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Abstract
Water resources are constantly threatened by pollution of potentially toxic elements (PTEs). In efforts to monitor and miti-
gate PTEs pollution in water resources, machine learning (ML) algorithms have been utilized to predict them. However, 
review studies have not paid attention to the suitability of input variables utilized for PTE prediction. Therefore, the present 
review analyzed studies that employed three ML algorithms: MLP-NN (multilayer perceptron neural network), RBF-NN 
(radial basis function neural network), and ANFIS (adaptive neuro-fuzzy inference system) to predict PTEs in water. A total 
of 139 models were analyzed to ascertain the input variables utilized, the suitability of the input variables, the trends of the 
ML model applications, and the comparison of their performances. The present study identified seven groups of input vari-
ables commonly used to predict PTEs in water. Group 1 comprised of physical parameters (P), chemical parameters (C), 
and metals (M). Group 2 contains only P and C; Group 3 contains only P and M; Group 4 contains only C and M; Group 5 
contains only P; Group 6 contains only C; and Group 7 contains only M. Studies that employed the three algorithms proved 
that Groups 1, 2, 3, 5, and 7 parameters are suitable input variables for forecasting PTEs in water. The parameters of Groups 
4 and 6 also proved to be suitable for the MLP-NN algorithm. However, their suitability with respect to the RBF-NN and 
ANFIS algorithms could not be ascertained. The most commonly predicted PTEs using the MLP-NN algorithm were Fe, Zn, 
and As. For the RBF-NN algorithm, they were  NO3, Zn, and Pb, and for the ANFIS, they were  NO3, Fe, and Mn. Based on 
correlation and determination coefficients (R, R2), the overall order of performance of the three ML algorithms was ANFIS 
> RBF-NN > MLP-NN, even though MLP-NN was the most commonly used algorithm.

Keywords Artificial neural networks · Input variables · PTE prediction modeling · Soft computing models ·  
Input variable selection

Introduction

Water is one of the most important natural resources on 
earth. One of the fundamental human rights and a require-
ment for a healthy existence is having access to clean drink-
ing water. Urbanization, population expansion, industriali-
zation, and changes in consumption habits have all led to 
an increase in the demand for freshwater resources glob-
ally (Abu et al. 2024; Bhatt et al. 2024). Like other natural 
resources, proper management of water resources requires 
effective and efficient monitoring and assessment strategies 
which would ensure availability of clean water for present 
and future generations (Abba et al. 2024; Egbueri 2019). 
According to Ighalo et al. (2021), water quality monitoring 
and assessment help to determine its purity and safety. Since 
a lot of chemicals are utilized in our daily lives and could 
end up in water resources, monitoring water resources is 
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becoming more and more difficult in the twenty-first century 
(Mhlongo et al. 2018). Prior to the adoption of data science, 
traditional methods were predominantly used for monitor-
ing and assessment of natural and human resources. Tra-
ditional methods employed in the study of water resources 
generate sufficient data, which is now explored with the help 
of data science. Data science, popularly known as the “oil 
of the twenty-first century” (Shah et al. 2021), is the pro-
cess of extracting clean information from raw data to create 
insights that can be put into practice (Yasmin 2019; Kumar 
2015). Application of data science in the study of water 
resources has aided the determination of the quality of water 
resources (Karmakar et al. 2021; Chojnacki et al. 2017), 
discovery of complicated patterns and the causes of water 
pollution (Omeka and Egbueri 2022; Unigwe et al. 2022), 
and prediction of possible future status of water resources 
(Egbueri 2022). Data science has also offered solutions in 
a variety of other fields, such as engineering (Brunton and 
Kutz 2022), business (Gunjal 2022), marketing (Shi 2022), 
finance (Hasan and Alam 2021), and meteorology (Sarker 
2021), among others. To build models and make predic-
tions using algorithms and other methods, data scientists sig-
nificantly rely on artificial intelligence (Usman et al. 2023; 
Yassin et al. 2023, 2022; Leonard et al. 2021), notably its 
subfields of machine learning (ML) (Egger 2022; El Mrabet 
et al. 2021) and deep learning (Franzen et al. 2021). Due to 
its strong nonlinear mapping and learning capabilities, high 
fault tolerance, and improved generalization capabilities, 
deep learning has recently become one of the most widely 
used methods for research on hydrological time series pre-
diction (Jiang et al. 2021; Lu et al. 2019). The five stages of 
the typical data science life cycle are collecting, maintaining, 
processing, communicating, and predictive analysis (Bella-
treche et al. 2022; Han and Trimi 2022; Sabharwal and Miah 
2021). With the use of the data mining approach known 
as predictive modeling, different factors are examined for 
their potential impact on a future result (Aryadoust and Goh 
2014). Regression, multivariate adaptive regression splines, 
classification and regression trees, neural networks, and their 
expansions known as ANFIS are a few important prediction 
models (Zhang et al. 2021, 2020; Chebrolu et al. 2005).

Artificial neural networks (ANNs), also referred to as 
neural networks (NNs), are mathematical nonparametric 
models that consist of a network of “neurons,” which are 
flexible and trainable processing units that store empirical 
information (Abba et al. 2023, 2020; Aryadoust and Goh 
2014). Similar to the human brain, ANNs are made up of 
linked units or neurons that are capable of learning, pattern 
recognition, categorization, and prediction (Geetha et al. 
2022; Karaca and Baleanu 2022; Aryadoust and Goh 2014). 
ANN has become one of the most popular ML tools, find-
ing use in the domains of quality management of different 
water sources (Khan et al. 2020). The use of ANN as a tool 

does not necessitate prior understanding of the mathemati-
cal structures underlying interactions between inputs and 
associated outputs (Ewuzie et al. 2022; Nourani et al. 2011; 
Shahin et al. 2001). Due to their considerable adaptabil-
ity, ANNs do not place any restrictions on the connections 
between dependent and independent variables, including 
those of normality, linearity, homogeneity of variance, and 
error independence (Aryadoust and Goh 2014). However, 
the main difficulty with using ANN is its complicated design 
problems, which might limit its capacity for data process-
ing (Ewuzie et al. 2022). ANN can perform poorly when 
trained with less data (Ewuzie et al. 2022), since it needs a 
large number of parameters to get a good outcome (Khalil 
et al. 2005). Nevertheless, using a lot of weight might lead 
to overfitting (Farmaki et al. 2010; Zur et al. 2009). Despite 
these drawbacks, ANN has proven to be reliable in effec-
tive monitoring (Azrour et al. 2022; Nicklow et al. 2010; 
El-Shafie et al. 2009) and assessment (Kouadri et al. 2022; 
Than et al. 2021) of water resources.

Several studies have successfully predicted physical 
parameters (Saleh et al. 2022; Egbueri and Agbasi 2022a; 
Singh et al. 2009), chemical parameters (Egbueri and Agbasi 
2022a; El-Safa et al. 2022), and metals (Alizamir and Sob-
hanardakani 2016; Egbueri 2021) in water with the aid of 
ANN. To predict using ANN, input/predictor variables 
and output/predicted variables are selected. Several factors 
impact the selection of input variables, including parameters 
that can be measured easily or cheaply, knowledge of the 
water source, knowledge from literature, theoretical under-
standing of the parameter(s), and available data from water 
authorities and monitoring stations (Ewuzie et al. 2022), 
among others. There are several kinds of neural networks, 
and they vary in terms of their structure, data flow, number 
of neurons employed, density, depth of activation filters, 
and others (Team 2020). They include multilayer percep-
tron, radial basis function, recurrent neural networks, con-
volutional neural networks, feedforward neural networks, 
and others (Praveena and Vivekanandan 2021; Team 2020; 
Burse et al. 2010). Additionally, a variety of optimizers are 
available for neural networks, such as gradient descent, 
stochastic gradient descent, mini-batch gradient descent, 
Nesterov accelerated gradient, and AdaGrad, among others 
(Haji and Abdulazeez 2021; Doshi 2019; Dogo et al. 2018; 
Ruder 2016). The learning rate and weights of NNs are two 
examples of the variables that these optimizers can adjust in 
order to change the NNs behavior and decrease losses (Doshi 
2019). By selecting the appropriate optimization method, 
training time may be drastically decreased (Doshi 2019).

PTEs are elements that have the capacity to cause an 
upset when introduced into a medium (air, water, or soil). 
Studies have found arsenic (As), cadmium (Cd), chromium 
(Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), 
nitrate (Ni), lead (Pb), zinc (Zn), and other PTEs in polluted 
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levels within natural water bodies (Agbasi et al. 2024; Aye-
joto et al. 2022; Fural et al. 2022). These elements can 
infiltrate water resources through natural processes (Abugu 
et al. 2024; Ayejoto et al. 2022; Egbueri and Agbasi 2022b) 
and human-induced processes (Abba et  al. 2024; Fural 
et al. 2022; Jianfei et al. 2020). PTEs have been linked to 
a wide range of issues, which include anemia (Fural et al. 
2022), anomalies in fetal development in pregnant women 
(Egbueri et al. 2022a), antisocial behaviors observed in chil-
dren (Emenike et al. 2019), asthma (Rashid et al. 2022), 
cancer (Zhang et al. 2022), cardiovascular illness (Genchi 
et al. 2020), diarrhea (Ukah et al. 2019), mental retardation 
(Mgbenu and Egbueri 2019), respiratory disorders (Wan 
et al. 2016), sensory disorder (Egbueri 2020), and others. 
Despite the risks associated with these elements, research 
has also shown that some PTEs, when found within their 
allowable limits, have some health benefits (Alipour et al. 
2021; Bini and Wahsha 2014). For instance, iron (Fe), 
when present in water within permissible limits, is advanta-
geous to organisms as it helps circulate oxygen in the blood 
(Agbasi and Egbueri 2022; IDPH 2010). Globally, PTEs 
have impacted water resources significantly (Egbueri et al. 
2022b; Wagh et al. 2017, 2018). In response, multiple stud-
ies have been conducted to understand the impact of PTEs 
on water resources (Ayejoto et al. 2022; Moghanm et al. 
2020), identify their sources (Ricolfi et al. 2020), eradicate 
(Abbas 2021), and predict the chances of future occurrences 
(Egbueri and Agbasi 2022a). Several methods have been 
employed to forecast PTEs in water resources, which include 
ANN, ANFIS, M5P, multiple linear regression, and others 
(Egbueri 2021; Eid et al. 2021; Singha et al. 2021). How-
ever, most studies have employed ANN in predicting PTEs 
in water compared to other algorithms.

Studies have revealed that the choice of input variables 
influences the performance of ANN prediction (Egbueri 
and Agbasi 2022c; Lee et al. 2021; May et al. 2008). Sev-
eral studies that used ANNs to predict various elements in 
water, including PTEs, have been reviewed (Ewuzie et al. 
2022; Zounemat-Kermani et al. 2021; Rajaee et al. 2020; 
Sit et al. 2020). However, attention has not been given to 
analyzing the suitability of the input parameters utilized for 
the prediction of PTEs. It is important that the right input 
variables are selected for effective prediction of PTEs. There 
are speculative opinions that it is inappropriate to predict 
PTEs using physicochemical parameters as input variables. 
Moreover, trends in the applicability of MLP-NN, RBF-
NN, and ANFIS algorithms for PTEs’ predictions and the 
performances of these three modeling techniques have not 
been analyzed in literature. Therefore, the present review 
examines the state of art and analyzes the input variables 
utilized for PTE predictions, the suitability of the input vari-
ables, the application trends of the three models, and the 
comparison of their performances. The specific objectives 

are to (1) identify the predominantly predicted PTEs in water 
resources; (2) identify the commonly used input variables 
for predicting PTEs in water; (3) analyze the suitability of 
input variables used for predicting PTEs in water; (4) iden-
tify the most commonly used ANNs; and (5) compare the 
performances of MLP-NN, RBF-NN, and ANFIS algorithms 
in forecasting PTEs in water. To the best of the authors’ 
knowledge, this is the first review conducted to analyze the 
suitability of input variables utilized in the prediction of 
PTEs in water, with a focus on the MLP-NN, RBF-NN, and 
ANFIS algorithms. This study is also novel, as it is the first 
to categorically analyze other aforementioned objectives. It 
is hoped that the findings of this study will aid research-
ers, water managers, and policymakers in selecting the 
right parameters for efficient prediction of PTEs in water 
resources. The current review paper is also expected to con-
tribute economically, scholarly, and timely to the knowl-
edge bank and understanding of PTEs’ predictions in water 
resources.

Brief history of ANNs

ANNs

ANNs have been used in numerous engineering and sci-
entific applications since the 1940s (Jorjani et al. 2008). 
The neurophysiologist Warren McCulloch and logician 
Walter Pits developed the first artificial neuron model in 
1943 (McCulloch and Pitts 1943). Simple electrical cir-
cuits were used to simulate a neural network by Warren 
McCulloch and Walter Pits (Zaqoot et al. 2017). The ini-
tial attempt to mimic a neural network was led by IBM 
researcher Nathanial Rochester (McCarthy et al. 1955). 
It failed at first, but further attempts were successful 
(Zaqoot et al. 2017). Different architectures, including at 
least three layers, are found in ANNs (input, hidden, and 
output layers). There may be one or more hidden layers, 
and they are situated between the input and output layers 
(Bayatzadeh Fard et al. 2017). Several neurons make up 
each layer depending on the layer’s location (Bayatzadeh 
Fard et al. 2017). Input layer neurons correspond to the 
number of input variables utilized for prediction, while 
output layer neurons correspond to the number of vari-
ables to be predicted (Bayatzadeh Fard et al. 2017). The 
neurons have learning, categorization, pattern recognition, 
and prediction abilities (Aryadoust and Goh 2014). By 
employing input or independent variables, mathematical 
functions like the multilayer perceptron (MLP) and radial 
basis function (RBF) are used to predict output or depend-
ent variables in ANNs with the least amount of error (Ary-
adoust and Goh 2014). The designer chooses the training 
algorithm, learning rule, network topology, performance 



30373Environmental Science and Pollution Research (2024) 31:30370–30398 

function, and criterion to end the training phase in artifi-
cial neural networks, but the system undoubtedly modifies 
the parameters (Adeoti and Osanaiye 2013). The feedfor-
ward topology and the recurrent topology are two signifi-
cant designs that are frequently used to visualize an ANN 
(Zaqoot et al. 2017). Due to its link with the backpropa-
gation learning algorithm, a dominant and very reliable 
learning technique, the feedforward topology is extremely 
well-liked (Zaqoot et al. 2017). Among the networks using 
the feedforward topology are the MLP network and the 
RBF network.

MLP

A perceptron model was first presented in 1958 by Cornell 
neurobiologist Frank Rosenblatt (Olazaran 1996). The hard-
ware included the perceptron, which he discovered via his 
scientific efforts (Zaqoot et al. 2017). The MLP is a feedfor-
ward neural network ANN with input, hidden, and output 
layers. It always sends signals in the direction of the output 
layer (Bayatzadeh Fard et al. 2017). Each layer contains an 
activation function, which expresses the quantity of output 
based on the input data mathematically (Aryadoust and Goh 
2014). Hyperbolic tangent and logistic functions are exam-
ples of mathematical activation functions in the neurons of 
MLP networks (Aryadoust and Goh 2014). The most com-
monly used mathematical function in ANN prediction is 
MLP (Maier and Dandy 2000).

RBF

According to Suen and Eheart (2003), radial basis function 
neural networks were created about the same time by Pow-
ell (1987) and Broomhead and Lowe (1988). Similar to the 
MLP, the RBF network also consists of an input layer, a 
hidden layer, and an output layer, with neurons present in 
each layer. In contrast to MLP, RBF only comprises weights 
between the hidden layer and the output layer. The hidden 
layer is where the most significant differences between RBF 
and MLP can be found. These differences may be divided 
into structural and functional differences (Ucun Ozel et al. 
2020). The number of neurons and the training technique 
are responsible for the structural difference, but the hidden 
layer neurons’ inclusion of radial functions is responsible for 
the functional difference (Ucun Ozel et al. 2020). Because 
the RBF function depends on the distance from the origin to 
gather the input layer neurons, variations in it are depending 
on radial distance (Alizamir and Sobhanardakani 2017). The 
Gaussian function is primarily used as the activation func-
tion in the neurons of RBF networks (Asgharnia et al. 2019; 
Han et al. 2019).

ANFIS

An extension of artificial neural networks (ANNs) and adap-
tive neuro-fuzzy inference systems (ANFIS) merge ANNs 
with fuzzy (Landín et al. 2009). The fuzzy inference system 
(FIS) examines human thinking by incorporating uncertainty 
into if-then rules and human knowledge (Mousavi and Amiri 
2012). The fuzzy rule base, membership functions, which 
specify the fuzzy sets of fuzzy rules, and a reasoning pro-
cess are the three fundamental components of ANFIS (Ucun 
Ozel et al. 2020). In order to determine the membership 
function parameters, ANFIS employs gradient descent-based 
optimization techniques (Ucun Ozel et al. 2020). There are 
three different methodologies employed in developing the 
ANFIS model, namely the fuzzy C-means (FCM) technique, 
grid partitioning (GP), and the subtractive clustering method 
(SCM) (Bayatzadeh Fard et al. 2017). The SCM and FCM 
methods may be used for multi-output ANFIS, in contrast to 
the GP approach, which produces a single-output Sugeno-
type ANFIS on the data (Bayatzadeh Fard et al. 2017). In 
general, an input-output data set is needed in order to use 
the ANFIS approach.

Selection of articles for the review study

The primary focus of this review study is on the adequacy of 
input variables utilized by previous authors for three ANN 
techniques (MLP, RBF, and ANFIS) to forecast PTEs in 
water resources. The relevant papers were found by conduct-
ing a keyword search of articles on Google, Goggle scholar, 
and Research Gate that had been published over the years on 
the subject, using terms like “ANN,” ‘predicting,” “forecast-
ing,” “modelling,” “heavy metals,” “water,” and “potentially 
toxic elements,” alongside with the names of the modeling 
approaches, like “MLP,” “RBF,” and “ANFIS.” Then, among 
the search engine results displayed, the most pertinent arti-
cles were chosen after careful examinations of their contents.

Classification schemes of model 
performance metrics

Correlation coefficient (R) and coefficient 
of determination (R2)

The correlation coefficient (R) is a statistical measure used 
to assess the degree of association between two quantitative 
variables recorded in each individual member of a group 
(Eq. 1; Nazar et al. 2023; Aggarwal and Ranganathan 2016). 
The coefficient of determination, also known as the square 
of the correlation coefficient (R2), is the percentage of vari-
ation in one variable that is accounted for by variation in the 
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other variable (Eq. 2; Egbueri and Agbasi 2022c; Aggarwal 
and Ranganathan 2016). The values of R and R2 can range 
from −1.0 to +1.0. The qualitative description of R values 
according to Egbueri (2021) is as follows: strong correlation 
(0.75–1.00), moderate correlation (0.50–0.75), and weak 
correlation (r < 0.5).

 where pi and ai represent the ith predicted and observed 
scores, respectively. pi and ai denote the mean predicted and 
observed scores across n total observations.

Mean square error (MSE)

A statistical technique for calculating the difference between 
an estimator and an estimated outcome is the MSE, often 
known as the mean squared deviation (MSD) of an estimator 
(Sara et al. 2019). The MSD or MSE calculates the average 
of the square of the errors between an estimator and an esti-
mated outcome (Eq. 3; Pande et al. 2024; Sara et al. 2019). 
The key benefit of utilizing MSE is that it squares the error, 
which penalizes or prominently highlights large errors (All-
wright 2022). Therefore, it is helpful when working on mod-
els where it is necessary to minimize sporadic significant 
errors (Allwright 2022). Models with MSE values nearer 
to zero are more accurate. Nevertheless, a “good” value for 
MSE does not exist (Allwright 2022). This is because MSE 
is an absolute metric specific to each use case; results may 
only be compared to other MSE values computed for the 
same dataset (Allwright 2022).

 where n is the total count of data points. For the ith sample, 
y−i refers to the true, observed value of the target variable, 
while ŷ

−
i shows the value forecasted by the model for that 

same sample.

Root mean square error (RMSE)

The square root of the MSE is what generates the RMSE 
(Eq. 4; Pande et al. 2024; Sara et al. 2019). According to 
Draper et al. (2013), the RMSE is also referred to as the root 
mean square deviation (RMSD). The difference between an 
estimator’s forecasted value and the actual value is often 
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measured using the RMSE (Sara et al. 2019). It calculates 
the differences in predicting errors from the various estima-
tors for a certain variable and analyzes the error size, making 
it the ideal accuracy measure (Sara et al. 2019). Like the 
MSE, models with RMSE values closer to zero are more 
accurate.

Predominantly predicted PTEs in water 
resources

MLP

The predicted PTEs in water resources using the MLP-NN 
algorithm by the studies reviewed (24 articles) include Al, 
As, Cd, Cr, Cu, Fe, Hg, Mn, Ni,  NO3, Pb, Sb, Sr, Ti, and Zn. 
The degree to which they were predicted by the studies is as 
follows: Pb > Zn > As > Fe > Mn > Cu >  NO3 > Ni > Cd 
> Al = Cr = Hg = Sb = Sr = Ti. A graphical representation 
of their distribution can be found in Fig. 1a.

RBF

The predicted PTEs in water resources using the RBF-NN 
algorithm by the studies reviewed (8 articles) include As, 
Cd, Cu, Fe, Hg, Mn, Ni,  NO3, Pb, and Zn. The degree to 
which they were predicted by the studies is as follows: 
 NO3 > Zn = Pb > As = Cd, Cu = Fe = Hg = Mn = Ni. A 
graphical representation of their distribution can be found 
in Fig. 1b.

ANFIS

The predicted PTEs in water resources using the ANFIS 
algorithm by the studies reviewed (10 articles) include As, 
Cd, Cu, Fe, Mn, Ni,  NO3, Pb, and Zn. The degree to which 
they were predicted by the studies is as follows:  NO3 = Fe = 
Mn = Zn > As = Cd = Cu = Pb > Ni. A graphical represen-
tation of their distribution can be found in Fig. 1c.

Commonly used input parameters 
for predicting PTEs in water resources

From the articles reviewed (42 articles), seven groups of 
input variables were found to be commonly used for predict-
ing PTEs in water resources. These groups of input variables 
include Group 1, a combination of physical parameters (P), 
chemical parameters (C), and metals (M); Group 2, a combi-
nation of P and C only; Group 3, a combination of P and M 

(4)RMSE =

√

MSE
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only; Group 4, a combination of C and M only; Group 5, P 
only; Group 6, C only; and Group 7, M only. Physical param-
eters include pH, temperature, TDS, SS, BOD, and COD; 
chemical parameters include  HCO3,  SO4,  NO3, and Cl; and 
metals include As, Cd, Cr, Pb, and Zn. The full details of 
the input parameters utilized by 42 articles for forecasting 
PTEs in water resources can be found in Tables 1, 2, and 3.

MLP

The pictorial representation of the distribution of input vari-
ables used to predict PTEs in water resources with the aid of 
the MLP-NN algorithm can be visualized in Fig. 2a. It was 
observed that most of the studies used Group 1 input vari-
ables for their prediction. The degree to which the reviewed 
studies utilized input variables when the MLP-NN algorithm 
was employed is as follows: Group 1 > Group 5 > Group 7 
> Group 2 = Group 4 > Group 6 > Group 3.

RBF

The pictorial representation of the distribution of input vari-
ables used to predict PTEs in water resources with the aid 
of the RBF-NN algorithm can be visualized in Fig. 2b. It 
was observed that most of the studies used Groups 5 and 7 
input variables for their prediction. The degree to which the 

reviewed studies utilized input variables when the RBF-NN 
algorithm was employed is as follows: Group 5 = Group 
7 > Group 1 = Group 2 = Group 3 > Group 4 = Group 6.

ANFIS

The pictorial representation of the distribution of input vari-
ables used to predict PTEs in water resources with the aid 
of the ANFIS algorithm can be visualized in Fig. 2c. It was 
observed that most of the studies used Group 1 input vari-
ables for their prediction. The degree to which the reviewed 
studies utilized input variables is as follows: Group 1 > 
Group 2 = Group 5 > Group 7 > Group 3 = Group 4 = 
Group 6.

Suitability of input variables 
in the prediction of PTEs in water resources

To ascertain the suitability of input variables in the 
prediction of PTEs in water resources using MLP-NN, 
RBF-NN, and ANFIS algorithms, data from 148 models 
(MLP-NN algorithm, 86 models, RBF-NN algorithm, 29 
models, and ANFIS algorithm, 33 models) was extracted 
from the 42 articles reviewed. However, 9 models (MLP-
NN algorithm-1 model, RBF-NN algorithm-2 models, 

Fig. 1  Bar charts showing PTEs and number of studies that predicted them using a MLP-NN, b RBF-NN, c ANFIS
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and ANFIS algorithm-6 models) did not report R2 or R 
values and thus were not considered (Tables 4, 5, and 
6). Thus, a total of 139 models (MLP-NN algorithm, 85 
models; RBF-NN algorithm, 27 models; and ANFIS algo-
rithm, 27 models) were used to ascertain the suitability 

of input variables in forecasting PTEs in water resources 
using MLP-NN, RBF-NN, and ANFIS algorithms. The 
models were evaluated based on the seven groups of 
input variables mentioned in the previous section. The 
seven groups of input variables utilized by the three ML 

Table 2  Synopsis of RBF-NN algorithm used for forecasting PTEs in water resources

Article no. References Model no. Input variables Output variable R2 R MAE MSE RMSE/SEE

25 Kanj et al. 2022 Model 87 pH, EC, TDS, TON, Ca, 
and Mg

Hg - 0.870 0.518 - 0.656

Model 88 pH, EC, TDS, Mg, and 
TON

Hg - 0.849 0.484 - 0.705

Model 89 pH, EC, TDS, and TON Hg - 0.864 0.418 - 0.658
Model 90 pH, EC, and TON Hg - 0.870 0.491 - 0.582
Model 91 pH and EC Hg - 0.740 0.600 - 1.384
Model 92 EC Hg - 0.600 0.474 - 0.867

26 Ucun Ozel et al. 2020 Model 93 Temperature, pH, EC, 
COD, BOD, and SS

Cu 0.920 - 0.0011 0.0013

Model 94 Temperature, pH, EC, 
COD, and BOD

Fe 0.892 - 0.0962 - 0.1281

Model 95 Temperature, pH, EC, 
COD, BOD, and SS

Zn 0.989 - 0.0105 - 0.0115

Model 96 Temperature, pH, EC, 
COD, BOD, and SS

Mn 0.831 - 0.0077 - 0.0083

Model 97 Temperature, pH, EC, and 
COD

Ni 0.773 - 0.0044 - 0.0049

Model 98 Temperature, pH, EC, 
COD, BOD, and SS

Pb 0.829 - 0.0007 - 0.0008

27 Zaqoot et al. 2018 Model 99 pH, EC, TDS, TH, Ca, 
Mg, and abstraction rate 
(Abs)

NO3 - 0.785 55.906 - 103.26

Model 100 pH, EC, TDS, Ca, Mg, 
and Abs

NO3 - 0.638 58.500 - 105.32

Model 101 pH, EC, TDS, Mg, and 
Abs

NO3 - 0.907 42.202 - 70.815

Model 102 pH, EC, TDS, and Abs NO3 - 0.725 54.232 - 86.655
Model 103 pH, EC, and Abs NO3 - 0.735 53.194 - 82.402
Model 104 pH and EC NO3 - 0.612 56.357 - 94.095
Model 105 EC NO3 - 0.733 55.066 - 71.423

28 Alizamir and Sobha-
nardakani 2017

Model 106 As, Zn, and Pb As 0.9199 - - - 0.3666

Model 107 As, Zn, and Pb Zn 0.8953 - - - 0.5064
Model 108 As, Zn, and Pb Pb 0.9531 - - - 0.3867

29 Zaqoot et al. 2017 Model 109 Pressure, temperature, pH, 
and EC

NO3 - 0.99511 2.7143 17.6708 4.2037

30 Alizamir et al. 2017 Model 110 Cd, Pb, and Zn Cd 0.9402 - - - 0.2904
Model 111 Cd, Pb, and Zn Pb 0.9790 - - - 0.8237
Model 112 Cd, Pb, and Zn Zn 0.8742 - - - 7.6509

31 Ehteshami et al. 2016 Model 113 NO3, soil organic matter 
content, soil nitrogen 
content, and pH

NO3 - 0.7 - 0.69 -

32 Suen and Eheart 2003 Model 114 Precipitation, streamflow, 
and temperature

NO3 - - - - 2.946

Model 115 Precipitation, streamflow, 
and temperature

NO3 - - - - 2.567
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Table 3  Synopsis of ANFIS algorithm used for forecasting PTEs in water resources

Article no. References Model no. Input variables Output variable R2 R MAE MSE RMSE/SEE

33 Abd El-Mageed et al. 
2022

Model 116 Locations, year, season, 
COD, BOD,  NH4, and 
 NO3

NO3 - - 0.564 - 0.575

34 Agah and Soleimanpour-
moghadam 2020

Model 117 pH,  SO4, and Mg Cu - - - 0.3079 0.0055

Model 118 pH,  SO4, and Mg Fe - - - 0.1020 0.0010
Model 119 pH,  SO4, and Mg Mn - - - 0.4031 0.0063
Model 120 pH,  SO4, and Mg Zn - - - 0.1639 0.0040

35 Elzain 2020 Model 121 Depth to water, net 
recharge, aquifer 
media, soil media, 
topographic slope, 
impact to vadose zone, 
hydraulic conductivity, 
and land-use layers

NO3 - 0.60 0.580 - 0.836

36 Ucun Ozel et al. 2020 Model 122 Temperature, pH, EC, 
COD, BOD, and SS

Cu 0.879 - 0.0017 - 0.0020

Model 123 Temperature, pH, and 
COD

Fe 0.813 - 0.0342 - 0.0425

Model 124 Temperature, pH, EC, 
COD, BOD, and SS

Zn 0.896 - 0.0204 - 0.0235

Model 125 Temperature, pH, EC, 
COD, and SS

Mn 0.826 - 0.0103 - 0.0115

Model 126 Temperature, pH, COD, 
and BOD

Ni 0.807 - 0.0044 - 0.0049

Model 127 Temperature, pH, EC, 
COD, BOD, and SS

Pb 0.834 - 0.0006 - 0.0007

37 Jebastina and Prince 
Arulraj 2018

Model 128 Ca and EC NO3 0.6400 0.8000 - - 0.1631

Model 129 Ca, EC, and hardness NO3 0.7200 0.8500 - - 0.1401
Model 130 Ca, EC, Na, and hardness NO3 0.7570 0.8700 - - 0.1212
Model 131 Ca, EC, Na, K, and 

hardness
NO3 0.8870 0.9420 - - 0.1000

Model 132 Ca, EC, Na, Cl, K, and 
hardness

NO3 0.9000 0.9500 - - 0.0934

38 Sonmez et al. 2018 Model 133 Fe, Cu, Mn, Zn, Ni, Cr Cd 0.9130 - - 0.0000 0.0004
39 Bayatzadeh Fard et al. 

2017
Model 134 SO4, Cl, and TDS Fe 0.60 - - 0.05 -

Model 135 SO4, Cl, and TDS Mn 0.92 - - 0.01 -
Model 136 SO4, Cl, and TDS Pb 0.84 - - 0.01 -
Model 137 SO4, Cl, and TDS Zn 0.78 - - 0.69 -

40 Chang et al. 2014 Model 138 Antecedent rainfall, 
temperature, Cd, EC, 
Hg, nitrite nitrogen, 
pH, DO, Zn, Pb, nitrate 
nitrogen, Cr, Cl, and 
Cu

As - - - - 0.011

41 Valente et al. 2013 Model 139 pH, EC, and  SO4 Fe 0.9695 - - - -
Model 140 pH, EC, and  SO4 As 0.9890 - - - -
Model 141 pH, EC, and  SO4 Cd 0.9929 - - - -
Model 142 pH, EC, and  SO4 Zn 0.9634 - - - -
Model 143 pH, EC, and  SO4 Cu 0.9762 - - - -
Model 144 pH, EC, and  SO4 Mn 0.9799 - - - -

42 Mousavi and Amiri 2012 Model 145 EC,  HCO3, Ca, and 
hardness

NO3 0.9300 - - - 1.17
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algorithms were compared with the model’s R2 or R. In 
scenarios where R2 and R were given, the outcomes of R2 
were taken. This is because R2 has a more straightforward 
interpretation and is more widely used than R for ANN 
modeling. Moreover, it aligns more with the study objec-
tives, as it represents the proportion of variance in the 
dependent variable that is explained by the independent 
variable(s) in the model. Based on their R2 or R values, 
the performances of the models were classified into weak, 
moderate, and strong correlation.

MLP

Physical parameters, chemical parameters, and metals 
combined as input variables

A total of 22 models combined Group 1 parameters (P, 
C, and M) as input variables for prediction of PTEs in 

water resources using the MLP-NN algorithm. Based 
on the performance metrics used (R2 or R values), 1/22, 
2/22, and 19/22 of the models can be classified as having 
weak, moderate, and strong correlations, respectively 
(Table 7). The distribution of the model performance 
can be visualized in Fig. 3a. The distribution shows that 
4.50%, 9.10%, and 86.40% of models that used Group 
1 parameters as input variables for predicting PTEs in 
water resources had weak, moderate, and strong corre-
lations, respectively. In summary, 95.5% of the models 
evaluated had an acceptable model performance (mod-
erate-strong correlation). Thus, it can be concluded that 
a combination of only physical parameters, chemical 
parameters, and metals as input variables is suitable for 
predicting PTEs in water resources employing the MLP-
NN algorithm.

Table 3  (continued)

Article no. References Model no. Input variables Output variable R2 R MAE MSE RMSE/SEE

Model 146 EC,  HCO3, Ca, Mg, and 
hardness

NO3 0.9100 - - - 1.9

Model 147 EC,  HCO3, and hardness NO3 0.8800 - - - 2.3
Model 148 EC and hardness NO3 0.6800 - - - 2.94

Fig. 2  Bar charts showing input variables utilized for prediction of PTEs employing a MLP-NN, b RBF-NN, c ANFIS
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Table 4  Models of PTEs in water resources produced using MLP-NN algorithm

Article no. References Model no. Input variables type Output variable Performance

1 Kanj et al. 2022 Model 1 Group 1 Hg Strong correlation
Model 2 Group 1 Hg Strong correlation
Model 3 Group 2 Hg Strong correlation
Model 4 Group 2 Hg Strong correlation
Model 5 Group 5 Hg Strong correlation
Model 6 Group 5 Hg Moderate correlation

2 Chaal and Aboutafail 2021 Model 7 Group 1 Cu Strong correlation
Model 8 Group 1 Mn Strong correlation
Model 9 Group 1 Zn Strong correlation

3 Egbueri 2021 Model 10 Group 3 NO3 Strong correlation
Model 11 Group 1 Ni Moderate correlation
Model 12 Group 1 Pb Strong correlation

4 Boudaghpour and Malekmohammadi 2020 Model 13 Group 5 Pb Strong correlation
5 Ucun Ozel et al. 2020 Model 14 Group 5 Cu Strong correlation

Model 15 Group 5 Fe Strong correlation
Model 16 Group 5 Zn Strong correlation
Model 17 Group 5 Mn Strong correlation
Model 18 Group 5 Ni Strong correlation
Model 19 Group 5 Pb Strong correlation

6 Lu et al. 2019 Model 20 Group 2 Ti Strong correlation
Model 21 Group 2 Ti Strong correlation
Model 22 Group 2 Cr Strong correlation
Model 23 Group 2 Cr Strong correlation
Model 24 Group 2 Mn Strong correlation
Model 25 Group 2 Mn Moderate correlation
Model 26 Group 2 Ni Strong correlation
Model 27 Group 2 Ni Strong correlation
Model 28 Group 2 As Strong correlation
Model 29 Group 2 As Strong correlation
Model 30 Group 2 Cd Strong correlation
Model 31 Group 2 Cd Strong correlation
Model 32 Group 2 Sb Strong correlation
Model 33 Group 2 Sb Moderate correlation
Model 34 Group 2 Pb Strong correlation
Model 35 Group 2 Pb Strong correlation

7 Alizamir et al. 2019 Model 36 Group 7 As Moderate correlation
Model 37 Group 7 Zn Moderate correlation
Model 38 Group 7 Pb Moderate correlation

8 Alayat et al. 2018 Model 39 Group 4 Fe Strong correlation
9 Alizamir and Sobhanardakani 2017 Model 40 Group 7 As Strong correlation

Model 41 Group 7 Zn Strong correlation
Model 42 Group 7 Pb Strong correlation

10 Zaqoot et al. 2017 Model 43 Group 5 NO3 Strong correlation
11 Alizamir et al. 2017 Model 44 Group 7 Cd Strong correlation

Model 45 Group 7 Pb Strong correlation
Model 46 Group 7 Zn Strong correlation

12 Venkatramanan et al. 2017 Model 47 Group 4 Al Strong correlation
Model 48 Group 4 Fe Moderate correlation
Model 49 Group 4 Mn Weak correlation
Model 50 Group 4 Sr Weak correlation
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Physical and chemical parameters only combined as input 
variables

A total of 22 models combined Group 2 parameters (P 
and C only) as input variables for prediction of PTEs in 
water resources using the MLP-NN algorithm. Based on 
the performance metrics used, 0/22, 6/22, and 16/22 of the 
models can be classified as having weak, moderate, and 
strong correlations, respectively (Table 7). The distribu-
tion of the model performance can be visualized in Fig. 3b. 

The distribution shows that 0%, 27.27%, and 72.73% of 
models that used Group 2 parameters as input variables 
for predicting PTEs in water resources had weak, mod-
erate, and strong correlations, respectively. In summary, 
100% of the models evaluated had acceptable model per-
formance. Thus, it can be concluded that a combination of 
only physical and chemical parameters as input variables is 
suitable for predicting PTEs in water resources employing 
the MLP-NN algorithm.

* indicates that the model was not considered

Table 4  (continued)

Article no. References Model no. Input variables type Output variable Performance

13 Alizamir and Sobhanardakani 2016 Model 51 Group 7 As Strong correlation
Model 52 Group 7 Pb Strong correlation
Model 53 Group 7 Zn Strong correlation

14 Bayatzadeh Fard et al. 2017 Model 54 Group 2 Fe Moderate correlation
Model 55 Group 2 Mn Moderate correlation
Model 56 Group 2 Pb Moderate correlation
Model 57 Group 2 Zn Moderate correlation

15 Ghadimi 2015 Model 58 Group 6 Pb Moderate correlation
Model 59 Group 6 Zn Moderate correlation
Model 60 Group 6 Cu Moderate correlation

16 Shakeri et al. 2013 Model 61 Group 5 Cu Strong correlation
17 Zare et al. 2011 Model 62 Group 1 NO3 Strong correlation

Model 63 Group 1 NO3 Strong correlation
Model 64 Group 1 NO3 Strong correlation
Model 65 Group 1 NO3 Strong correlation
Model 66 Group 1 NO3 Strong correlation
Model 67 Group 1 NO3 Strong correlation

18* Cho et al. 2011 Model 68 Group 5 As -
19 Rooki et al. 2011 Model 69 Group 1 Cu Strong correlation

Model 70 Group 1 Fe Weak correlation
Model 71 Group 1 Mn Strong correlation
Model 72 Group 1 Zn Strong correlation

20 Gholami et al. 2011 Model 73 Group 1 Fe Strong correlation
Model 74 Group 1 Ni Strong correlation

21 Li et al. 2020 Model 75 Group 3 As Moderate correlation
Model 76 Group 3 As Weak correlation
Model 77 Group 7 As Weak correlation
Model 78 Group 1 Pb Moderate correlation
Model 79 Group 3 Pb Moderate correlation
Model 80 Group 7 Pb Moderate correlation
Model 81 Group 1 Zn Strong correlation
Model 82 Group 4 Zn Moderate correlation
Model 83 Group 7 Zn Moderate correlation

22 Purkait et al. 2008 Model 84 Group 5 As Moderate correlation
23 Yesilnacar et al. 2007 Model 85 Group 5 NO3 Strong correlation
24 Diamantopoulou et al. 2005 Model 86 Group 1 NO3 Strong correlation
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Physical parameters and metals only combined as input 
variables

A total of 4 models combined Group 3 parameters (P and 
M only) as input variables for prediction of PTEs in water 
resources using the MLP-NN algorithm. Based on the per-
formance metrics used, 1/4, 2/4, and 1/4 of the models can 
be classified as having weak, moderate, and strong correla-
tions, respectively (Table 7). The distribution of the model 
performance can be visualized in Fig. 3c. The distribution 
shows that 25%, 50%, and 25% of models that used Group 
3 parameters as input variables for predicting PTEs in water 
resources had weak, moderate, and strong correlations, 
respectively. In summary, 75% of models that used Group 3 
parameters as input variables had an acceptable model per-
formance. Thus, it can be concluded that a combination of 
physical parameters and metals as input variables is suitable 

for predicting PTEs in water resources employing the MLP-
NN algorithm.

Chemical parameters and metals only combined as input 
variables

A total of 6 models combined Group 4 parameters (C and 
M only) as input variables for prediction of PTEs in water 
resources using the MLP-NN algorithm. Based on the per-
formance metrics used, 2/6, 2/6, and 2/6 of the models can 
be classified as having weak, moderate, and strong correla-
tions, respectively (Table 7). The distribution of the model 
performance can be visualized in Fig. 3d. The distribution 
shows that 33.33%, 33.33%, and 33.33% of models that used 
Group 4 parameters as input variables for predicting PTEs 
in water resources had weak, moderate, and strong corre-
lations, respectively. In summary, 66.66% of the models 

Table 5  Models of PTEs in water resources produced using RBF-NN algorithm

* indicates that the model was not considered

Article no. References Model no. Input variables type Output variable Performance

25 Kanj et al. 2022 Model 87 Group 1 Hg Strong correlation
Model 88 Group 1 Hg Strong correlation
Model 89 Group 2 Hg Strong correlation
Model 90 Group 2 Hg Strong correlation
Model 91 Group 5 Hg Moderate correlation
Model 92 Group 5 Hg Moderate correlation

26 Ucun Ozel et al. 2020 Model 93 Group 5 Cu Strong correlation
Model 94 Group 5 Fe Strong correlation
Model 95 Group 5 Zn Strong correlation
Model 96 Group 5 Mn Strong correlation
Model 97 Group 5 Ni Strong correlation
Model 98 Group 5 Pb Strong correlation

27 Zaqoot et al. 2018 Model 99 Group 3 NO3 Strong correlation
Model 100 Group 3 NO3 Moderate correlation
Model 101 Group 3 NO3 Strong correlation
Model 102 Group 5 NO3 Moderate correlation
Model 103 Group 5 NO3 Moderate correlation
Model 104 Group 5 NO3 Moderate correlation
Model 105 Group 5 NO3 Moderate correlation

28 Alizamir and Sobhanarda-
kani 2017

Model 106 Group 7 As Strong correlation

Model 107 Group 7 Zn Strong correlation
Model 108 Group 7 Pb Strong correlation

29 Zaqoot et al. 2017 Model 109 Group 5 NO3 Strong correlation
30 Alizamir et al. 2017 Model 110 Group 7 Cd Strong correlation

Model 111 Group 7 Pb Strong correlation
Model 112 Group 7 Zn Strong correlation

31 Ehteshami et al. 2016 Model 113 Group 2 NO3 Moderate correlation
32* Suen and Eheart 2003 Model 114 Group 5 NO3 -
 * Model 115 Group 5 NO3 -
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Table 6  Models of PTEs in water resources produced using ANFIS algorithm

* indicates that the model was not considered

Article no. References Model no. Input variables type Output variable Performance

33* Abd El-Mageed et al. 2022 Model 116 Group 2 NO3 -
34* Agah and Soleimanpourmoghadam 2020 Model 117 Group 1 Cu -
* Model 118 Group 1 Fe -
* Model 119 Group 1 Mn -
* Model 120 Group 1 Zn -
35 Elzain 2020 Model 121 Group 5 NO3 Moderate correlation
36 Ucun Ozel et al. 2020 Model 122 Group 5 Cu Strong correlation

Model 123 Group 5 Fe Strong correlation
Model 124 Group 5 Zn Strong correlation
Model 125 Group 5 Mn Strong correlation
Model 126 Group 5 Ni Strong correlation
Model 127 Group 5 Pb Strong correlation

37 Jebastina and Prince Arulraj 2018 Model 128 Group 3 NO3 Moderate correlation
Model 129 Group 3 NO3 Moderate correlation
Model 130 Group 3 NO3 Moderate correlation
Model 131 Group 3 NO3 Strong correlation
Model 132 Group 1 NO3 Strong correlation

38 Sonmez et al. 2018 Model 133 Group 7 Cd Strong correlation
39 Bayatzadeh Fard et al. 2017 Model 134 Group 2 Fe Moderate correlation

Model 135 Group 2 Mn Strong correlation
Model 136 Group 2 Pb Strong correlation
Model 137 Group 2 Zn Strong correlation

40* Chang et al. 2014 Model 138 Group 1 As -
41 Valente et al. 2013 Model 139 Group 2 Fe Strong correlation

Model 140 Group 2 As Strong correlation
Model 141 Group 2 Cd Strong correlation
Model 142 Group 2 Zn Strong correlation
Model 143 Group 2 Cu Strong correlation
Model 144 Group 2 Mn Strong correlation

42 Mousavi and Amiri 2012 Model 145 Group 1 NO3 Strong correlation
Model 146 Group 1 NO3 Strong correlation
Model 147 Group 2 NO3 Strong correlation
Model 148 Group 5 NO3 Moderate correlation

Table 7  Groups of input variables and model performances in forecasting PTEs in water using the MLP-NN algorithm

Groups/model perfor-
mances

Weak correlation Moderate correlation Strong correlation

Group 1 70 11, 78 1, 2, 7, 8, 9, 12, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 81, 86
Group 2 Nil 25, 33, 54, 55, 56, 57 3, 4, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35
Group 3 76 75, 79 10
Group 4 49, 50 48, 82 39, 47
Group 5 Nil 6, 84 5, 13, 14, 15, 16, 17, 18, 19, 43, 61, 85
Group 6 Nil 58, 59, 60 Nil
Group 7 77 80, 83 36, 37, 38, 40, 41, 42, 44, 45, 46, 51, 52, 53
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Fig. 3  Bar charts showing performance of MLP-NN models that predicted PTEs in water using the following as input variables: a Group 1, b 
Group 2, c Group 3, d Group 4, e Group 5, f Group 6, and g Group 7
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evaluated had acceptable model performance. Thus, it can 
be concluded that a combination of chemical parameters and 
metals as input variables is suitable for predicting PTEs in 
water resources employing the MLP-NN algorithm.

Physical parameters only as input variables

A total of 13 models combined Group 5 parameters (P only) 
as input variables for prediction of PTEs in water resources 
using the MLP-NN algorithm. Based on the performance 
metrics used, 0/13, 2/13, and 11/13 of the models can be 
classified as having weak, moderate, and strong correla-
tions, respectively (Table 7). The distribution of the model 
performance can be visualized in Fig. 3e. The distribution 
shows that 0%, 15.38%, and 84.62% of models that used 
Group 5 parameters as input variables for predicting PTEs in 
water resources had weak, moderate, and strong correlations, 
respectively. In summary, 100% of the models evaluated had 
acceptable model performance. Thus, it can be concluded 
that utilizing only physical parameters as input variables is 
suitable for predicting PTEs in water resources employing 
the MLP-NN algorithm.

Chemical parameters only as input variables

A total of 3 models combined Group 6 parameters (C only) 
as input variables for prediction of PTEs in water resources 
using the MLP-NN algorithm. Based on the performance 
metrics used, 0/3, 3/3, and 0/3 of the models can be clas-
sified as having weak, moderate, and strong correlations, 
respectively (Table 7). The distribution of the model perfor-
mance can be visualized in Fig. 3f. The distribution shows 
that 0%, 100%, and 0% of models that used Group 6 parame-
ters as input variables for predicting PTEs in water resources 
had weak, moderate, and strong correlations, respectively. 
In summary, 100% of the models evaluated had acceptable 
model performance. Thus, it can be concluded that utilizing 
only chemical parameters as input variables is suitable for 
predicting PTEs in water resources employing the MLP-NN 
algorithm.

Metals only as input variables

A total of 15 models combined Group 7 parameters (M only) 
as input variables for prediction of PTEs in water resources 
using the MLP-NN algorithm. Based on the performance 
metrics used, 1/15, 2/15, and 12/15 of the models can be 
classified as having weak, moderate, and strong correla-
tions, respectively (Table 7). The distribution of the model 
performance can be visualized in Fig. 3g. The distribution 
shows that 6.67%, 13.33%, and 80% of models that used 
Group 7 parameters as input variables for predicting PTEs 
in water resources had weak, moderate, and strong corre-
lations, respectively. In summary, 93.33% of the models 
evaluated had acceptable model performance. Thus, it can 
be concluded that utilizing only metals as input variables is 
suitable for predicting PTEs in water resources employing 
the MLP-NN algorithm.

RBF

Physical parameters, chemical parameters, and metals 
combined as input variables

A total of 2 models combined only physical parameters (P), 
chemical parameters (C), and metals as input variables for 
prediction of PTEs in water resources using the RBF-NN 
algorithm. Based on the performance metrics used, 0/2, 0/2, 
and 2/2 of the models can be classified as having weak, mod-
erate, and strong correlations, respectively (Table 8). The 
distribution of the model performance can be visualized 
in Fig. 4a. The distribution shows that 0%, 0%, and 100% 
of models that combined P, C, and M parameters as input 
variables for predicting PTEs in water resources had weak, 
moderate, and strong correlations, respectively. In summary, 
100% of the models evaluated had acceptable model per-
formance. Thus, it can be concluded that a combination of 
only physical parameters, chemical parameters, and metals 
as input variables is suitable for predicting PTEs in water 
resources employing the RBF-NN algorithm.

Table 8  Groups of input 
variables and model 
performances in forecasting 
PTEs in water using the 
RBF-NN

Groups/model perfor-
mance

Weak correla-
tion

Moderate correlation Strong correlation

Group 1 Nil Nil 87, 88
Group 2 Nil 113 89, 90,
Group 3 Nil 100 99, 101
Group 4 - - -
Group 5 Nil 91, 92, 102, 103, 104, 105 93, 94, 95, 96, 97, 98, 109
Group 6 - - -
Group 7 Nil Nil 106, 107, 108, 110, 111, 112
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Physical and chemical parameters only combined as input 
variables

A total of 3 models combined only physical and chemical 
parameters as input variables for the prediction of PTEs in 
water resources using the RBF-NN algorithm. Based on the 
performance metrics used, 0/3, 1/3, and 2/3 of the mod-
els can be classified as having weak, moderate, and strong 
correlations, respectively (Table 8). The distribution of the 
model performance can be visualized in Fig. 4b. The distri-
bution shows that 0%, 33.33%, and 66.67% of models that 
combined only P and C parameters as input variables for 
predicting PTEs in water resources had weak, moderate, and 
strong correlations, respectively. In summary, 100% of the 
models evaluated had acceptable model performance. Thus, 

it can be concluded that a combination of only physical and 
chemical parameters as input variables is suitable for pre-
dicting PTEs in water resources employing the RBF-NN 
algorithm.

Physical parameters and metals only combined as input 
variables

A total of 3 models combined only physical parameters 
and metals as input variables for prediction of PTEs in 
water resources using the RBF-NN algorithm. Based on 
the performance metrics used, 0/3, 1/3, and 2/3 of the 
models can be classified as having weak, moderate, and 
strong correlations, respectively (Table 8). The distribu-
tion of the model performance can be visualized in Fig. 4c. 

Fig. 4  Bar charts showing performance of RBF-NN models that predicted PTEs in water using the following as input variables: a Group 1, b 
Group 2, c Group 3, d Group 5, and e Group 7
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The distribution shows that 0%, 33.33%, and 66.67% of 
models that combined only P and M parameters as input 
variables for predicting PTEs in water resources had weak, 
moderate, and strong correlations, respectively. In sum-
mary, 100% of the models evaluated had acceptable model 
performance. Thus, it can be concluded that a combination 
of physical parameters and metals as input variables is 
suitable for predicting PTEs in water resources employing 
the RBF-NN algorithm.

Chemical parameters and metals only combined as input 
variables

Out of the 139 models considered in the review, none 
combined only chemical parameters and metals as input 
variables for prediction of PTEs in water resources using 
the RBF-NN algorithm (Table 8). Therefore, there is no 
conclusion with regard to the suitability of combining only 
chemical parameters and metals as input variables for pre-
dicting PTEs in water resources employing the RBF-NN 
algorithm.

Physical parameters only as input variables

A total of 13 models combined only physical parameters 
as input variables for the prediction of PTEs in water 
resources using the MLP-NN algorithm. Based on the 
performance metrics used, 0/13, 6/13, and 7/13 of the 
models can be classified as having weak, moderate, and 
strong correlations, respectively (Table 8). The distribu-
tion of the model performance can be visualized in Fig. 4d. 
The distribution shows that 0%, 46.15%, and 53.85% of 
models that combined only P parameters as input vari-
ables for predicting PTEs in water resources had weak, 
moderate, and strong correlations, respectively. In sum-
mary, 100% of the models evaluated had acceptable model 
performance. Thus, it can be concluded that utilizing 
only physical parameters as input variables is suitable for 

predicting PTEs in water resources employing the RBF-
NN algorithm.

Chemical parameters only as input variables

Out of the 139 models considered in the review, none 
combined only chemical parameters as input variables for 
prediction of PTEs in water resources using the RBF-NN 
algorithm (Table 8). Therefore, there is no conclusion with 
regard to the suitability of combining only chemical parame-
ters as input variables for predicting PTEs in water resources 
employing the RBF-NN algorithm.

Metals only as input variables

A total of 6 models combined only metals as input variables 
for prediction of PTEs in water resources using the MLP-
NN algorithm. Based on the performance metrics used, 0/6, 
0/6, and 6/6 of the models can be classified as having weak, 
moderate, and strong correlation, respectively (Table 8). The 
distribution of the model performance can be visualized in 
Fig. 4e. The distribution shows that 0%, 0%, and 100% of 
models that combined only M parameters as input variables 
for predicting PTEs in water resources had weak, moderate, 
and strong correlations, respectively. In summary, 100% of 
the models evaluated had acceptable model performance. 
Thus, it can be concluded that utilizing only metals as input 
variables is suitable for predicting PTEs in water resources 
employing the RBF-NN algorithm.

ANFIS

Physical parameters, chemical parameters, and metals 
combined as input variables

A total of 3 models combined only physical parameters 
(P), chemical parameters (C), and metals as input vari-
ables for prediction of PTEs in water resources using the 
ANFIS algorithm. Based on the performance metrics used, 
0/3, 0/3, and 3/3 of the models can be classified as having 

Table 9  Groups of input 
variables and model 
performances in forecasting 
PTEs in water using the ANFIS

Groups/model perfor-
mance

Weak correlation Moderate correlation Strong correlation

Group 1 Nil Nil 132, 145, 146
Group 2 Nil 134 135, 136, 137, 138, 139, 

140, 141, 142, 143, 144, 
147

Group 3 Nil 128, 129, 130 131
Group 4 - - -
Group 5 Nil 121, 148 122, 123, 124, 125, 126, 127
Group 6 - - -
Group 7 Nil Nil 133
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weak, moderate, and strong correlations, respectively 
(Table  9). The distribution of the model performance 
can be visualized in Fig. 5a. The distribution shows that 
0%, 0%, and 100% of models that combined P, C, and M 
parameters as input variables for predicting PTEs in water 
resources had weak, moderate, and strong correlations, 
respectively. In summary, 100% of the models evaluated 
had acceptable model performance. Thus, it can be con-
cluded that a combination of only physical parameters, 
chemical parameters, and metals as input variables is suit-
able for predicting PTEs in water resources employing the 
ANFIS algorithm.

Physical and chemical parameters only combined as input 
variables

A total of 11 models combined only physical and chemi-
cal parameters as input variables for the prediction of PTEs 
in water resources using the ANFIS algorithm. Based on 
the performance metrics used, 0/11, 1/11, and 10/11 of the 
models can be classified as having weak, moderate, and 
strong correlations, respectively (Table 9). The distribution 
of the model performance can be visualized in Fig. 5b. The 
distribution shows that 0%, 9.09%, and 90.91% of models 
that combined only P and C parameters as input variables 

Fig. 5  Bar charts showing performance of ANFIS models that predicted PTEs in water using the following as input variables: a Group 1, b 
Group 2, c Group 3, d Group 5, and e Group 7
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for predicting PTEs in water resources had weak, moderate, 
and strong correlations, respectively. In summary, 100% of 
the models evaluated had acceptable model performance. 
Thus, it can be concluded that a combination of only physi-
cal and chemical parameters as input variables is suitable for 
predicting PTEs in water resources employing the ANFIS 
algorithm.

Physical parameters and metals only combined as input 
variables

A total of 4 models combined only physical parameters and 
metals as input variables for prediction of PTEs in water 
resources using the ANFIS algorithm. Based on the per-
formance metrics used, 0/4, 3/4, and 1/4 of the models can 
be classified as having weak, moderate, and strong correla-
tions, respectively (Table 9). The distribution of the model 
performance can be visualized in Fig. 5c. The distribution 
shows that 0%, 75%, and 25% of models that combined 
only P and M parameters as input variables for predicting 
PTEs in water resources had weak, moderate, and strong 
correlations, respectively. In summary, 100% of the models 
evaluated had acceptable model performance. Thus, it can 
be concluded that a combination of physical parameters and 
metals as input variables is suitable for predicting PTEs in 
water resources employing the ANFIS algorithm.

Chemical parameters and metals only combined as input 
variables

Out of the 139 models considered in the review, none com-
bined only chemical parameters and metals as input vari-
ables for prediction of PTEs in water resources using the 
ANFIS algorithm (Table 9). Therefore, there is no conclu-
sion with regard to the suitability of combining only chemi-
cal parameters and metals as input variables for predicting 
PTEs in water resources employing the ANFIS algorithm.

Physical parameters only as input variables

A total of 8 models combined only physical parameters 
as input variables for the prediction of PTEs in water 

resources using the ANFIS algorithm. Based on the per-
formance metrics used, 0/8, 2/8, and 6/8 of the models 
can be classified as having weak, moderate, and strong 
correlations, respectively (Table 9). The distribution of 
the model performance can be visualized in Fig. 5d. The 
distribution shows that 0%, 25%, and 75% of models 
that combined only P parameters as input variables for 
predicting PTEs in water resources had weak, moder-
ate, and strong correlations, respectively. In summary, 
100% of the models evaluated had acceptable model 
performance. Thus, it can be concluded that utilizing 
only physical parameters as input variables is suitable 
for predicting PTEs in water resources employing the 
ANFIS algorithm.

Chemical parameters only as input variables

Out of the 139 models considered in the review, none 
combined only chemical parameters as input variables for 
prediction of PTEs in water resources using the ANFIS 
algorithm (Table 9). Therefore, there is no conclusion 
with regard to the suitability of combining only chemical 
parameters as input variables for predicting PTEs in water 
resources employing the ANFIS algorithm.

Metals only as input variables

One model combined only metals as input variables for 
prediction of PTEs in water resources using the ANFIS 
algorithm. Based on the performance metrics used, the 
model can be classified as having a strong correlation 
(Table 9). The distribution of the model performance can 
be visualized in Fig. 5e. The distribution shows that 100% 
of models that combined only M parameters as input vari-
ables for predicting PTEs in water resources had a strong 
correlation. Therefore, 100% of the models evaluated had 
acceptable model performance. Thus, it can be concluded 
that utilizing only metals as input variables is suitable for 
predicting PTEs in water resources employing the ANFIS 
algorithm.

Table 10  Overall performance of the MLP-NN models in forecasting PTEs in water

Groups/model 
performance

Weak correlation Moderate correlation Strong correlation

All groups 70, 76, 49, 50, 77 11, 78, 25, 33, 54, 55, 56, 57,75, 
79, 48, 82, 6, 84, 58, 59, 60, 
80, 83

1, 2, 7, 8, 9, 12, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 81, 86, 3, 4, 
20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 10, 39, 47, 5, 13, 
14, 15, 16, 17, 18, 19, 43, 61, 85, 36, 37, 38, 40, 41, 42, 44, 45, 46, 
51, 52, 53

Synopsis 5/85 19/85 61/85
Percentage (%) 5.88% 21.35% 71.77%
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Performances of MLP‑NN, RBF‑NN, 
and ANFIS in predicting PTEs in water

To understand the overall performance of the three algo-
rithms (MLP-NN, RBF-NN, and ANFIS) in forecasting 
PTEs in water resources, we aggregated their performances 
across the seven groups of input variables. For the MLP-NN 
algorithm, 85 models were evaluated and 5.88%, 22.35%, 

and 71.77% of the models were classified into weak, moder-
ate, and strong correlation, respectively (Table 10, Fig. 6a). 
Thus, 94.12% of the models that used the MLP-NN in fore-
casting PTEs in water resources had acceptable model per-
formance (moderate-strong correlation). For the RBF-NN 
algorithm, 27 models were evaluated and 0%, 29.63%, and 
70.37% of the models were classified into weak, moderate, 
and strong correlation, respectively (Table 11, Fig. 6b). 

Fig. 6  Bar charts showing overall performance of models that predicted PTEs in water using a MLP-NN, b RBF-NN, and c ANFIS

Table 11  Overall performance 
of the RBF-NN models in 
forecasting PTEs in water

Groups/model per-
formance

Weak correla-
tion

Moderate correlation Strong correlation

All groups Nil 113, 100, 91, 92, 102, 103, 
104, 105

87, 88, 89, 90, 99, 101, 93, 94, 95, 96, 
97, 98, 109, 106, 107, 108, 110, 111, 
112

Synopsis 0/27 8/27 19/27
Percentage (%) 0% 29.63% 70.37%

Table 12  Overall performance 
of the ANFIS models in 
forecasting PTEs in water

Groups/model 
performance

Weak 
correla-
tion

Moderate correlation Strong correlation

All groups Nil 134, 128, 129, 130
121, 148

132, 145, 146, 135, 136, 137, 138, 139, 140, 141, 142, 
143, 144, 147, 131, 122, 123, 124, 125, 126, 127, 
133

Synopsis 0/27 6/27 21/27
Percentage (%) 0% 22.22% 77.78%
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Thus, 100% of the models that used the RBF-NN in forecast-
ing PTEs in water resources had acceptable model perfor-
mance. For the ANFIS algorithm, 27 models were evaluated, 
and 0%, 22.22%, and 77.78% of the models were classified 
into weak, moderate, and strong correlation, respectively 
(Table 12, Fig. 6c). Thus, 100% of the models that used 
ANFIS in forecasting PTEs in water resources had accept-
able model performance. Based on the percentage of accept-
able models of PTEs produced by the three algorithms, the 
RBF-NN and ANFIS clearly outperformed the MLP-NN. 
Nevertheless, the ANFIS algorithm had a higher percentage 
of strongly correlated models (77.78%), compared to 70.37% 
ascertained by the RBF-NN algorithm (Tables 10 and 12). 
Therefore, the overall performance of the three algorithms in 
forecasting PTEs in water resources can be rated as follows: 
ANFIS > RBF-NN > MLP-NN.

Conclusions

It is anticipated that the findings of the review study would 
ultimately help in protecting the lives of a wide range of 
human populations, especially those who are the most vul-
nerable to water pollution by PTEs. In addition, insights 
drawn from this study will aid cost-effective and efficient 
water quality monitoring, assessment, prediction, manage-
ment, and sustainability. The current review study identified 
the most commonly used ANN algorithm, the most com-
monly predicted PTEs, the most commonly used input varia-
bles, the most suitable input variables, and the most efficient 
ANN algorithm for predicting PTEs in water. These were 
achieved after a careful evaluation of 139 models from 42 
articles that employed the three ML algorithms (MLP-NN, 
RBF-NN, and ANFIS) to predict PTEs in water resources. 
Based on the findings, the following conclusions were made:

• The MLP-NN was the most commonly employed algo-
rithm among the three analyzed ML algorithms.

• The most commonly predicted PTEs using the MLP-NN 
algorithm were Fe, Zn, and As. For the RBF-NN algo-
rithm, they were  NO3, Zn, and Pb, and for the ANFIS, 
they were  NO3, Fe, and Mn.

• The input variables utilized by the three ML algorithms 
to predict PTEs in water resources can be grouped into 
seven: Group 1 consists of physical parameters (P), 
chemical parameters (C), and metals (M). Group 2 con-
tains only P and C; Group 3 contains only P and M; 
Group 4 contains only C and M; Group 5 contains only 
P; Group 6 contains only C; and Group 7 contains only 
M.

• The MLP-NN algorithm used parameters in Group 1 
most and Group 3 least as input variables for prediction 
of PTEs in water resources. The RBF-NN algorithm 

used parameters in Groups 5 and 7 most and least used 
those in Groups 4 and 6 as input variables for predic-
tion of PTEs in water resources. The ANFIS algorithm 
used parameters in Group 1 most, while using Groups 
3, 4, and 6 least as input variables for prediction of 
PTEs in water resources.

• For MLP-NN, RBF-NN, and ANFIS algorithms, the 
use of Groups 1, 2, 3, 5, and 7 parameters proved to be 
suitable input variables for forecasting PTEs in water 
resources. Thus, we encourage future research to make 
use of mentioned input variables to predict PTEs. How-
ever, the suitability of Groups 4 and 6 parameters using 
the RBF-NN and ANFIS algorithms could not be ascer-
tained due to non-selection of the mentioned groups 
as input variables. Nevertheless, models that utilized 
Groups 4 and 6 parameters as input variables using the 
MLP-NN algorithm showed that they were suitable for 
the predictions.

• The overall order of performance of the three algo-
rithms in predicting PTEs in water resources is ANFIS 
> RBF-NN > MLP-NN.

• The findings of the review agree with previous stud-
ies which suggest that MLP-NN, RBF-NN, and ANFIS 
are reliable algorithms for predicting PTES in water 
resources.

While key input variables have been identified for pre-
dicting PTEs in water bodies, it is crucial to recognize that 
regional peculiarities can significantly influence model 
performance. Therefore, in addition to the identified vari-
ables, dominant regional water quality influencers should 
be accounted for to enhance the robustness and applicabil-
ity of the predictive models across diverse geographical 
contexts.

Recommendations and perspectives 
for future research

Based on the findings of the literature review and analysis, 
the following concerns and recommendations are provided 
to be addressed in future studies:

• The key challenge faced during the course of this study 
was extracting data from literature. Future studies should 
ensure model performances are summarized in a table for 
easier access.

• Future studies could consider the suitability of Group 4 
(chemical and physical parameters only) and Group 6 
(chemical parameters only) as input variables in mod-
eling of PTEs in water resources using RBF-NN and 
ANFIS algorithms.
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• Future studies could analyze the suitability and sensi-
tivity of the specific (individual) input variables in the 
prediction of PTEs in water resources.

• Future studies could analyze the suitability of groups of 
input variables in the prediction of specific (individual) 
PTEs (i.e., the outputs) in water resources.

• Future studies could investigate new groups of input vari-
ables that can be used individually or combined to fore-
cast PTEs in water resources using the ML algorithms.

• For regions where existing data is available, principal 
component analysis and correlation techniques can facil-
itate the selection of the most relevant input variables 
from the identified high-performing groups of predictors.

• Future studies could employ more advanced ML algo-
rithms in forecasting PTEs in water resources and com-
pare them with these neural network algorithms.
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