49.69  cm in 
Hawaii. Brazil had the smallest specimens at 38.62 cm. 
Due to the reduced sample size of some locations and the 
differences in CCL size, it was necessary to use a range of 
equal size to all locations.

Therefore, a sample N of seven individuals from each 
location (Hawaii, Texas, Brazil, and Japan) was used in 
the present study for direct and additional comparisons. 
These specimens were randomly selected where only the 
number that represented the turtle and its size was used, 
hiding information such as individual levels of Cu (Fraga 
et al. 2018).

Of the total number of individuals that were available 
within the previously mentioned filters, 21 animals were 
selected for direct analyses from Texas, Japan, Brazil 
(Fig. 2), and Hawaii (for additional analyses), with statis-
tically equal sizes, and belonging to the same size range 
between locations, allowing comparisons without the 
influence of size as a variable.

Additional comparisons were made using the sample N 
of 21 individuals from the direct analyses adding data from 
Hawaii as complementary data, reaching a total sample N 
of the present study of 28 individuals.

For the direct analyses (Brazil, Texas, and Japan) and 
Hawaii (additional analyses), the methodologies for col-
lecting samples and chemical analyses to obtain the data 
used in the present study from each location were briefly 
described below.

The summarized methodology utilized to acquire data from 
Brazil, Texas, and Japan is outlined below, and it was used in 
direct comparisons to create the work’s results. Table 1 sum-
marizes the approach utilized in the direct analysis.

Direct comparisons (n = 21)

Brazil

In Brazil, sampling was conducted in Rio Grande do Sul, 
along a 130 km stretch of the sandy beach extending from 
“Molhe Oeste da Barra do Rio Grande” (32° 09′ 42″ S, 
52° 05′ 53″ W) to “Farol do Abraão” (33° 25′ 30″ S, 52° 
57′ 06″ W), located at Praia do Cassino in southern Bra-
zil (Fig. 3A). The main economic activities in this region 
include agriculture, cattle raising, and the processing 
industry (SEPLAN 2022).

Beach monitoring for stranded green turtles was con-
ducted on a weekly basis between August 2008 and April 
2009. The turtles were identified and their straight cara-
pace length (SCL) was measured. Tissue samples, includ-
ing liver, kidney, and muscle, were thawed and weighed 
using an electronic microscale with a precision of 0.1 mg. 
Subsequently, they were dried in an oven at 40 °C for 48 h 
until a constant weight was attained. The samples were then 
reweighed (dry weight) and completely digested in 2 ml of 
HNO3 (Suprapur, Merck, Germany). The tissue digestion 
process was carried out in sealed plastic tubes using an oven 
set at 40 °C. Prior to the analysis, this digestion procedure 
was validated using standard reference material, as described 
below. The digested samples were diluted with 10 ml of Mil-
liQ water. The concentrations of Cu were determined using 
flame atomic absorption spectrophotometry (model AAS-
932 Plus; GBC; New Hampshire, IL, USA). The measure-
ment accuracy was assessed by constructing standard curves 
using standard solutions of Cu (Standard Reference Material 
3114; National Institute of Standards & Technology, Gaith-
ersburg, MD, USA) (da Silva et al. 2014).

Fig. 1  C. mydas collection 
sites used in the analysis of 
the present work. The direct 
analyses were of the locations 
represented with a black circle 
and the collection of additional 
data are represented in the 
closed squares
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To ensure quality assurance, metal recovery analysis was 
performed using a reference material. The percentages of 
metal recovery based on the standard reference material 
(European Reference Material ERM-CE278, Geel, Bel-
gium), prepared following the same procedures as the tissue 
samples, were found to be 94.2%, Cu (da Silva et al. 2014).

United States (Texas)

In the United States, specimen collections were carried out 
in Laguna Madre, located in southern Texas, within the 
Padre Island National Seashore (Fig. 3B), located between 
latitudes 26° and 28° 40′ and longitudes − 98° 40′ and − 95° 

20′ (Faust et al. 2014). Laguna Madre is an estuarine region 
characterized by its hypersaline waters. In the state of Texas, 
the main economic activities include the oil industry, min-
ing, agriculture, and services.

Samples were frozen and shipped to Texas Tech Univer-
sity on March 29, 2011, where they were stored at − 80 °C 
until samples were digested. Tissues (0.5 ± 0.01  g wet 
weight) were placed in 50-ml polypropylene centrifuge 
tubes. Briefly, 3 ml of 1:1 nitric acid:hydrochloric acid was 
added to each tube. The tubes were placed in a water bath 
at 90 °C and digested for approximately 1 h, until the solu-
tion became clear. Digested samples were removed from the 
water bath and cooled for 15 min (Faust et al. 2014).

After adding 1.5 ml of 30% hydrogen peroxide to each 
tube, the digested materials were returned to the water bath 
for about 45 min. Then, the digested material was removed 
from the water bath and centrifuged at 3000 g for 30 min 
in a Beckman Allegra 6R centrifuge, in order to remove 
undigested fats. Supernatants were adjusted to a volume of 
50 ml with 18 MΩ water and transferred to new 50-ml poly-
propylene centrifuge tubes for analysis (Faust et al. 2014).

For Cu determination, an Agilent 7500cs series induc-
tively coupled plasma mass spectrometer (ICP-MS) was 
used. In order to guarantee the quality of the instrument, 
duplicates of the instrument and verification standards were 
performed every 10 samples (Faust et al. 2014).

For quality assurance and control, the following samples 
were digested and analyzed using the same method along-
side each set of tissue samples: one duplicate of a randomly 
selected sample for each tissue, 0.25 ± 0.01 g of the National 
Research Council Canada DORM-2 certified reference mate-
rial for trace metals from dogfish muscle, 0.25 ± 0.01 g of 
the National Research Council Canada DOLT-3 certified 
reference material for trace metals from dogfish liver, and 
reagent blanks (Faust et al. 2014).

Japan

In Japan, green turtles were incidentally caught in Yaey-
ama Islands, located in the Ryukyu archipelago, Okinawa 
prefecture. The islands are situated between 24° to 25° N 
and 123° 20″ to 125° W (Fig. 3C) and are characterized by 
subtropical environments and abundant coral reefs (Sakai 
et al. 2000). The archipelago comprises both inhabited and 
uninhabited islands, some of which are covered by tropical 
forests. The predominant economic activity in the region is 
tourism (Embassy of Japan in Brazil 2012).

Turtle samples were collected during the period from 
March to May 1992. The straight carapace length was 
measured, and the liver was extracted from 50 animals and 
immediately placed in polyethylene bags after dissection. All 
tissue samples were promptly frozen and stored at − 20 °C 
until chemical analysis was conducted (Sakai et al. 2000).

Fig. 2  Curvilinear carapace length and copper concentrations of all 
turtles used in the present study such as Brazil (square), USA—Texas 
(triangle), and Japan (circle) before the size selection process (sym-
bols with white filling) and selected individuals (symbols painted in 
gray) in direct analyses for comparison tests (n = 21) in liver (A) and 
kidney (B)
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Tissue and organ samples were subjected to analy-
sis to determine the concentrations of Cu. Briefly, sam-
ples weighing between 1 and 10 g were digested using 
a mixture of nitric, perchloric, and sulfuric acids, fol-
lowed by dilution with deionized water. The cadmium 
concentrations were directly determined using a flame 
atomic absorption spectrophotometer (AAS, Shimadzu 
Model AA-680). The concentrations were expressed in 

micrograms per gram (µg/g) based on wet weight for the 
turtle samples (Sakai et al. 2000).

The accuracy of the analyses was verified by employing 
a standard reference material, NIES No. 1 (Okamoto et al. 
1978). The triplicate analysis of these methods exhibited 
an accuracy greater than 95% for each element (Table 1; 
Sakai et al. 2000).

Table 1  Table with simplified methodologies of direct analysis

Origin of specimens

Brazil (south region) USA (Gulf of Mexico) Japan (Yaeyama Islands)

Collection year 2008/2009 2011 1992
Collected specimens and size range 

(CCL)
29 (31–50 cm) 12 (42.70–56.40 cm) 50 (33–56.80 cm)

Specimens analyzed and range size (CCL) 7 (41–50 cm) 7 (42.70–48.6 cm) 7 (42.10–50.30 cm)
Collection latitude range (degrees) 30–34 S 26–28 N 24–25 N
Acids used in digestion HNO3 HNO3, HCl, and addition of  H2O2 HNO3,  HClO4, and  H2SO4

Metal reading technology Flame atomic 
absorption spec-
trometry (FAAS)

Inductively coupled plasma mass spec-
trometry (ICP-MS)

Flame atomic absorption spec-
trometry (FAAS)

Reference material certificated European Reference 
Material ERM-
CE278, Geel, 
Belgium

National Research Council Canada: 
DORM-2 (“dogfish” Músculo) and 
DOLT-3 (“dogfish” Fígado)

NIES No. 1 (Okamoto et al. 1978)

Bibliographic reference da Silva et al. (2014) Faust et al. (2014) Sakai et al. (2000)

Fig. 3  Collection sites for juvenile C. mydas: A Rio Grande do Sul, Brazil; B Texas, United States; C Yaeyama Islands, Japan. Range with gray-
scale stripes represents area where specimens were collected
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Complementary comparisons

For the purposes of the complementing comparisons, the 
procedures utilized to gather the data from Hawaii were con-
densed and detailed below. According to the aforementioned 
methodological considerations, such comparisons were only 
utilized to supplement the outcomes of the direct analyses.

United States (Hawaii)

Liver, kidney, and muscle were collected from 12 carcasses 
of C. mydas from the Hawaiian Islands. Digestion with nitric 
acid and distilled water were performed for chemical analy-
ses. Samples were analyzed by inductively coupled plasma 
spectrophotometer (ICP) (Aguirre et al. 1994).

Statistical analyses

The same methodological process was used for all data 
(direct and additional), which involved gathering and choos-
ing 7 individuals from each site. The following statistical 
analyses were carried out following these procedures.

First, the copper concentrations from each location were 
compared using the nonparametric Kruskal–Wallis ANOVA 
test to see whether there was any difference, such as in group 
sizes between locations. The PAST software was employed.

If a significant difference was found using ANOVA, the 
Mann–Whitney test was used to compare copper concentra-
tions between two groups (one from each site, such as BRA 
X USA; BRA X JP; BRA X HW; USA X JP; USA X HW; 
HW X JP), were made. The Mann–Whitney test was used 
to compare copper concentrations between different organ 
tissues.

The Mann–Whitney test was chosen since it is non-par-
ametric and sensitive for small samples like the one in this 
study. All statistical analyses were conducted using PAST 
3.14 software at a significance level of p < 0.05. It is worth 
noting that the whole approach outlined in this paper was the 
same as that employed by Fraga et al. (2018).

It is worth mentioning that the entire methodology 
described in the present work was the same used by Fraga 
et al. (2018) and Fraga et al. (2023), with few changes in the 
counts, as it is another metal analyzed.

Results

Direct (N = 21) and additional (N = 28) analyses were per-
formed with data from Brazil (South Atlantic), Texas (North 
Atlantic), and Japan, and additional analyses with data from 
Hawaii.

The presence of Cu was found in the organs of all 
specimens in this study. It is observed the formation 

of two groups, the first formed by animals from Texas 
(46.11 µg  g−1) (SE = 29.59, range 18.26–103.9 µg  g−1) and 
Japan (65.18 µg  g−1) (SE = 27.66, range 23.69–94.36 µg  g−1), 
with the highest average concentrations and without sig-
nificant differences between them, and the second with 
organisms from Brazil (16.79 µg  g−1) (SE = 5.64, range 
11.31–28.33 µg  g−1), with the lowest mean concentrations 
and with a significant difference from the others (p < 0.05).

When we add the data from Hawaii in the additional 
liver comparisons, the specimen means (91.08  µg   g−1) 
(SE = 58.29, range 1.3–173 µg  g−1), these follow the pat-
tern of absence of significant differences to the from the 
specimens from Texas and Japan (p > 0.05) and main-
taining the differences from the specimens from Brazil, 
which remained with the lowest mean concentrations 
(16.79 µg  g−1) (SE = 58.2, range 11.31–28.33 µg  g−1), with 
a statistically significant difference (p < 0.05). Direct and 
additional analyses were compiled with median and scatter 
points represented in Fig. 4.

When data from the livers of turtles were compared, 
higher copper averages were found in specimens belong-
ing to the northern hemisphere (67.45 µg  g−1) (SE = 45.15, 
range 1.3–173 µg  g−1), when compared to specimens from 
the southern hemisphere (16.79 µg/g) (SE = 6.09, range 
11.31–28.33 µg  g−1), with a significant difference between 
the two groups (p < 0.05). Graphics were compiled for the 
liver with the dispersion points (in Fig. 5A), and the medians 
between the two hemispheres (Fig. 5B).

Fig. 4  Direct and additional analyses: median concentrations (µg  g−1 
w.w.) of copper recorded in the liver of juvenile green turtles of Texas 
(n = 7), Japan (n = 7), Hawaii (n = 7), and Brazil (n = 7). Boxplot: cen-
tral line is median, upper lines of the boxes represent the 75th quar-
tile, lower lines of the boxes represent the 25th quartile, end of whisk-
ers are minimum and maximum. Dots represent the individuals from 
each locality
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When analyzing the mean contents found in the kidney 
in the direct analyses, it was observed that the means of all 
locations were statistically equal (p > 0.05), United States 
(4.83 µg  g−1) (SE = 4.41, range 0.86–13.26 µg  g−1), and Japan 
(2.47 µg  g−1) (SE = 0.62, range 1.60–3.27 µg  g−1), and even 
specimens from southern Brazil (1.89 µg  g−1) (SE = 0.94, 
range 0.20–3.27 µg  g−1) (p > 0.05). In the additional analy-
ses for the kidneys when the mean of Hawaii (3.71 µg  g−1) 
was added (SE = 2.95, range 1.5–10.5 µg  g−1), this pattern 
remained of equal means across all locations (p > 0.05). Direct 

and additional analyses of the kidney with median and scatter 
points are represented in Fig. 6.

In muscle, statistically equal means (p > 0.05) were 
found between the USA (0.75 µg   g−1) (SE = 0.32, range 
0.36–1.25 µg  g−1) and Japan (0.75 µg  g−1) (SE = 0.90, range 
0.11–2.64 µg  g−1), while the average for Brazil (0.13 µg  g−1) 
(SE = 0.03, range 0.09–0.19 µg  g−1) was the lowest with differ-
ence significant compared to the Texas and Japan. No further 
analysis was performed on muscle due to the lack of mus-
cle data from the other two locations. Muscle analyses with 
median and scatter points are represented in Fig. 7.

When comparing the copper contents between organs of 
specimens from Texas, Japan, and Brazil (since there were 
no data on Cu in muscle in the specimens from Hawaii), it 
was possible to perceive the highest Cu contents found in the 
liver (28.33 µg  g−1) (SE = 30, range 11.31–103.09 µg  g−1), 
followed by the kidney (2.25  µg   g−1) (SE = 2.82 range 
0.20–13.26  µg   g−1), and having the pectoral muscle 
(0.33 µg  g−1) (SE = 0.60, range 0.09–2.64 µg  g−1), the low-
est site of Cu bioaccumulation, with significant differences 
between organs (p < 0.05). The analyses between liver, kidney, 
and muscle with median and scatter points were represented 
(Fig. 8).

Fig. 5  A Scatter chart with curvilinear carapace length (cm) and cop-
per concentration (µg  g−1 wet weight) in liver of green turtles (Che-
lonia mydas) in the northern hemisphere (USA—Texas, Japan, and 
Hawaii) (n = 21) and south hemisphere (Brazil) (n = 7). B Median 
concentrations (µg  g−1 wet weight) of copper recorded in liver of 
juvenile green turtles in the northern and south hemispheres. Boxplot: 
central line is median, upper lines of the boxes represent the 75th 
quartile, lower lines of the boxes represent the 25th quartile, end of 
whiskers are minimum and maximum. Dots represent the individuals 
from each locality

Fig. 6  Direct and additional analyses: median concentrations (µg  g−1 
wet weight) of copper recorded in the kidney of juvenile green turtles 
of Texas (USA) (n = 7), Japan (n = 7), Hawaii (USA) (n = 7), and Bra-
zil (n = 7). Boxplot: central line is median, upper lines of the boxes 
represent the 75th quartile, lower lines of the boxes represent the 25th 
quartile, end of whiskers are minimum and maximum. Dots represent 
the individuals from each locality
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Discussion

The present work made possible, in a pioneering way, the 
uniform comparison of Cu contents when using marine 

vertebrates of great longevity, of the same species, size 
class and that inhabit coastal regions of similar character-
istics in different parts of the world, which resulted in the 
possibility of assessment of global Cu distribution through 
concentrations in animal tissues.

The global distribution of Cu in the oceans differs in 
patterns in coastal and open ocean regions, where there is 
a pattern of higher concentration on the coastal surfaces of 
the Atlantic and Pacific Oceans (Roschan and Wu 2015), 
mainly due to sources such as river input and deposition 
of aerosols (Richon and Tagliabue 2019a, b).

The global pattern of trace elements for green turtle 
juveniles found in the present work was also found for Cd 
by Fraga et al. (2018), with a pattern of higher levels being 
found in the Pacific compared to the Atlantic. This pattern 
is also found for Cu, but for deep oceanic waters (Millero 
2006a, b). However, the Cu contents found in the present 
study were higher than those of Cd found by Fraga et al. 
(2018), which can be explained by the relevance of the ele-
ment in metabolic activities and because it is an essential 
micronutrient (Bremner 1998), which does not occur with 
Cd, which is an element with toxic properties.

In addition to the global pattern identified in the organ-
isms of the present study, turtles from the northern hemi-
sphere had higher levels of Cu than turtles from the south-
ern hemisphere, with a significant difference (p < 0.05) in 
the liver and kidney. This difference may be reflecting the 
global pattern of concentrations of this element in the two 
hemispheres identified by Richon and Tagliabue (2019a, 
b), who associated this pattern with the large anthropo-
genic and natural input in the northern hemisphere through 
fluvial input and aerosols in relation to the southern hemi-
sphere. However, as we have only one locality representing 
the southern hemisphere, other local factors may be more 
relevant, and it is not possible to confirm this difference 
between the two hemispheres by the turtles in the present 
study, but it is a plausible hypothesis to be tested in future 
studies.

When comparing the regions, higher levels of Cu 
were found in specimens from the Hawaiian Islands and 
Okinawa in Japan, which despite having lower anthropic 
activities compared to the great continents, the animals 
from these places had higher levels of Cu in their organs, 
when compared to other regions. This fact may be due to 
the previously mentioned atmospheric and fluvial input, 
but with great influence from the volcanic processes pre-
sent in both islands and that contribute to the deposition of 
Cu in the oceans of these regions. In addition, the presence 
of large extensions of polymetallic nodules containing Cu 
in high concentrations south of the Hawaiian Islands (Mar-
tins et al. 2006), and hydrothermal activities such as the 
Okinawa trough in Japan that are rich in Cu (Mello and 

Fig. 7  Direct: median concentrations (µg  g−1 wet weight) of cop-
per recorded in the muscle of juvenile green turtles of USA (Texas) 
(n = 7), Japan (n = 7), and Brazil (n = 7). Boxplot: central line is 
median, upper lines of the boxes represent the 75th quartile, lower 
lines of the boxes represent the 25th quartile, end of whiskers are 
minimum and maximum. Dots represent the individuals from each 
locality

Fig. 8  Direct analyses: median concentrations (µg  g−1 wet weight) 
of copper recorded in organs (liver, kidney, and muscle) of juvenile 
green turtles of USA (Texas) (n = 7), Japan (n = 7), and Brazil (n = 7). 
Boxplot: central line is median, upper lines of the boxes represent the 
75th quartile, lower lines of the boxes represent the 25th quartile, end 
of whiskers are minimum and maximum. Dots represent the individu-
als from each locality
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Quental 2000), may be contributing to the loads of this 
element in the turtles in the present study.

The lowest levels found in the liver of turtles in Rio 
Grande do Sul (RS), Brazil, in relation to other locations 
follow an apparent pattern of low levels of copper in the 
local biota, with records of invertebrates with lower lev-
els when compared to other locations around the globe 
within of the same species, such as populations of Perna 
perna (Baraj et al. 2003) and Amphibalanus improvisus 
(Garcia 2011), also mentioned by Fraga et al. (2023). In 
vertebrates, although there are no global comparative stud-
ies published, Baraj et al. (2009) found low levels of Cu in 
liver (7.48 µg  g−1 wet wt.) and in kidney (4.55 µg  g−1 wet 
wt.) of the southern fur seal (Arctocephalus australis) in the 
same region, which is a carnivore with a higher trophic level 
than green turtles with a diet based on fish and cephalopods 
(Gerpe et al. 1990; Naya et al. 2002). In addition, this same 
pattern of low levels of metals including Cu for animals in 
Rio Grande do Sul compared to other parts of the globe was 
also found for Zn in animals from that locality, in a study 
carried out by Fraga et al. (2023). The great variability found 
between lower copper levels in Brazil in relation to the liver 
of Hawaiian turtles, kidneys of Texas turtles, and muscles of 
Japanese turtles may also be reflecting this pattern of lower 
copper contents found in the biota of Rio Grande do Sul, 
Brazil.

Other studies already carried out around the world with 
C. mydas demonstrate that different average levels are found 
in the liver of these specimens, such as from Japan by Anan 
et al. (2002) (49.9 µg  g−1 wet wt.), Gardner et al. (2006) 
(60.04 µg  g−1 wet wt.) in Mexico, (32.8 µg  g−1 wet wt.) by 
Storelli et al. (2008) in Europe, and in Hawaii (87.6 µg  g−1 
wet wt.) by Aguirre et al. (1994). However, as these speci-
mens from these studies did not follow a pattern of age, sex, 
size, among other requirements for constructing the average 
content, such values can only be used for a more general-
ized view of copper levels in these animals across the globe, 
and not a bioindicator standard as in the present study. But 
they still showed higher copper values in specimens from 
the northern hemisphere than those found by da Silva et al. 
(2014) in the southern hemisphere.

The individuals in the present study presented Cu in 
all analyzed tissues, with the liver being the organ with 
the highest levels, followed by the kidney and pectoral 
muscle, with a significant difference between the organs 
(p < 0.05); this pattern is also common in birds and marine 
mammals (Caurant et al. 1999). The liver with the highest 
levels corroborates the study by Tam et al. (2010) with cell 
lines in C. mydas, where copper is predominantly found 
in liver cells when compared to other tissues, demonstrat-
ing that this organ is relevant in the bioindication of cop-
per. In addition, the liver plays an important role in the 
metabolism of metals, mainly with its relationship with 

metallothionein, a protein that aims to detoxify metals by 
binding to metals, preventing harmful effects on organ-
isms, that is, limiting the toxicity of metals (Jakimska 
et al. 2011) and targeting homeostasis (Rosa et al. 2008).

For sea turtles, there are no reference values for deter-
mining the amount of copper content that brings toxicity 
and damage to the metabolism of these animals, but stud-
ies carried out by Tan et al. (2010) with cell lines demon-
strate that the cytotoxic sensitivity in turtles is lower than 
that of fish, indicating that there is a level of tolerance to 
some metals. Therefore, in the present study, it is not pos-
sible to determine whether the concentrations found harm 
the marine biota, especially the species C. mydas.

It has already been demonstrated that the presence of 
toxic trace elements added to other comorbidities such as 
the presence of herpes virus, low immunity, and other fac-
tors can contribute to the emergence and development of 
fibropapillomatosis in C. mydas that inhabit coastal areas, 
mainly supported by the idea that contamination by met-
als such as Cu, Fe, and Pb may be related to the etiology 
of fibropapillomatosis through the generation of oxidative 
stress (da Silva et al. 2016). Therefore, works like this 
one that quantify the presence of these metals are relevant 
for conservation, because according to Limpus and Miller 
(1990) this disease leads to the appearance of neoplastic 
tumors causing weakness and that can lead to the death 
of these animals. And more than that, important toxicity 
studies are carried out to determine levels that harm the 
health of these animals.

Therefore, the present study represents an important step 
towards the conservation of sea turtles, through the uniform 
comparison of levels in a global range, by serving for future 
comparative studies related to the average levels found in 
this work. In addition, the present study using C. mydas as a 
bioindicator provided a new view of the distribution of bio-
available copper in the oceans, demonstrating the relevance 
of anthropogenic and natural factors in copper supply.
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