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Abstract
Resource recycling is considered necessary for sustainable development, especially in smart cities where increased urbaniza-
tion and the variety of waste generated require the development of automated waste management models. The development 
of smart technology offers a possible alternative to traditional waste management techniques that are proving insufficient 
to reduce the harmful effects of trash on the environment. This paper proposes an intelligent waste classification model to 
enhance the classification of waste materials, focusing on the critical aspect of waste classification. The proposed model 
leverages the InceptionV3 deep learning architecture, augmented by multi-objective beluga whale optimization (MBWO) 
for hyperparameter optimization. In MBWO, sensitivity and specificity evaluation criteria are integrated linearly as the 
objective function to find the optimal values of the dropout period, learning rate, and batch size. A benchmark dataset, 
namely TrashNet is adopted to verify the proposed model’s performance. By strategically integrating MBWO, the model 
achieves a considerable increase in accuracy and efficiency in identifying waste materials, contributing to more effective 
waste management strategies while encouraging sustainable waste management practices. The proposed intelligent waste 
classification model outperformed the state-of-the-art models with an accuracy of 97.75%, specificity of 99.55%, F1-score 
of 97.58%, and sensitivity of 98.88%.

Keywords  Waste classification · Sustainable waste · TrashNet · Hyperparameter tuning · Beluga whale optimization · Deep 
learning

Introduction

Waste management is at the forefront of many economic 
and environmental concerns in the current digital era due 
to the push for full digital transformation. Approximately 

1.33 billion out of every 2.01 billion tonnes of municipal 
solid waste worldwide do not have sustainable management, 
according to the World Bank (WB) (Bank 2023). With an 
estimated global trash production of 3.40 billion tons by 
2050, daily waste output is expected to increase by 40% or 
more in low- and middle-income countries (Bank 2023). 
Only 16% of the world’s population lives in high-income 
countries, yet they produce 34% of the waste, or 683 mil-
lion tonnes of waste, according to Bank (2023). Thus, it is 
more important than ever to solve this issue and to address 
the growing waste management crisis. The absence of a 
uniform classification system, which results in inconsist-
ent waste sorting processes, is another key problem (Edja-
bou et al. 2015). This makes it more difficult to recycle and 
recover resources effectively. Furthermore, the growth of 
complicated and composite materials poses a significant 
obstacle. These materials frequently challenge traditional 
classification models, necessitating new models to guarantee 
accurate classification. Additionally, improper classification 
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and separation of hazardous materials pose serious environ-
mental and public health risks (Ahmed et al. 2023a).

To prevent this, effective waste management practices 
like sorting and recycling are critical for sustainable devel-
opment. Although manual waste sorting is currently the 
most accurate approach, it requires trained operators and 
time-consuming, especially with the exploding amount 
of waste as urbanization and population growth continue 
(Abdel-Shafy and Mansour 2018). As a result, automated 
waste classification models have an immediate need to han-
dle tonnes of waste materials, generating substantial research 
interest around the world (Chabhadiya et al. 2021). Auto-
mated waste classification models can offer a possible solu-
tion to optimize waste collection and recycling, resulting 
in better resource use and lower pollution levels (Kennedy 
2018). Additionally, they can have positive effects on the 
environment as well as the economy by lowering operational 
expenses (Ruiz et al. 2019). Utilizing these models aligns 
with the objectives outlined in Target 11 of the Sustainable 
Development Goals (SDGs), which aim for the develop-
ment of inclusive, secure, resilient, and sustainable cities 
and human settlements. Therefore, putting automated waste 
classification models into place is crucial to accomplish-
ing sustainable development goals in contemporary society, 
especially in smart cities where the demand for effective 
waste management models is growing urgently.

Currently, a variety of automated waste sorting methods 
have been presented, which can be divided into three cat-
egories: mechanical, Internet of Things (IoT), and artificial 
intelligence (AI) (Fu et al. 2021). The mechanical method 
uses sensors, microprocessors, and mechanical components 
to automate waste sorting to replace human processes. How-
ever, because of its low recognition accuracy, this method 
frequently fails to achieve proper classification. In contrast, 
IoT methods aim to address this issue by leveraging cloud 
servers for increased accuracy, but they are hampered by 
difficult installation and maintenance procedures, as well 
as expensive prices. On the other hand, AI methods pro-
vide great accuracy, adaptability, and robustness in waste 
classification. AI-based systems may successfully recognize 
and classify waste, providing a promising solution to this 
challenge.

Deep learning is a subset of AI that utilizes neural net-
works to mimic the human brain’s ability to solve and 
learn complex problems. Deep learning architectures have 
impacted a wide range of industries, bringing in revolution-
ary advances (Balas et al. 2019; Ahmed et al. 2023b). They 
have gained popularity as a means of extracting high-level 
features in a variety of domains, including object detection, 
semantic segmentation, and image classification (Anilkumar 
and Venugopal 2023). Deep learning improves robustness 
against noise by automating feature extraction, in contrast 
to conventional machine learning algorithms. This strategy 

is a useful tool in a variety of applications since it provides 
excellent scalability and generalization (Lin et al. 2022b). 
Additionally, deep learning architectures have proven their 
efficiency in waste classification, boosting recycling efforts, 
and contributing to a more sustainable future in the waste 
management field (Aral et al. 2018; Shi et al. 2021). While 
deep learning architectures are effective in their ability to 
model complicated relationships in data, they have signifi-
cant limitations due to their large number of parameters. The 
high performance of the deep learning architectures depends 
on these parameters, which regulate its classification accu-
racy (Sayed et al. 2021). The model’s tuning and optimi-
zation may be complicated by the sheer number of these 
parameters. improper or inadequate configuration of hyper-
parameters can lead to problems like underfitting, where 
the model is too simple to detect underlying patterns in the 
data, or overfitting, where the model performs exceptionally 
well on training data but poorly on unseen data. Manually 
adjusting these hyperparameters can be tedious and time-
consuming, requiring substantial knowledge and frequently 
results in poor settings. Swarm optimization algorithms pro-
vide a potential solution to the problem of hyperparameter 
optimization in deep learning (Bacanin et al. 2023). These 
algorithms are inspired by the collective behaviors of social 
creatures such as birds and ants. Through the use of self-
organization and collective intelligence, these algorithms 
present a viable solution by automating the modification 
of hyperparameters for improved classification model effi-
ciency and accuracy (Sayed 2022; Anitha et al. 2023).

Recent developments in deep learning architectures and 
optimization-based algorithms have made it possible to 
accurately detect and classify waste material. Recent models 
have been proposed for dealing with the waste problem as a 
classification problem. In Aral et al. (2018), Densenet169, 
Densenet121, MobileNet, Xception, and InceptionResnetV2 
were applied to the waste classification problem. Addition-
ally, Adam and Adadelta were employed as optimizers. 
Adam’s test accuracy was higher than Adadelta’s. In addi-
tion, data augmentation was applied to improve classifi-
cation accuracy due to limited TrashNet dataset samples. 
Experiments found the best results with the DenseNet121 
using fine-tuning with a 95% accuracy rate. However, the 
authors’ model obtained a 95% accuracy rate; they employed 
well-known deep learning architectures without consider-
ing hyperparameter optimization of these architectures and 
handling the class imbalance problem associated with the 
TrashNet dataset. DenseNet121’s classification accuracy on 
TrashNet is increased by applying a genetic algorithm (GA) 
to optimize the fully connected layer of DenseNet121 (Mao 
et al. 2021). An optimized DenseNet121 was proposed. The 
proposed optimized DenseNet121 obtained a test accuracy 
of 99.6%, where 9095 train images and 1013 test images 
were adopted. However, with these high accuracy results, 
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the authors mentioned that they divided the dataset into 90% 
training and 10% testing sets. This small testing set could 
lead to unreliable evaluation metrics and may not accurately 
reflect the model’s performance on unseen data. Moreover, 
the authors did not explicitly state whether augmentation 
was used in the testing set as well, as they only mentioned 
that the number of images increased from 2527 to 10108. A 
multi-layer hybrid convolution neural network (MLH-CNN) 
was proposed by Shi et al. (2021). MLH-CNN was tested 
and compared to VGG16, AlexNet, and ResNet50 on Trash-
Net. Accuracy values of 92.6%, 52.2%, 73.1%, and 74.7%, 
respectively, were obtained. The limitation of MLH-CNN is 
that the undersampling method is employed to handle class 
imbalance problems. Reducing the number of instances in 
the majority class, the undersampling method may lead to 
loss of valuable information and a less representative sample 
of the overall population. In Fu et al. (2021), the authors 
proposed an updated version of MobileNetV3 for automatic 
garbage classification. The dataset from Huawei’s Garbage 
Classification Challenge Cup was utilized. In 0.63 s, the pro-
posed garbage classification system is 92.62% accurate. By 
lowering the number of bottleneck layers and channels, the 
updated MobileNetV3 may have a lower ability to acquire 
and express complex features in data. Thus, it may result in 
low classification performance. In Lin et al. (2022a), RWNet 
models with various ResNet structures are employed to sort 
recyclables of the TrashNet dataset. The results revealed 
that RWNet-101 obtained the highest accuracy with 89.9%. 
Additionally, the results demonstrated that RWNet models 
can correctly sort most recyclables except plastic with ROC 
greater than 0.9. While the authors employed data augmen-
tation techniques and cyclical learning rates to improve the 
performance of RWNet models, they did not consider the 
class imbalance problem of the TrashNet dataset. Thus, 
the maximum accuracy they got was 89.9%. A residual 
network-based classification model was proposed in Zhang 
et al. (2021) study. The proposed model was tested on the 
TrashNet dataset, and a 95.87% accuracy rate was obtained. 
However, the proposed model obtained a good classification 
accuracy; deep learning architectures like residual networks 
have a large number of parameters that need to be optimized 
to obtain higher classification accuracy.

Most existing models on waste classification focused 
on employing deep learning architectures or conventional 
machine learning algorithms, frequently disregarding the 
essential factor of optimizing their hyperparameter values. 
Additionally, most of the existing models did not consider 
the class imbalance problem, and thus, they obtained not 
high enough waste classification accuracy. As a result, there 
is a considerable research gap in the development of alter-
native approaches to improve waste classification models. 
This paper is driven by the need to fill that gap and fur-
ther improve the efficiency and accuracy of waste sorting 

processes in light of recent developments in waste classi-
fication models. This paper’s primary goal is to investigate 
the synergistic potential of the InceptionV3 deep learning 
architecture with the proposed multi-objective beluga whale 
optimization (MBWO) for hyperparameter optimization of 
InceptionV3. By integrating these approaches, the waste 
classification’s accuracy can be significantly improved, 
resulting in more effective waste management strategies. 
Additionally, the class imbalance problem is tackled by 
employing the random oversampling method followed by 
data augmentation techniques. The two fundamental phases 
of the proposed intelligent waste classification model are the 
classification phase and the data pre-processing phase. The 
InceptionV3’s hyperparameters are to be optimized during 
the classification phase using the proposed MBWO-based 
hyperparameter optimization algorithm.

BWO has proved its efficiency in solving many optimi-
zation problems, such as engineering design problems (Jia 
et al. 2023), feature selection optimization problems (Gao 
et al. 2023), and simulation optimization problems with 
stochastic constraints (Horng and Lin 2023). Addition-
ally,  it has shown great performance in finding the opti-
mal hyperparameter values of the VGG deep convolutional 
neural network as discussed in Deepika and Kuchibhotla’s 
(2024) study, the optimal hyperparameter values of the 
DeepLabv3-based semantic segmentation architecture as 
discussed in Anilkumar and Venugopal’s (2023) study, and 
the optimal hyperparameter values of the convolutional 
bidirectional long short-term memory with an autoencoder 
model as discussed in Asiri et al.’s (2024) study. To the 
best of our knowledge, this is the first time to introduce a 
multi-objective version of beluga whale optimization for the 
hyperparameter optimization of InceptionV3 deep learning 
architecture. Additionally, at the time of writing this paper, 
a model that is based on a multi-objective version of BWO 
for hyperparameter optimization of InceptionV3 with the 
incorporation of data augmentation techniques and random 
oversampling methods for tackling the class imbalance prob-
lem has not been proposed before. The contributions of this 
paper can be summed up as follows:

a)	 This paper introduces an intelligent waste classification 
model built upon the proposed optimized InceptionV3 
deep learning architecture. This model exhibits the capa-
bility to effectively categorize six types of waste, thereby 
substantially enhancing the accuracy of waste classifica-
tion.

b)	 A multi-objective version of the beluga whale optimiza-
tion algorithm is proposed to find the optimal learning 
rate, dropout period, and batch size hyperparameters of 
the InceptionV3 deep learning architecture.

c)	 The proposed intelligent waste classification model con-
siders tackling the issue of the imbalanced waste dataset 
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by utilizing data augmentation techniques and the ran-
dom oversampling method.

d)	 To demonstrate the importance of each component in the 
proposed model, a thorough evaluation is performed.

This paper is structured as follows: An overview of the 
materials and methods is carried out in the “Material and 
methods” section, which provides the foundation for the pro-
posed intelligent waste classification model. In this section, 
a description of the InceptionV3 architecture and data over-
sampling techniques are provided. Moreover, the original 
beluga whale optimization (BWO) algorithm is described. In 
the “Dataset description” section, the benchmark dataset uti-
lized for the experimentation is described. Then, in the “The 
proposed intelligent waste classification model” section, the 
proposed intelligent waste classification model is discussed 
in detail along with the multi-objective BWO algorithm that 
is customized for InceptioV3’s hyperparameter optimiza-
tion. The “Conclusion and future work” section concludes 
by summarizing the significant findings of this study and 
providing suggestions for further study endeavors.

Material and methods

This section provides a summary of two important topics: 
data oversampling methods for addressing imbalanced data-
sets and the well-known deep learning architecture Incep-
tionV3. It also explores the fundamental concept and math-
ematical model of the BWO algorithm, providing insight 
into the main inspiration and functioning of the algorithm.

InceptionV3 deep learning architecture

According to Azadi et  al. (2023), traditional treatment 
options have been hampered by rising municipal solid 
waste generation, waste heterogeneity, and complex waste 
management and recovery processes. With advancements in 
computer-based applications, smarter methods for a sustain-
able environment are required, which are based on recent 
artificial intelligence (AI) technologies. One of these power-
ful technologies is deep learning (DL). DL (Menghani 2023) 
has been widely used in many different fields, including gov-
ernment, science, and business, and has recently emerged as 
a powerful technique for automatically learning feature rep-
resentation from data. In the big data era, research on deep 
learning techniques is becoming popular (Lin et al. 2022a). 
Through screening the most recent state-of-the-art models 
in the field of municipal solid waste management (MSWM), 
most of the models are based on DL architectures (Lin et al. 
2022b). Due to their effectiveness, the main motivation of 
this paper is to introduce a waste classification model based 

on employing DL architecture (see the “The proposed intel-
ligent waste classification model” section).

InceptionV3 is one of CNN’s deep learning architectures 
commonly applied for image classification tasks. It has 
convolution factorization, namely the Inception module. To 
create deeper networks and handle budget constraints, Incep-
tion neural networks were built by lowering dimensionality 
through the use of 1 × 1 layered convolution. The goal is to 
acquire numerous kernel sizes inside the network rather than 
sequentially stacking them and ordering each to function at 
the same stage. Szegedy et al. (2016) created the first version 
of the inception architecture in 2012, called GoogLeNet. The 
suggested model has 27 levels, including inception layers. 
Convolutional layers 1 × 1, 3 × 3, and 5 × 5 are combined in 
the inception layer, and their output filter banks are com-
bined into a single output vector that is used as the input 
to the stage that follows. To further enhance the original 
model, batch normalization (InceptionV2) and factorization 
(InceptionV3) were added to reduce computational complex-
ity and parameters while maintaining network performance 
stability (Szegedy et al. 2015). A convolutional neural net-
work design from the Inception family, InceptionV3, was 
introduced in 2016 with several improvements, including 
factorized 7 × 7 convolutions, label smoothing, and the use 
of an auxiliary classifier to move label information lower 
down the network.

Data oversampling

Particularly when dealing with tasks like classification and 
regression, getting a high-accuracy model from data can 
be difficult. Skewed class distributions (SCD), which are 
common in many datasets with uneven class distributions, 
are a significant barrier. SCD occurs when there are notice-
ably unbalanced numbers of samples in each class. When 
resampling data to solve this issue, it is usual practice to 
undersample the majority and oversample the minority 
classes (Lin et al. 2023). These approaches aid in balancing 
the distribution of the classes, enhancing model accuracy, 
and lowering the danger of bias toward the majority class.

Beluga whale optimization

Beluga whale optimization, or shortly BWO, is a recent 
swarm-based metaheuristic algorithm that takes its cues 
from the collective intelligence of beluga whales. Pair swim-
ming, hunting, and calving are all metaphors for the three 
phases of discovery, exploitation, and extinction that occur 
when a whale population collapses. The self-adaptive bal-
ance factor and the probability of a whale falling regulate the 
rate of discovery and extraction in BWO (Zhong et al. 2022).
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Inspiration

The beluga whale, or Delphinapterus leucas, is a whale 
shark. The beluga whale is a stocky and stout marine mam-
mal that averages 3.5 to 5.5 m in length and weighs about 
1500 kg. Belugas have keen vision and hearing, allowing 
them to swim and hunt in response to sounds. They also 
have a cheerful demeanor and graceful movements (Zhong 
et al. 2022).

Mathematical model

The BWO algorithm (Zhong et al. 2022) simulates beluga 
whale actions such as swimming, hunting, and falling. BWO, 
like other metaheuristics, consists of an exploration phase 
and an exploitation phase. By picking beluga whales at ran-
dom, the exploration step makes sure that the design space 
can be searched all over the search space. The exploitation 
phase regulates the designer’s design space’s local search. 
In swarm optimization algorithms, such as BWO, the used 
random parameters in the range of 0 to 1 play a critical 
role in boosting exploration and diversity within the search 
space. Each parameter’s value is drawn independently using 
a uniform distribution between 0 and 1, and it has an equal 
chance of falling anywhere along this range. This random-
ness introduces a stochastic aspect into the algorithm, pre-
venting it from being stuck in local optima and encouraging 
exploration of potentially unexplored areas of the solution 
space. Furthermore,  stochasticity benefits in preventing pre-
mature convergence to undesirable solutions, which might 
occur if the algorithm follows a deterministic route. There-
fore, the inclusion of random parameters encourages a bal-
anced exploration–exploitation strategy, enabling the swarm 
algorithm to traverse the solution space rapidly and converge 
on globally optimal solutions.

BWO’s exploration 
where T  is the current iteration, TMax is the largest possible 
iteration, and B0  is a column vector of random numbers with 
dimensions 30 × 1. Each element of the B0 vector is gener-
ated at random from a uniform distribution between [0, 1]. 
When Bf  is greater than 0.5, exploration is occurring, and 
when it is less than 0.5, exploitation is occurring.

At this phase, the beluga whale pair swim is what deter-
mines the positions of search agents, and the positions of 
beluga whales are updated as follows:

(1)Bf = B0(1 −
T

2TMax

)

(2)

XT+1
i,j

=

{

XT
i,j
+ (XT

i,j
− XT

i,pj
)(1 + r1)sin(2�r2) j = even numbers

XT
i,j
+ (XT

i,j
− XT

i,pj
)(1 + r1)cos(2�r2) j = odd numbers

}

where pj(j = 1, 2, ..., d) is a random number chosen from the 
d-dimension, T is the current iteration, XT+1

i,j
 the new location 

for the ith beluga whale on the jth dimension, and to improve 
the random operators in the exploration phase, two random 
numbers, r1 and r2 , are employed.

BWO’s exploitation 
where XT

best
 is the best position among beluga whales, XT

i,j
 is 

the current positions for the ith beluga whale, XT
r,j

 is the rth 
random beluga whale,  XT+1

i,j
 is the ith new position of beluga 

whale, r3 and r4 are random values falling between [0, 1], 
and C1 = 2r4(1 −

T

TMax

) is the strength of the random jump.

where Lf  is the Levy flight parameter. It is used in the posi-
tion’s updating of BWO during the exploitation phase. u and 
v are random values with normal distributions.

where � is a constant number equal to 1.5, and � is a constant 
number equals to 3.14. � is a function that extends the facto-
rial function to a non-integer of its input value.

BWO’s fall  The beluga whales face danger from polar bears, 
killer whales, and people throughout their migration and 
foraging. Because they are generally intelligent animals, 
belugas can avoid danger by exchanging information with 
one another. Many other creatures are fed as a result of the 
phenomenon known as whale fall (Zhong et al. 2022). It is 
possible to express the mathematical model as defined as 
follows.

where r5 , r6 , and r7 are random numbers between [0, 1], and 
XT
step

 is the step size of whale fall created as follows:

where ub and lb are the upper and lower bounds of the vari-
ables, and C2 is the step factor linked to the likelihood of 
whale fall and population number (C2 = 2Wf × n) . The 
design parameters, the number of iterations, and the maxi-
mum number of iterations all affect the step size. In BWO, 
the probability of whale fall Wf  is computed as a linear func-
tion and defined as follows.

(3)XT+1
i,j

= r3 × XT
best

− r4×XT
i,j
+ C1 × Lf (X

T
r,j
− XT

i,j
)

(4)Lf = 0.05 ×
u × �

|v|1∕�

(5)� =

(

�(1 + �) × sin(��∕2)

�((1 + �)∕2) × � × 2(�−1)∕2

)

(6)XT+1
i,j

= r5XT
i,j
− r6XT

r,j
+ r7XT

step

(7)XT
step

= (ub − lb)exp(−C2T∕TMax)

(8)Wf = 0.1 − 0.05T∕TMax
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The probability of a whale decreasing from 0.1 in the first 
iteration to 0.05 in the final iteration demonstrates that the 
risk to beluga whales decreases as they approach their food 
source during the optimization process.

Dataset description

A benchmark dataset, namely TrashNet, is adopted for 
evaluation of the proposed model’s performance (Yang 
and Thung 2016). The 2573 images in the adopted dataset 
each show a single product made of one of the six differ-
ent classes of materials: cardboard, glass, metal, paper, 
plastic, and garbage. All of the images have a white or 
cardboard background with a resolution of 512 × 384 pix-
els. The cell phone camera was used to record the data-
set, which was taken both inside and outside. It has since 
been available to the general public for research. Figure 1 
shows samples of the adopted TrashNet dataset.

The adopted dataset’s class distribution suffers from a 
class imbalance problem as can be observed from Fig. 2. 
The trash class is a minority class since it has a lot fewer 
samples than the other classes. Class imbalance can have 
a negative influence on machine learning model perfor-
mance since the model may be biased toward the major-
ity class. Therefore, to ensure a fair assessment of the 
performance of the waste classification model, this paper 
employs proper approaches to address the class imbalance 
problem.

The proposed intelligent waste classification 
model

A new model for automatic waste classification is presented 
in this paper. The optimized InceptionV3 deep learn-
ing architecture serves as the primary foundation for the 
proposed model. Data pre-processing and classification 
based on using the proposed multi-objective beluga whale 
optimization-based hyperparameter tuning of InceptionV3 
comprise its two primary phases. Figure 3 shows the over-
all architecture of the proposed intelligent waste classifica-
tion model. In the preprocessing phase, three main methods 
are applied. These methods are image resizing followed by 
data oversampling and data augmentation. First, the origi-
nal images are resized to 299 × 299 × 3. Then, the random 
oversampling method is applied to tackle the class imbalance 
problem. Then, to reduce the overfitting issue and improve 

Fig. 1   Sample of TrashNet dataset: a cardboard, b glass, c metal, d paper, e plastic, and f trash

Fig. 2   The class distribution of TrashNet dataset



31498	 Environmental Science and Pollution Research (2024) 31:31492–31510

the InceptionV3 deep learning architecture’s generalization 
capability, data augmentation techniques are applied. Then, 
the processed dataset is divided into 70% for training, 15% 
for testing, and 15% for validation. The training and valida-
tion sets are used for hyperparameter optimization of Incep-
tionV3, while the testing set is used to evaluate the perfor-
mance of the overall proposed intelligent waste classification 
model. Finally, in the classification phase, a multi-objective 
variant of beluga whale optimization (MBWO) is proposed. 
The proposed MBWO-based hyperparameter tuning algo-
rithm is applied to find the best hyperparameter settings for 
the InceptionV3 deep learning architecture. Then, the opti-
mized InceptionV3 is utilized to classify each test image of 
the adopted TrashNet dataset.

It is crucial to explain how the model interacts with cur-
rent systems to guarantee seamless integration with current 
waste classification systems. The proposed intelligent waste 
classification model functions as an adjunct infrastructure 
module that smoothly interfaces with the current waste clas-
sification system. This integration happens after the post-
segregation stage when waste materials are classified. This 
integration stands out due to its remarkable autonomy. The 
proposed model runs without the need for human interven-
tion, demonstrating a useful and economical improvement 
to current waste management practices. By automating the 
waste classification process, efficiency and accuracy are 

significantly improved. This approach enhances the accuracy 
of waste classification while ensuring harmonious compat-
ibility with current waste classification systems by utilizing 
the complimentary characteristics of both existing technol-
ogy and the proposed optimized InceptionV3 deep learning 
architecture. Next, a detailed description of each phase in the 
proposed model is presented in the upcoming subsections.

Data pre‑processing phase

During this phase, the annotated images are scaled to 299 × 
299 × 3 after detecting each object. This step is essential to 
guarantee that the resized images can fit into the input layer 
of the InceptionV3 deep learning architecture. Two common 
techniques—data oversampling and data augmentation—are 
applied to address the problem of class imbalance. The accu-
racy and robustness of the proposed model are significantly 
increased by using these strategies.

Data oversampling

This paper uses the TrashNet dataset, which contains 2573 
images of six different classes of materials, including card-
board, glass, metal, paper, plastic, and trash. With some 
classes having fewer samples than others, each class’s sam-
ple count varies. The adopted dataset has 403 cardboard, 

Fig. 3   The general architecture of the proposed intelligent waste classification model
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501 glass, 410 metal, 594 paper, 482 plastic, and 137 trash 
images. As can be observed, just 5% of the total is made up 
of the rubbish class, with the remaining classes making up 
the remaining 16 to 24%. This paper addresses the issue of 
class imbalance in the adopted dataset to provide a fair and 
accurate classification of all classes.

Most machine learning algorithms with deep learning 
architectures suffer from this type of dataset. This is because 
the majority of the information is connected to the domi-
nant category, which might lead to the misclassification of 
other smaller categories. One method for dealing with class 
imbalance is to randomly resample the dataset. To randomly 
resample an unbalanced dataset, there are two well-known 
methods, the first one known as undersampling and the sec-
ond one as oversampling. In the undersampling method, 
the instances from the majority class are discarded, while, 
in the oversampling method, the instances are duplicated 
in the minority class. In this study, the minor categories’ 
size is increased using the random oversampling approach 
(ROS), which involves randomly replicating some of the 
images. This method ensures that each class’s distribution 
has the same size as the distributions of the other classes. 
As a result, it can impressively prevent overfitting CNN 
architecture.

Data augmentation

Several data augmentation techniques were applied in this 
paper to improve the InceptionV3 deep learning architec-
ture’s generalization capability and reduce the overfitting 
issue. In this paper, random geometric transformations 
including random translation, random flipping, random 
scaling, random shearing, and random rotation in the X- 
and Y-axes are presented. By utilizing these techniques, the 
model becomes more resilient to changes in the input data, 
resulting in enhanced functionality and accuracy. The used 
data augmentation techniques are random Y and X reflec-
tions, random Y and X translations with random values in 
range [− 30, + 30], random rotation angles with random 
angle values in range [− 3, + 3], random X and Y shears with 
random factor in range [− 0.05, + 0.05], and random X and Y 
scales with random factor in range [0.8, + 1.2].

Classification phase

This stage involves feeding the optimized version of Incep-
tionV3—which is based on the proposed multi-objective 
beluga whale optimization (MBWO)—with the processed 
images dataset. The dataset is divided into three sets, train, 
test, and valid sets. The train and valid sets are used to feed 
the proposed MBWO-based hyperparameter optimiza-
tion algorithm. Then, the optimal hyperparameter values 
are reported. Finally, the test set is used to evaluate the 

performance of the optimized InceptionV3 deep learn-
ing architecture. Next is the detailed description of each 
subphase.

An improved beluga whale optimization: multi‑objective 
version for InceptionV3 hypermedia optimization

Although deep learning algorithms have achieved unprece-
dented success in several different applications, the accuracy 
of these algorithms mainly depends on their hyperparam-
eters. The selection of the values of these hyperparameters 
is often done by an expert. Thus, optimizing these param-
eters is considered a substantial obstacle to developing a 
deep learning architecture. This work introduces a multi-
objective version of the BWO algorithm to find the optimal 
hyperparameter values of the InceptionV3 deep learning 
architecture. The proposed multi-objective BWO, or shortly, 
MBWO-based hyperparameter tuning algorithm iteratively 
finds the best values of the learning rate, dropout period, and 
batch size hyperparameters. Next is a detailed description of 
the proposed MBWO-based hyperparameter tuning of the 
InceptionV3 algorithm.

Parameter initialization  The proposed algorithm begins by 
setting the maximum number of iterations to 20, the dimen-
sionality size to 3, the population size to 30, and the number 
of epochs to 15. Each position of a beluga whale consists 
of values of Y1 , Y2 , and Y3 , where Y1 represents the learning 
rate, Y2 represents the batch size, and Y3 represents the drop-
out period. The bounding value range for Y1 is set between 
[0.00001, 0.0005]; for Y2 , it is set between [1, 128]; and for 
Y3 , it is set between [1, 10].

Fitness function  The MBWO algorithm experiments with 
different combinations of learning rate, dropout period, and 
batch size during each iteration of the optimization process. 
By training the InceptionV3 deep learning architecture on 
a portion of the available data, it assesses its performance 
for each combination. The MBWO algorithm determines 
whether to increase or reduce the values of the hyperpa-
rameters by evaluating the model’s performance after each 
iteration. This is done by calculating the fitness function per 
each beluga whale’s position.

To get the optimum InceptionV3 hyperparameter val-
ues that maximize both specificity and sensitivity, this 
paper offers an optimization approach designed for tackling 
multi-objective issues. Pareto fronts have historically been 
a popular method in multi-objective optimization. However, 
creating Pareto fronts can be a resource and computationally 
intensive (Nalluri et al. 2017). To overcome this challenge, 
this paper proposed a different strategy that includes linearly 
combining multi-objective functions to create a single linear 
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compound objective function. The optimization procedure is 
shortened while still producing the required results by inte-
grating several objective functions into a single unified func-
tion. The multi-objective functions are linearly integrated, 
with weights given to each function, to produce this single 
objective function. The proportional importance or priority 
assigned to each target is determined by these weights. The 
optimization process can be directed to develop solutions 
that strike the ideal balance between specificity and sensi-
tivity by carefully choosing and allocating these weights. In 
comparison to conventional methods depending on Pareto 
fronts, the optimization process is more effective and com-
putationally tractable when utilizing this linear combination 
approach. It enables a more focused exploration of the search 
space, which results in the discovery of classifier parameter 
values that provide the optimal specificity and sensitivity 
trade-off.

Sensitivity, commonly referred to as the true positive rate, 
measures how well a classifier can recognize positive sam-
ples. It quantifies the proportion of actual positive samples 
that are correctly classified as positive. When minimizing 
false negatives or making sure that positive samples are not 
incorrectly classified as negative, sensitivity must be maxi-
mized. However, specificity, also known as a true negative 
rate, assesses the classifier’s accuracy in identifying negative 
cases. It displays the percentage of samples that are appro-
priately labeled as negative but are truly negative. When 
reducing false positives or making sure that negative sam-
ples are not mistakenly classified as positive, maximizing 
specificity is crucial. The proposed MBWO algorithm seeks 
to balance these two performance indicators by consider-
ing both sensitivity and specificity as optimization targets. 
Because they focus on the right classification of minority 
and majority classes, sensitivity and specificity are well-
suited for imbalanced data as will be further discussed in the 
upcoming sections. While boosting specificity enables pre-
cise classification of negative samples, achieving high sensi-
tivity ensures that positive instances are properly identified. 
To evaluate how good the position of a beluga whale is, let 
the classifier being created to categorize a given dataset be 
a binary class. Thus, sensitivity and specificity are applied 
to determine the classifiers’ performance parameters. Equa-
tions (9) and (10) show the mathematical formula of speci-
ficity (SP) and sensitivity (SN). The mathematical definition 
of the overall adopted fitness function is shown in Eq. (11).

(9)SP =
TN

TN + FP

(10)SN =
TP

FN + FP

where FP stands for false positive samples, FN for false 
negative samples, TN for true negative samples, and TP for 
true positive samples.

where W1 and W2 are constant parameters and each parameter 
equals 0.5.

Beluga’s position updating  The proposed MBWO continu-
ously reduces the search space and improves the values of 
the learning rate, dropout period, and batch size through this 
iterative process. It searches for the set of hyperparameter 
values that maximizes the model’s efficiency. The positions 
of the beluga whales are analyzed according to their fitness 
values throughout each iteration of the algorithm, and the 
position with the highest fitness value is regarded as the opti-
mal one. Through the optimization process, each beluga’s 
position is updated according to Eqs. (2) and (3).

Termination criteria  When the optimization process should 
end is decided by the termination criterion. The maximum 
number of iterations is used in this paper to define the termi-
nation criterion. Once this requirement is met, the MBWO 
algorithm reports the best beluga whale position, which is 
the optimal combination of dropout period, learning rate, 
and batch size that produced the best performance during 
the optimization process. The overall flowchart of the pro-
posed MBWO-based hyperparameter optimization algorithm 
is shown in Fig. 4.

Optimized InceptionV3

In this step, the MBWO-based hyperparameter optimiza-
tion algorithm is used to meticulously search for the optimal 
values of the hyperparameters within the InceptionV3 algo-
rithm. The dropout period, learning rate, and batch size are 
the focus of the proposed optimization algorithm, which is 
critical for improving the performance of the InceptionV3 
deep learning model. The model is prepared for classifica-
tion tasks after the process of hyperparameter optimiza-
tion is complete. With high accuracy and effectiveness, the 
InceptionV3 deep learning architecture excels at classifying 
objects within images.

When classifying an image, the model runs the input 
image through several convolutional layers to extract com-
plex features and patterns. Fully connected layers then 
examine and interpret these retrieved features, enabling the 
model to comprehend the intricate relationships present in 
the image. The dropout period, learning rate, and batch size 
optimized hyperparameter values all contribute to the mod-
el’s capacity to generalize and generate precise predictions.

(11)
Maximize F∗ = W1 × SP +W2 × SN,where W1 +W2 = 1
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Fig. 4   The flowchart of the 
proposed MBWO-based 
hyperparameter optimization of 
InceptionV3 algorithm
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By utilizing the optimized hyperparameter values 
obtained through the MBWO-based optimization, the Incep-
tionV3 model is properly tuned and optimized to recognize a 
variety of objects and accurately classify them. It can effec-
tively distinguish between multiple classes and produce 
accurate classification results due to its deep architecture 
design and effective parameter settings, as will be shown in 
the result section.

Experimental results and discussion

This section assesses and compares the performance of the 
proposed intelligent waste classification model using the 
multi-objective beluga whale optimization and InceptionV3 
deep learning architecture to the state-of-the-art models. 
Several measurements are adopted. These measurements are 
accuracy, specificity, sensitivity, F1-score, receiver operating 
characteristic (ROC) curve, and convergence curve. These 
measurements provide information about several elements 
of the model’s performance. Specificity assesses the model’s 
ability to correctly identify instances that do not belong to 
a certain class. It represents the proportion of true nega-
tive instances to the overall number of negative instances. 
Specificity in waste classification helps measure how well 
the model avoids misclassifying occurrences as one sort of 
waste material when they belong to another. High specific-
ity results in fewer false positives. Accuracy assesses the 
overall correctness of the model’s predictions. It is the pro-
portion of correctly classified instances to the total number 
of instances. In a waste classification model, accuracy refers 
to the model’s ability to correctly classify images across all 
waste material classes. However, accuracy alone may not be 
sufficient if the classes are uneven or if some sorts of mis-
classifications are more significant than others. Sensitivity 
assesses the model’s ability to correctly identify instances of 
a given class. It is the ratio of true positive instances to the 
total number of positive instances. In a waste classification 
model, sensitivity is used to examine how successfully the 
model detects each category of waste material. A high sen-
sitivity indicates that the model will miss fewer instances of 
a specific waste material. The F1-score is the harmonic aver-
age of precision and recall (sensitivity). It strikes a balance 
between precision and recall, making it a valuable metric 
in situations with an unequal class distribution. It is espe-
cially useful in waste material classification since it provides 
an overall evaluation of the model’s performance, taking into 
account both the ability to accurately identify occurrences of 
each class and the ability to avoid misclassification.

Six primary experiments are carried out. The first experi-
ment aims to analyze the adopted dataset. Additionally, 
in this experiment, the proposed model’s performance is 
compared before and after applying each component of 

the proposed model to show the significance of each com-
ponent in the classification result. Additionally, different 
oversampling methods are compared. The performance of 
the proposed MBWO-based hyperparameter optimization 
is compared with other swarm intelligence algorithms. In 
this experiment, the mean, and the standard deviation of the 
obtained fitness value are utilized. Additionally, the P-value 
from Wilcoxon’s rank is calculated. Furthermore, the clas-
sification results are compared following the determination 
of optimal hyperparameters of the adopted swarm-based 
hyperparameter optimization algorithms. The third experi-
ment aims to show the importance of finding the optimal 
hyperparameter values of InceptionV3. In this experiment, 
the effects of the batch size, the learning rate, and the drop-
out period are analyzed. Additionally, several statistical tests 
are utilized to analyze these parameters and show whether 
they are statistically significant and can affect the perfor-
mance of InceptionV3. The fourth experiment aims to evalu-
ate the overall performance of the proposed intelligent waste 
classification model. In this experiment, the ROC, confusion 
matrix figure, and training progress curve are utilized. The 
fifth experiment aims to compare the performance of the 
proposed optimized InceptionV3 with other well-known 
deep learning architectures. Finally, in the last experiment, 
the performance of the proposed intelligent waste classifica-
tion model was compared with the state-of-the-art models.

In all the conducted experiments, the best results are 
highlighted to make it easier for the reader to keep track of 
the best-obtained results in each experiment. Additionally, 
all the conducted experiments are implemented and tested 
on MATLAB 2020 with 16 GB RAM and Core i7. The deep 
learning toolbox was employed to facilitate the implementa-
tion of the proposed model.

In the first experiment shown in Fig. 5, the class distribu-
tion of the dataset before and after the random oversampling 
method was employed. In comparison to other classes like 
paper, plastic, cardboard, glass, and metal, the figure shows 
that the number of samples for the trash class is significantly 
fewer. The model’s ability to accurately recognize trash may 
suffer from this class imbalance problem. The random over-
sampling method is therefore needed to address this problem 
and guarantee a balanced dataset by creating artificial sam-
ples for the minority class.

The purpose of the experiment in Table 1 is to show that 
each component of the proposed model makes a significant 
contribution to the overall effectiveness of the proposed 
intelligent waste classification model. In this table, a com-
parison of the waste classification model’s performance 
before and after applying each component of the proposed 
model including the random oversampling technique, ran-
dom oversampling (ROS), and the proposed MBWO-based 
hyperparameters optimization of InceptionV3 is shown. The 
employed TrashNet dataset has a problem with imbalance, 
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with the trash class, a minor class, having a much smaller 
number of samples than the other major classes. The clas-
sifier’s performance may be adversely affected by this 
problem. Before using the random oversampling method, 
classification accuracy, F1-score, sensitivity, and specificity 
were poor. This indicates that the trash class was incorrectly 
classified by the classifier. In addition, the classification of 
the major classes was skewed because of the large disparity 
in sample counts between the trash class and other important 
classes, such as the paper class. As a result, the classification 
model’s accuracy, F1-score, sensitivity, and specificity were 
decreased. The classifier’s performance greatly increased 
after using the random oversampling method, demonstrating 
how well this method handles the issue of class imbalance. 
Also, Table 1 compares the performance of the proposed 
waste classification model before and after using data aug-
mentation. In this experiment, only the data augmentation 
phase is removed from the proposed model, while the other 
phases are left. According to the findings in Table 1, the 
issue of overfitting in a CNN architecture can be successfully 

mitigated by applying a variety of data augmentation tech-
niques, which enhances the overall model’s performance. 
This table also includes a comparison of the performance 
of the proposed waste classification model before and after 
utilizing the proposed MBO-based hyperparameter selection 
approach. In this paper, three hyperparameters that are cru-
cial for optimizing deep learning models were used: learning 
rate, dropout period, and batch size. The initial model eval-
uation employed the default values for these hyperparam-
eters. The outcomes show that choosing the ideal settings 
for these hyperparameters can considerably affect the accu-
racy, F1-score, sensitivity, and specificity performance of the 
InceptionV3 CNN architecture. The table sheds light on the 
efficiency of the MBWO algorithm in choosing the appro-
priate hyperparameters, enhancing the overall performance 
of the proposed waste classification model. Also, Table 1 
compares two oversampling methods for the proposed waste 
classification model: random oversampling (ROS) and syn-
thetic minority oversampling method (SMOTE). SMOTE 
is a well-known oversampling technique that produces syn-
thetic samples in the minority classes by locating the minor-
ity data points’ k-nearest neighbors and basing new samples 
on the information from these neighbors (Barua et al. 2011). 
However, in this paper, the experimental outcomes showed 
that ROS is the best oversampling method for addressing 
the problem of class imbalance in the adopted dataset. 
Therefore, in the proposed intelligent waste classification 
model, ROS was employed to oversample the minority class 
samples.

The next experiment aims to show the significance of 
the proposed MBWO’s improvement over other swarm 
intelligence-based hyperparameter optimization algorithms. 
Table 2 compares the performance of the proposed MBWO 
with gray wolf optimization (GWO) (Mohakud and Dash 
2022), seagull optimization algorithm (SOA) (Aljebreen 
et al. 2023), equilibrium optimization (EO) (Yang et al. 
2023), and whale optimization algorithm (WOA) (Brod-
zicki et al. 2021) based hyperparameter optimization algo-
rithms. To ensure a fair comparison, all aspects such as the 
maximum number of iterations, population size, dimension 
length, searching boundary, and fitness function remain 
consistent. Other parameters are left unchanged as this 
paper solely concentrates on enhancing the performance of 
MBWO. In this table, the mean of the best fitness value and 

Fig. 5   The class distribution before and after applying random over-
sampling method

Table 1   The performance of 
the proposed intelligent waste 
classification model before and 
after applying each component 
of the proposed model

Oversampling Augmentation MBWO

Before After (ROS) After (SMOTE) Before After Before After

Specificity (%) 99.06 99.55 97.42 97.55 99.55 95.78 99.55
Sensitivity (%) 93.33 98.88 90.21 90.13 98.88 89.26 98.88
Accuracy (%) 85.98 97.57 94.57 93.32 97.57 90.76 97.57
F1-score (%) 84.15 97.58 94.72 93.39 97.58 90.89 97.58
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the standard deviation of the best fitness value, as well as 
the P-value of Wilcoxon’s rank sum test with a 5% level, are 
calculated on the average of independent runs. Wilcoxon’s 
rank sum test is a non-parametric statistical test. It is cho-
sen for its higher sensitivity than the t-test since it assumes 
proportional differences between matched samples and does 
not require normal distributions. Furthermore, it is less 
sensitive to outliers than the t-test. A P-value of less than 
0.05 is generally regarded as sufficient evidence against the 
null hypothesis. The table demonstrates that the proposed 
MBWO-based hyperparameter optimization algorithm is 
very competitive. It achieves the highest mean fitness value 
coupled with good stability, as evidenced by its minimal 

standard deviation. Moreover, the obtained P-values sta-
tistically affirm the remarkable performance of MBWO in 
comparison to alternative swarm-based hyperparameter 
optimization.

Table 3 compares the classification results after con-
sidering the optimal hyperparameter values obtained from 
MBWO, SOA, GWO, EO, and WOA. As can be observed 
from this table, the proposed MBWO-based hyperparam-
eter optimization is a very promising algorithm and can 
significantly boost the performance of the overall proposed 
intelligent waste classification model. It obtained the highest 
accuracy, sensitivity, specificity, and F1-score compared to 
the other swarm-based hyperparameter optimization algo-
rithms. Additionally, it can be observed that GWO-based 
hyperparameter optimization is in second place and EO-
based hyperparameter optimization. This may be due to that 
EO has many parameters that need to be adjusted well to get 
a higher classification result.

In order to show how the learning rate, dropout period, 
and batch size can significantly affect the classification per-
formance of InceptionV3, two other experiments are con-
ducted. Figure 6 compares the obtained classification accu-
racy for different parameter settings for batch size, learning 
rate, and dropout period. Finding out which parameter set-
tings had a noticeable impact on the model’s performance 
was the main objective. In this experiment, the batch size 
values are in [1, 8, 16, 32, 64, 128], the learning rate val-
ues in [0.00001, 0.000015, 0.00002, 0.000025, 0.00003, 
0.000035], and the dropout period values in [1, 3, 5, 7, 10] 
are tested for accuracy outcomes. As can be seen, the batch 
size is the most significant parameter. Also, when batch size 
equals 8, the highest classification accuracy is obtained.

In deep learning architectures, the relationship between 
batch size, learning rate, and model accuracy is complex and 
influenced by multiple factors (He et al. 2019). Smaller batch 
sizes often result in better generalization and accuracy due to 
more frequent parameter updates and overfitting prevention. 

Table 2   The proposed MBWO vs. SOA, GWO, EO, and WOA for 
hyperparameter optimization in terms of mean, standard deviation, 
and P-value

Mean Standard deviation P-value

MBWO 0.838148148 0.01309457
SOA 0.754814815 0.02618914  < 0.05
GWO 0.791851852 0.07856742 < 0.05
EO 0.791851852 0.05237828  > 0.05
WOA 0.754814815 0.02618914  < 0.05

Table 3   The proposed MBWO vs. SOA, GWO, EO, and WOA for 
hyperparameter optimization in terms

Accuracy (%) Sensitivity 
(%)

Specificity 
(%)

F1-score (%)

MBWO 97.57 97.57 99.55 97.58
SOA 96.63 97.75 1 96.66
GWO 97 96.63 99.78 97.03
EO 96.07 95.51 99.78 96.11
WOA 93.07 96.63 99.78 93.26

Fig. 6   The effect of different 
values of the dropout period, 
batch size, and learning rate on 
the classification accuracy



31505Environmental Science and Pollution Research (2024) 31:31492–31510	

Larger batch sizes, on the other hand, can improve comput-
ing efficiency but may also cause overfitting and slower con-
vergence. The choice of learning rate impacts convergence; 
too high a rate might cause instability, while too low a rate 
can result in slow convergence. Changes in one parameter 
might impact the best option for the other; therefore, the 
interaction between batch size and learning rate is vital. 
There were multiple reasons why accuracy decreased, while 
the batch size was fixed and the learning rate was raised in 
this experiment. First, divergence during optimization could 
occur if the learning rate grows too high for the batch size. 
Secondly, gradient noise can be amplified by higher learning 
rates when combined with fixed batch sizes, leading to less 
accurate and less stable updates. Furthermore, optimization 
dynamics, such as the sensitivity of techniques like stochas-
tic gradient descent to batch size and learning rate, are criti-
cal. Overfitting can also result in higher learning rates.

The optimal selection and optimization of different 
parameters is a vital step in developing and enhancing a deep 
learning model. The performance, convergence speed, and 
generalization potential of the model can all be considerably 
influenced by these parameters. It is crucial to use reliable 
statistical analysis tools, such as the analysis of variance 
(ANOVA) and the Kruskal–Wallis test (Usmani et al. 2023). 
The data are collected for a quantitative dependent variable 
(classification accuracy) at multiple levels of three independ-
ent controlling variables (learning rate, dropout period, and 
batch size). The accuracy values that we get from running 
InceptionV3 with different batch sizes, learning rates, and 
dropout period configurations are what are used to gather the 
data. The sample size of each equals 6.

To assess the suitability of statistical analysis, normal-
ity and homogeneity of variance are verified. These tests 
are common prerequisites for many statistical tests. First, 
for the normality test, the Shapiro–Wilk test is applied 
to assess the normality assumption for each variable. A 

P-value less than 0.05 indicates a departure from normal-
ity. For the homogeneity test, Levene’s test is applied to 
examine the homogeneity of the variance assumption. A 
P-value less than 0.05 suggests unequal variances across 
groups. The P-value is the probability of encountering a test 
statistic as extreme as the one calculated from the sample 
data, assuming that the null hypothesis is correct. In this 
paper, the P-value of the Shapiro–Wilk test for the batch 
size equals 0.030971109867095947, while for the dropout 
period, it equals 0.1664089411497116; and for the learning 
rate, it equals 0.576654314994812. These obtained values 
indicate that batch size has a P-value < 0.05, indicating a 
departure from normality. Both the learning rate and the 
dropout period have a P-value > 0.05, suggesting normal-
ity. Figure 7 shows the distribution of accuracy values for 
the dropout period, learning rate, and batch size. As can be 
observed, the normality of the learning rate is very obvi-
ous. These results are consistent to the obtained P-values 
of Shapiro–Wilk. The obtained P-value from Levene’s test 
for homogeneity of variances equals 0.1458279957346559. 
As can be observed, the P-value for Levene’s test is > 0.05, 
indicating homogeneity of variances across groups.

Given the nature of the non-parametric distribution of 
the data, the Kruskal–Wallis test is utilized, which does not 
rely on these assumptions and is more robust in handling 
non-normally distributed data. In ANOVA, assumptions 
include normality and homogeneity of variances. Since the 
batch size violates the assumption of normality, ANOVA 
cannot be the most appropriate choice. Thus, we consid-
ered another statistical test suited for this kind of data in 
this paper. This statistical test is called the Kruskal–Wal-
lis test. The Kruskal–Wallis test is a non-parametric alter-
native to ANOVA. Since it does not rely on assumptions 
of homogeneity of variances or normality and is robust to 
violations of these assumptions, the Kruskal–Wallis test 
is the most appropriate statistical test. This decision was 

Fig. 7   The distribution of 
accuracy values for different 
parameter values of the opti-
mized InceptionV3
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made to ensure the validity of our findings and to accurately 
assess the differences between groups. The H-statistic is 
the test statistic of the Kruskal–Wallis test. It measures the 
degree of difference between the medians of the groups 
being compared. In this paper, the obtained H-statistic 
equals 11.239766081871352. The obtained P-value of the 
Kruskal–Wallis test is 0.0036250650683908375, which 
is less than the used significance level of 0.05. The null 
hypothesis is rejected since the P-value is less than 0.05. 
This indicates that the data is strong enough to conclude that 
the groups differ statistically. In other words, these findings 
suggest that the differences in accuracies observed across 
different batch sizes, learning rates, and dropout periods are 
unlikely to be due to random chance. Thus, this can indi-
cate the noticeable impact on the performance of the Incep-
tionV3. Therefore, it is important to consider and optimize 
these hyperparameters to achieve the best possible accuracy 
for waste classification using InceptionV3.

In a deep learning model, evaluating each parameter sepa-
rately can be computationally time-consuming and may not 
always result in the best accuracy, especially when consid-
ering parameter combinations. Instead, a swarm algorithm 
is used to simultaneously search for optimal values across 
several parameters. The parameter space can be efficiently 
explored with the adoption of the swarm optimization algo-
rithms, enabling the identification of parameter combina-
tion–based synergistic effects. While increasing the pos-
sibility of locating the ideal parameter configurations that 
improve classification accuracy, this approach lowers com-
putational costs. Thus, this paper introduces the MBWO-
based hyperparameter optimization algorithm to find the 
optimal combination of learning rate, dropout period, and 
batch size that can significantly boost the performance of 
the InceptionV3 model. The optimal values for the hyper-
parameters for the InceptionV3 architecture in this paper 
are a batch size of 32, a drop period of 5, and a learning rate 

of 0.00015. Significantly, the other parameters have been 
configured to produce results as rapidly and efficiently as 
possible. The execution environment is set to multi-GPU, 
and the number of epochs is restricted to a maximum of 
30. Next, the evaluation of the overall performance of the 
proposed intelligent waste classification model is discussed.

The training progress curve of the proposed intelligent 
waste classification model, which is based on the proposed 
MBWO-based hyperparameter tuning algorithm, is shown in 
Fig. 8. The y-axis of the curve represents the evolution of the 
classification accuracy of the model throughout training. The 
number of training iterations is represented on the x-axis. 
The proposed MBWO-based hyperparameter algorithm is 
successful in increasing the model’s accuracy, as shown in 
the figure. The curve’s form can be employed to spot pos-
sible problems as well as provide insights into how well the 
model is being trained. Overall, the training progress curve 
shown in Fig. 8 is an effective visualization tool that aids 
in understanding the effectiveness and optimization of the 
proposed model.

Figure 9 shows the confusion matrix, which reports 
the number of true negatives, true positives, false nega-
tives, and false positives, and was considered to assess the 
performance of the proposed model. The findings of the 
confusion matrix reveal that the proposed intelligent waste 
classification model can classify waste materials with high 
accuracy. The model’s ability to precisely recognize and 
classify various waste object kinds can be seen by the 
small number of samples that were not correctly classified 
across the six groups. Additionally, the results revealed 
that the proposed model performs exceptionally well at 
classifying waste by utilizing the InceptionV3 deep learn-
ing architecture and hyperparameter optimization with 
MBWO. Only a small percentage of samples were incor-
rectly classified, according to the confusion matrix, which 
shows that the vast majority of samples were correctly 

Fig. 8   Training progress curve of the optimized InceptionV3
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identified. Additionally, it can be revealed that the most 
common errors occur between the “glass” and “paper” 
classes. This is most likely due to their similar visual 
characteristics, which pose a challenge to even advanced 
classification models. To reduce misclassifications, addi-
tional features that discriminate between “glass” and 
“paper” may be included in the model. This could imply 
more detailed texture analysis or the integration of spec-
tral information. These misclassified samples provide great 
opportunities for model development. Examining these 
examples allows us to identify specific features or trends 
that may be worth paying more attention to. Overall, the 
model’s performance is commendable, demonstrating its 
usefulness in waste classification tasks. The low frequency 
of misclassifications attests to the resilience and accuracy 
of the proposed intelligent waste classification model in 
dealing with a wide range of waste materials. Moreover, 
the results point to the possibility of using the proposed 
waste classification model in real-world settings to man-
age waste materials and advance sustainable development.

Another experiment is conducted to evaluate the perfor-
mance of the proposed intelligent waste classification, where 
the receiver operating characteristic (ROC) curve is utilized. 
This curve is frequently applied to compare the true positive 
rate to the false positive rate and assess how well a classifica-
tion model is working. Figure 10 shows that the proposed 
model’s accurate classification rate is significantly greater 
than its misclassification rate. Additionally, the ROC plot’s 
reported area under the curve is very close to the highest 
value possible, indicating strong classification performance. 
These findings imply that the proposed waste classification 
model can accurately identify and classify different types of 
electronic waste, making it a potentially useful tool for waste 
management and environmental sustainability initiatives.

The fourth main experiment in Table 4 aims to compare 
the proposed waste classification model’s performance uti-
lizing optimized InceptionV3 to three other deep learning 
architectures in terms of accuracy, F1-score, sensitivity, and 
specificity. These architectures are Mobilenetv2, AlexNet, 
and VGG16. According to the results, the proposed intel-
ligent waste classification model based on InceptionV3 
performs better than the other deep learning architectures 
in classifying data. Superior outcomes from the optimized 
InceptionV3 design showed its potential for use in waste 
management and environmental sustainability initiatives. 
The comparative study in Table 4 emphasizes the proposed 
waste classification model’s potential efficacy and contri-
bution to more effective and efficient waste management 
procedures.

The last experiment in Table 5 aims to compare the pro-
posed waste classification model’s overall performance 
against other state-of-the-art models. To guarantee a fair 
comparison, the models were assessed using the same data-
set (the TrashNet benchmark dataset). The outcomes show 
that the proposed intelligent waste classification model per-
forms better than other state-of-the-art models overall and is 
a reliable classification model. This shows that the proposed 
model has the potential to be applied to more complicated 
datasets and to help develop waste management techniques 
that are more efficient.

The proposed waste classification model’s actual imple-
mentation, developed and implemented in MATLAB, exhib-
its a simple integration into real-world waste management 
processes. To guarantee that the transition from research 
to practice is as smooth as possible, this system requires 
only a picture acquired by a common camera, making it an 
easily accessible and user-friendly solution for waste pro-
cessing facilities. Adopting the proposed intelligent trash 
classification model will result in significant long-term cost 
savings. Facilities can minimize personnel expenses while 
improving classification accuracy by automating the waste 
classification process. Furthermore, higher waste processing 

Fig. 9   Confusion matrix of the proposed intelligent waste classifica-
tion model

Fig. 10   The ROC curve of the proposed intelligent waste classifica-
tion model
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efficiency may result in increased throughput, increasing 
economic viability even further. Waste facilities frequently 
save large image datasets of waste materials. The proposed 
model is made to easily work with current data gathering and 
management technologies. Without the need for extensive 
infrastructure changes, this maintains compatibility with 
current waste management practices. Because the model 
was developed in MATLAB, it can be used with a variety 
of computing resources. Due to its effectiveness, waste clas-
sification procedures can be classified in real time, allowing 
for rapid decision-making. The proposed model can run on 
typical hardware setups used in waste processing facilities.

Conclusion and future work

This paper introduces an intelligent waste classification 
model. The proposed model is composed of two main 
phases, including data preprocessing and classification based 
on utilizing the multi-objective beluga whale optimization-
based hyperparameter tuning of InceptionV3. The Trash-
Net benchmark dataset is adopted for evaluating the per-
formance of the proposed model. The experimental results 
revealed that the proposed optimized InceptionV3 deep 

learning architecture outperformed MobileNetV2, VGG16, 
and AlexNet deep learning architectures. Additionally, the 
results revealed that the random oversampling method and 
the data augmentation techniques can significantly handle 
the class imbalance problem of TrashNet and thus boost the 
performance of the overall waste classification model. More-
over, the results demonstrated that the proposed MBWO can 
remarkably find the optimal hyperparameter values of Incep-
tionV3 that can significantly boost its classification perfor-
mance. The results revealed that the proposed MBWO is 
the optimal hyperparameter optimization of the InceptionV3 
algorithm compared to GWO, WOA, EO, and SOA. The 
proposed intelligent waste classification model obtained an 
overall accuracy of 97.75%, a specificity of 99.55%, a sen-
sitivity of 99.88%, and an F1-score of 97.58%. In addition, 
the results showed that, in comparison to the state-of-the-art 
models, the proposed model does remarkably well at clas-
sifying waste images. Moreover, the results demonstrated 
the potential of the proposed intelligent waste model for use 
in waste management and environmental sustainability pro-
grams in the real world. The results also demonstrated that 
utilizing the proposed intelligent waste classification model 
with or without human involvement will speed up and intel-
ligently separate waste. However, there were instances where 

Table 4   Comparative 
analysis of the performance 
of the proposed optimized 
InceptionV3 architecture 
against other deep learning 
architectures

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

MobileNetV2 93.07 97.74 98.65 93.16
AlexNet 92.88 97.75 100 92.91
VGG16 96.44 96.63 99.78 96.57
Optimized InceptionV3 97.57 97.57 99.55 97.58

Table 5   The proposed intelligent waste classification model performance against the state-of-the-art models

Algorithm No. of 
classes

Year Accuracy (%) Sensitivity (%) F1-score (%)

Yang and Thung (2016) SVM 6 2016 63.00 58.67 -
Bircanoğlu et al. (2018) RecycleNet 6 2018 95.00 - -
Aral et al. (2018) DenseNet121 6 2018 95.00 - -
Kennedy (2018) OscarNet (based on VGG19) 6 2018 88.42 - -
Adedeji and Wang (2019) ResNet-50 with SVM 4 2019 87.00 - -
Ruiz et al. (2019) Inception-ResNet 6 2019 88.66 - -
Meng and Chu (2020) SVM + HOG 6 2020 95.35 - -
Shi et al. (2021) MLH-CNN 6 2021 92.6 91.00 91.00
Melinte et al. (2020) DenseNet121 6 2021 93.33 93.27 92.57
Poudel and Poudyal (2022) DenseNet201 6 2022 95.05 72.85 72.85
Qin et al. (2022) Saliency network Salinet with InceptionV3 5 2022 93.24 - 93.06
Abu-Qdais et al. (2023) JONET deep learning model 6 2023 96.06 - 95.3
Kunwar(2023) MWaste-based deep learning model 6 2023 92 - -
Kumsetty et al. (2023) ResNet-101 6 2023 93.13 - -
The proposed model Optimized InceptionV3 6 2024 97.57 95.57 97.58
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the proposed model was unable to distinguish between the 
“glass” and “paper” classes. This is probably because of 
their comparable visual traits, which even highly developed 
classification models find difficult to handle. The model 
may incorporate in the future more features that differenti-
ate between “glass” and “paper” to lower the number of 
misclassifications. The proposed waste classification model 
will be further developed in future studies to address more 
complex waste management issues. Additional exploration 
into various swarm intelligence algorithms will be pursued 
through further investigation and experimentation.
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