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Abstract
In this work, we present the water quality assessment of an urban river, the San Luis River, located in San Luis Province, 
Argentina. The San Luis River flows through two developing cities; hence, urban anthropic activities affect its water qual-
ity. The river was sampled spatially and temporally, evaluating ten physicochemical variables on each water sample. These 
data were used to calculate a Simplified Index of Water Quality in order to estimate river water quality and infer possible 
contamination sources. Data were statistically analyzed with the opensource software R, 4.1.0 version. Principal compo-
nent analysis, cluster analysis, correlation matrices, and heatmap analysis were performed. Results indicated that water 
quality decreases in areas where anthropogenic activities take place. Robust inferential statistical analysis was performed, 
employing an alternative of multivariate analysis of variance (MANOVA), MANOVA.wide function. The most statistically 
relevant physicochemical variables associated with water quality decrease were used to develop a multiple linear regres-
sion model to estimate organic matter, reducing the variables necessary for continuous monitoring of the river and, hence, 
reducing costs. Given the limited information available in the region about the characteristics and recovery of this specific 
river category, the model developed is of vital importance since it can quickly detect anthropic alterations and contribute to 
the environmental management of the rivers. This model was also used to estimate organic matter at sites located in other 
similar rivers, obtaining satisfactory results.

Keywords  Urban river · Water quality · Anthropogenic pollution · Statistical model · Multivariate analysis · Robust 
statistics · River monitoring

Introduction

Rivers are one of the main natural sources used for drinking 
and utility water supply, aquaculture, agricultural irrigation, 
and energy production (Gupta and Gupta 2021a). Neverthe-
less, rivers are not simply biophysical phenomena that pro-
vide services to people. There is a connection between cities 
and rivers, a bi-directional or reciprocal relationship main-
tained by humans and rivers since they are social–ecological 
systems (Anderson et al. 2019). These systems contribute to 
improving the landscape of the city with parks and riverside 
forests, but they also become sources of waste and pollution, 
since they can be used as landfill for sewage and industrial 
effluents (Gatica et al. 2012). These freshwater resources 
also play important roles in urban areas, such as serving as 
carriers of water and suspended solids, providing habitats 
for a diverse and productive biota, and acting as social and 
cultural elements for the human inhabitants living in the 
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watershed (Walsh et al. 2005). The relationships between 
cities and water bodies, as well as the issues related to the 
quantity and quality of urban water, change in response to 
the expansion and development of cities (Schirmer et al. 
2013; Walsh et al. 2005). In developing countries, urban 
waterfronts have been transformed into mixed residential 
and commercial areas with high-density infrastructure and 
services. Currently, rivers and their banks are considered 
natural urban ecosystems that provide a wide development 
potential in cities (Khairabadi et al. 2023).

When there are urban uses in the hydraulic public domain 
or protection zones of a section of a river and/or the section 
is immersed in an urban matrix, that section should be con-
sidered an urban river (Duran Vian et al. 2020). Urban rivers 
are important not only because they constitute the habitat of 
species that control and maintain the ecological state of the 
basin in which they are located but also because they repre-
sent a considerable resource that is part of the productive, 
social, and cultural activities of the surrounding community 
(Obisesan and Christopher 2018).

Urban rivers face their own challenges: they are in tran-
sition with numerous tensions (social, political, economic, 
ecological, and environmental tensions) leading to water 
scarcity, decreasing water quality, and climatic variability 
(Ghimire et al. 2022). The water quality of an urban river 
is affected by several variables, i.e., geography, topography, 
atmosphere, anthropogenic activities, etc. (Gupta and Gupta 
2021b). The impact of anthropogenic activities on urban riv-
ers (irregular urbanization and industrialization, population 
growth, use of fertilizers and pesticides in agriculture, dis-
charge of domestic wastewater, removing sand-gravel from 
stream beds, etc.) has increased substantially in recent years, 
leading to the rapid loss of their natural character (Schirmer 
et al. 2013; Ustaoğlu et al. 2020; Das et al. 2023; Ghimire 
et al. 2022; Gupta et al. 2022). This has become a serious 
problem for many other related aquatic environments, such 
as streams, lakes, and estuaries (Walsh et al. 2005). This 
situation is one of the main environmental problems in the 
world, as the increase in human population raises the need 
for freshwater (Ustaoğlu et al. 2020).

In urban areas, streams receive groundwater, treated and 
untreated wastewater, and industrial waste, among others, and 
are often degraded by a multitude of stressors (Obisesan and 
Christopher 2018; Ghimire et al. 2022). This degradation is 
called the “syndrome of urban rivers” (Schirmer et al. 2013; 
Walsh et al. 2005). Urban rivers are very sensitive to changes 
in land use, and the response is a warning signal of potential 
downstream water deterioration (Kominkova 2013). Anthro-
pogenic activities deteriorate the quality of river water and 
prevent their utilization for other purposes such as drinking 
water or irrigation (Gupta and Gupta 2021b).

As highly dynamic systems, water quality estimation 
in rivers is a complex assignment but very significant in 

order to generate pollution mitigation strategies (Gupta et al. 
2022). Regular monitoring of the water quality of rivers, 
including the control and evaluation of physicochemical 
and/or biological parameters, became extremely impor-
tant to protect this resource (Ustaoğlu et al. 2020). These 
parameters can be combined and transformed into simple 
dimensionless numbers, called water quality indices, that 
are effective in monitoring river pollution by transforming 
multifaceted water variable information into usable and 
intelligible data (Gupta et al. 2022).

Currently, there are general water quality indices and 
specific indices tailored to particular purposes (Almeida 
et al. 2012; del Corigliano 2008; Unda-Calvo et al. 2020). 
For example, the Simplified Index of Water Quality (SIWQ) 
combines five physicochemical parameters to determine 
water quality (Queralt 1982). The numerical value of the 
SIWQ defines five levels of use of water according to its 
quality: all uses, swimming and fishing, irrigation and 
industry, forest irrigation, navigation, and very restricted 
use (Bustamante 1989; Bustamante et al. 2002, Losada 
Benavides et al. 2020).

A complete assessment of water quality requires exten-
sive long-term data collection over space and time, generat-
ing huge data sets. Evaluation of spatiotemporal variation 
using statistical approaches is an effective method for moni-
toring the water quality of a river (Gupta et al. 2022). Multi-
variate statistical techniques, chemometric or environmetric 
methods (e.g., hierarchical cluster analysis (HCA), principal 
component analysis (PCA), factor analysis (FA), multivari-
ate analysis of variance (MANOVA), correlation matrices 
(CM), regression analysis (RA), artificial intelligence (AI), 
etc.) are the most widely used ones in the analysis and clas-
sification of water qualities (Gupta et al. 2022; Fletcher et al. 
2013). They also allow the interpretation of complex data 
sets and the understanding of temporal and spatial varia-
tions (Gatica et al. 2012; Ouali et al. 2009; Unda-Calvo et al. 
2020), which can help to visualize possible water pollution 
sources from raw analytical data and reduce the subjectiv-
ity in the use of water quality indexes (S. Gupta and Gupta 
2021a). The multivariate exploratory statistical techniques 
(PCA, HCA, etc.) identify the natural clustering pattern and 
associate variables based on similarities between samples 
(Kannel et al. 2007). RA also allows the developing pre-
diction models, classification models, and time series for 
monitoring river water quality (Gupta and Gupta 2021a). 
Multiple linear regression (MLR) allows for analyzing the 
relationship between variables, providing more user interac-
tion and control over predictive analytics compared to other 
prediction models such as machine learning models (Yildiz 
et al. 2017).

MLR is the most widely used statistical technique to 
estimate relationships between dependent and independ-
ent variables in regression modeling. It is used considering 
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two main objectives: to interpret data and to predict future 
response values (Etemadi and Khashei 2021).

These models make it possible to accelerate and lower 
the costs of water quality evaluations (Ewaid et al. 2018), 
considering the expensive task of determining numerous 
parameters to monitor rivers. To develop a model, it is nec-
essary to carry out a comprehensive study of the system to 
select, using statistical tools, those parameters indicative of 
contamination (Valentini et al. 2021). Regression models 
have been successfully used in recent years for modeling 
hydrological processes (S. Gupta and Gupta 2021b; Gupta 
et al. 2022).

Problem statement

Currently, there are numerous worldwide rivers affected 
by anthropogenic activities, and, therefore, researchers are 
dedicated to studying them through quality indices and mul-
tivariate statistics (Alvareda et al. 2020; Barakat et al. 2016; 
Brilly et al. 2006; Bu et al. 2019; Carrasco et al. 2019; Con-
nor et al. 2014; Dimri et al. 2021; Edokpayi et al. 2015; Fan 
et al. 2010; Hernandez-Ramirez et al. 2019; Howladar et al. 
2021; Keupers and Willems 2017; Pinto and Maheshwari 
2011; Valentini et al. 2021; Varol 2020). In Argentina, stud-
ies of urban rivers in large cities seek to establish their water 
quality and the degree of anthropogenic impact (Casares 
and De Cabo 2018; Bonansea et al. 2013; Merlo et al. 2011; 
Mgelwa et al. 2020; Nimptsch et al. 2005; Rautenberg et al. 
2015; Valdés et al. 2021; Gatica et al. 2012; Lupi et al. 2019; 
del Corigliano 2008; Cazenave et al. 2009).

Similar studies have been conducted in the province 
of San Luis (Almeida et al. 2012; González et al. 2014), 
using statistics to evaluate the water quality of mountain 
rivers affected by tourism. The San Luis River is an urban 
river that flows through two developing cities, San Luis and 
Juana Koslay, and is affected by anthropic activities. Scarce 
research has been performed in order to evaluate the water 
quality of this river, with studies conducted over short peri-
ods of time and focused mainly on the industrial section 
of the river without developing a quality monitoring model 
(Castro et al. 2021). However, anthropic activities are devel-
oped not only in the industrial zone but also in the entire sur-
rounding area and the riverbank itself, in both San Luis and 
Juana Koslay cities. The anthropic disturbances that affect 
this river encompass effluent discharges, runoff from animal 
husbandry, land removal through sand mining, uncontrolled 
riverbank vegetation management, and the accumulation of 
solid wastes (Borgatello 2014; Calderon et al. 2014; Ortiz 
2017; Castro et al. 2021). Moreover, in recent years, the 
population of San Luis City has significantly grown, result-
ing in the discharge of inadequately treated wastewater into 
the San Luis River, as reported by the municipality (Giorda 
2021). Simultaneously, the water of this river infiltrates 

and replenishes underground aquifers that eventually flow 
into the Salinas del Bebedero. In this area, there is a salt 
exploitation company that provides a significant portion of 
Argentina with this compound. The water quality of this 
river is relevant not only from an ecological point of view 
but also from social, cultural, and economic approaches, 
which makes its monitoring relevant.

Considering the context outlined above, this study has 
three primary objectives:

1)	 To estimate the SIWQ index and classify the quality of 
river water for different uses.

2)	 To assess the spatiotemporal variations of water qual-
ity of the San Luis River using multivariate statistical 
analysis.

3)	 To develop and evaluate a multiple linear regression 
model to monitor an urban river.

Material and methods

Study area

The study area comprises the San Luis River, an urban 
river located in the province of San Luis, Argentina. This 
river, also called the Chorrillos River, courses through two 
developing cities: Juana Koslay and San Luis, where sig-
nificant urbanization has occurred over the past decade. 
Data obtained from the Instituto Nacional de Estadística y 
Censos show that the Department of Pueyrredón—an area 
encompassing San Luis, Juana Koslay, and La Punta cities 
and some other smaller localities—increased its population 
from 204,019 inhabitants in 2010 (Instituto Nacional de 
Estadística y Censos (INDEC) 2010; Población Provincial 
Por Localidades Años 1869-2010 n.d.) to 260,295 in 2022 
(Instituto Nacional de Estadística y Censos (INDEC) 2023), 
which implies a population growth of 25%.

This river originates at the foot of the sierras of San Luis, 
specifically in Juana Koslay City (33° 16′ 59,32″ south 
latitude, 66° 14′ 15,03″ west longitude), at the confluence 
of the Las Chacras and Cuchi Corral streams. It receives 
contributions from smaller basins located on the southern 
flank of Sierra de los Venados, as well as from an unnamed 
stream that collects water from its eastern sector. The San 
Luis River is a third-order urban stream, and it is part of 
the Bebedero Basin. It meanders through Juana Koslay 
City and is impounded at Dique Chico. From there, it flows 
southwestward through the city of San Luis, encompassing 
the industrial zone, and ultimately reaches an area where 
effluents from the municipal sewage treatment plant are 
discharged. Subsequently, the river traverses flat terrain, 
and during periods of low flow, its volume decreases sig-
nificantly, with infiltration into the subsurface occurring 
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approximately 15 km away from the city of San Luis. The 
San Luis River ultimately drains into the Bebedero Basin, 
approximately 42 km southwest of the capital city, near Sali-
nas del Bebedero (Calderon et al. 2014). This body of water 
can be regarded as one of the most severely impacted fluvial 
systems in the province of San Luis.

Sampling sites and regime

Eleven sampling sites were selected considering the level of 
disturbance of the river along its course through the cities of 
Juana Koslay and San Luis. The first two sites, represented 
by JA_w and JB_w, were considered the lowest disturbance 
level sites since they were located at a short distance from 
the river origin in the city of Juana Koslay. The next six 
sites, represented by JC_w, JD_w, JE_w, JF_w, JG_w, and 
JPO_w, are located in San Luis City, and the last three sites, 
JZ1_w, JZ2_w, and JZ3_w, are located near the end of the 
river course, prior to infiltration. These sites are related to 
different anthropogenic impacts: rainwater (JE_w), truck 
washes (JG_w) or water waste (JPO_w) discharges, recrea-
tional purposes (JD_w, JE_w, and JF_w), river sand min-
ing (JC_w and JG_w), or animal husbandry (JZ1_w, JZ2_w 
and JZ3_w). Figure 1 shows the sampling sites that were 
monitored, and Table 1 shows the location and description 
of studied sampling sites. Selected sites represented a gra-
dient of urbanization and human disturbance, ranging from 
areas with minimal disturbance—where the environmental 
baseline was determined—to sites with increasing levels of 
human impact.

The climate of the region is continental, with an annual 
rainfall regime of 595.4 mm and a monthly average of 
49.7 mm (Ledesma and Arrellano 2022). Sampling was 
conducted during the 2015–2017 period based on rainfall 
measurements that defined dry and wet seasons. The period 
from May to October was defined as the dry season, and the 
period from November to April was the wet season. A total 
of 80 samples were collected.

Water sample analysis

Water samples were collected, preserved, transported, and 
analyzed according to Standard Methods for Water and 
Wastewater (APHA 2017). Parameters such as pH, con-
ductivity (CONDUCT.), total dissolved solids (TDS, SM 
45040), temperature (T), and dissolved oxygen (DO) were 
measured in situ with portable equipment. Other five param-
eters were determined in the laboratory: turbidity (TUR-
BIDITY) (S.M. 2130-B); total suspended solids (TSS, S.M. 
S.M. 2540-F); organic matter (OM) (DQO S.M.5220-B); 
phosphorus (P, S.M. 4500-PO4

3−E); NITRATE (S.M-4500-
NO3

−E). The parameters were expressed in milligrams per 
liter, except conductivity (μS cm−1), pH, and turbidity 
(NTU).

Simplified index of water quality

SIWQ is obtained from a simple formula that combines 
five physicochemical parameters: OM, TSS, DO, conduc-
tivity, and T to provide a quick and intuitive idea of water 
quality. SIWQ varies between 0 (minimum water quality) 

Fig. 1   Sampling sites along the San Luis River. SL, San Luis City; JK, Juana Koslay City
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and 100 (maximum water quality) and was proposed by 
Queralt (1982). SIWQ can be calculated according to the 
equation: SIWQ = E (A + B + C + D); where E is a factor 
that depends on temperature and its values range from 0.8 
to 1, A is a factor that depends on OM, its values range 
from 0 to 30, B is a factor that depends on TSS, its values 
range from 0 to 25, C is a factor that depends on DO, its 
values range from 0 to 25, and D is a factor that depends 
on conductivity, its values range from 0 to 20 (Queralt 
1982). Other authors (Alonso Duré 2013; I. Bustamante 
et al. 2002; Bustamante 1989; Losada Benavides et al. 
2020) modified the order and number of categories, and 
currently, water quality can be classified into five catego-
ries according to its potential uses: (a) 0 ≤ SIWQ ≤ 30 
Navigation, very restricted use; (b) 30 ≤ SIWQ ≤ 45 water 
only suitable for forest irrigation; (c) 45 ≤ SIWQ ≤ 60 
water suitable for irrigation and industry; (d) 60 ≤ SIWQ 
≤ 85 water suitable for swimming and fishing; and (e) 85 
≤ SIWQ ≤ 100 is considered all-purpose water (Losada 
Benavides et al. 2020). A SIWQ of 60 is the minimum 
acceptable value for the water quality of a river (López 
Fernández et al. 1998).

Statistical analysis

Exploratory/descriptive multivariate statistical analysis

Exploratory multivariate analyses were conducted with the 
opensource software R (version 4.1.0). Multivariate statistics 
were used to analyze environmental data (Aldás and Uriel 
2017; Dormann 2020) and compare the spatial and temporal 
values of the studied physical–chemical variables.

Principal component analysis

PCA (Aldás and Uriel 2017; Dormann 2020) was performed 
aiming to extract significant components, reducing the con-
tribution of variables with lesser significance. This technique 
reduces information provided by the variables to their essen-
tial features and transforms them into components (linear 
combinations of the original variables) that represent the 
proportion of variance explained by all variables (Greenacre 
et al. 2022).

Hierarchical cluster analysis

This method helps to identify natural associations in the 
dataset of river water quality and uses dendrograms to rep-
resent the similarity pattern between sampling sites (Aldás 
and Uriel 2017; Dormann 2020; Gupta et al. 2022). This 
descriptive statistical technique was applied by using Ward’s 
method (Ward 1963; Barakat et al. 2016) and the Manhat-
tan distance technique in order to maximize homogeneity 
within the groups. Ward’s method considers the increase in 
the squared error as the proximity between two clusters and 
is the most common method to categorize groups. A den-
drogram represents the clusters and their proximity with a 
reduction in the dimensionality of the original data (Barakat 
et al. 2016).

Heatmaps

Heatmaps were also used to simultaneously visualize groups 
of samples and their characteristics. A heatmap is another 
way to show hierarchical clustering, in which data values are 
transformed into a color scale. Dendrograms were combined 

Table 1   Location and description of studied sampling sites from the San Luis River

Sampling Sites Location Description

JA_w Juana Koslay City: near-river origin Site close to houses under construction, new neighborhoods
JB_w Juana Koslay city Hard to access the site due to vegetation. A neighborhood and a school are at 

100 m approx.
JC_w San Luis–Juana Koslay cities’ transition zone Aggregate extraction quarry. Located before Dique Chico
JD_w San Luis City Riverside recreation area. It is located in front of a park cemetery
JE_w San Luis City Located 100 m from the city shopping mall and 50 m from a sports center. 

Recreation area. River drain discharge
JF_w San Luis City Access to the urbanized southern area. Zone of difficult access to the shore. 

Hardly disturbed
JG_w San Luis City Near to a truck wash. The site behind an aggregate quarry
JPO_w San Luis City Discharge of the oxidation pools of the municipality of San Luis City. Close to 

the City Racetrack
JZ1_w Vicinity of San Luis City The site is located a few kilometers from the municipal wastewater discharge, 

the final stretch of the river. Agricultural-livestock production area
JZ2_w Vicinity of San Luis City Area of agricultural-livestock production before river infiltration
JZ3_w Vicinity of San Luis City Fork of the river in its last section
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with a heatmap to allow visual identification of possible 
characteristic patterns within each cluster.

Inferential statistical analysis

Correlation matrix

Inferential statistical techniques and individual and multiple 
correlation analyses were performed to explore the relation-
ships between physical–chemical and elemental variables, 
resulting in correlation matrices. Pearson’s correlation coef-
ficient (r) was employed to measure the extent of linear asso-
ciation between the parameters, which is useful for assessing 
the degree of dependence of one variable on others (Singh 
et al. 2020). Independent variables were selected by elimi-
nating those that showed a strong correlation with each other 
(collinearity).

Multivariate analysis of variance

The MANOVA technique was carried out for an inferen-
tial study. However, not all parameters met the normal-
ity and homoscedasticity conditions for the application 
of MANOVA. Thus, the MANOVA.WIDE function in 
R was employed. This more robust technique calculates 
Wald-type statistics (WTS) and modified statistic ANOVA 
type (MATS), which are versions of these statistical tests 
designed for semiparametric multivariate data (Aldás and 
Uriel 2017; Dormann 2020).

Multiple linear regression models

Finally, multiple linear regression models (MLRM) (Harrel 
2015) were applied in order to study the potential relation-
ship between a dependent variable and a series of explana-
tory variables. The multivariate regression model can be 
expressed using the equation: Y = β0 + β1 X1 + β2 X2 + … + 
βm Xm, where Y is the dependent variable, X1, X2, …, Xm 
are the independent variables, predictor variables, or regres-
sors, β1, β2, …, βm are the coefficients of the model, and m 
is the number of independent parameters considered in the 
regression.

The selection of the regressor variables was carried out 
by progressive elimination, until a model with an adjusted 
coefficient of determination (R2) greater than 50%, and a 
confidence level of 90% or 95% was obtained. R2 determines 
the percentage of the variance of the dependent variable 
explained by the regression model. The corresponding resid-
ual tests were carried out: the Durbin–Watson test was used 
to measure independence, the Shapiro–Wilk test was applied 
to measure normality, the Breusch–Pagan test was used to 
measure homoscedasticity, and the Variance Inflation Factor 
(VIF) test was applied. The Grubbs test was applied to detect 

outliers. The results of these tests were verified by graphs 
like the normal Q–Q plot and histogram to assess normality, 
residuals versus fitted values to test homoscedasticity, box-
plots, and distance of Cook to detect outliers and influential 
values in the model. Standard residual error and adjusted 
R2 were also taken into account to determine an optimal fit.

The accuracy of the model was tested using cross-vali-
dation methods, specifically the Validation Set Approach. 
This method evaluates the ability of the model to predict 
the outcome of new unseen observations not used to build 
the model. The validation set approach consists of dividing 
the data into two sets: the training set, used to train or build 
the model, and the testing or validation set, used to test the 
model by estimating the prediction error (new data from 
SLR and data from different rivers with similar character-
istics). Subsequently, the prediction error is quantified as 
the mean squared difference between the observed and the 
predicted outcome value (Kassambara 2018). The statistics 
Root Mean Square Error (RMSE), R2, and error rate were 
used to predict error. RMSE measures the average error of 
the model in predicting the outcome of an observation and 
is selected because it is an absolute measure of goodness of 
fit; the lower the RMSE values, the better the model. R2 was 
chosen based on the fact that it is a relative measure of the 
fit of the model to the dependent variables. It represents the 
correlation between the observed values and the predicted 
values. Higher R2 values indicate a better model (James et al. 
2017). The learning curves of the model were plotted as 
log RMSE vs. iterations. Log RMSE was used for a better 
appreciation of the differences between both curves (Viering 
and Loog 2021).

Results and discussion

Water samples and SIWQ

As described before, water samples were obtained from the 
San Luis River, and ten physicochemical variables were 
determined on each sample. The average values of all vari-
ables determined are shown in Table 2.

Average values of OM, TSS, DO, conductivity, and T 
were used to calculate an average SIWQ in order to clas-
sify water quality at each sampling site. Table 3 displays 
the obtained SIWQ values and the classification of water 
samples from each studied site.

SIWQ values indicate a greater deterioration in water 
quality at sites JPO_w, JZ1_w, JZ_w, and JZ3_w. Water 
quality degradation is mainly affected by variables related 
to the discharge of municipal effluents from the city of 
San Luis (OM, conductivity, P, and nitrate). Additionally, 
medium-quality site JG_w could be affected by specific 
anthropogenic activities such as sand mining, truck wash 
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discharges, and runoff (Borgatello 2014; Castro et al. 2021). 
The average SIWQ value for the JC_w site is barely higher 
than the medium quality limit, meaning that a small vari-
ation of any physicochemical variable can affect its water 
quality.

Considering the information provided by the SIWQ index 
and the recreational use of the San Luis River in some sec-
tions, it would be advisable to conduct further studies by 
applying the Recreational Water Quality Index (Almeida 
et al. 2012).

Physicochemical variables determined in water samples 
were analyzed using multivariate statistics to reduce the 
number of significant variables and develop a faster and 
more cost-effective predictive model for monitoring river 
water quality. Correlation matrix and exploratory analysis 
were performed using average data (Table 2), whereas infer-
ential analysis was performed using the entire dataset (data 
not shown), not just average data.

Physicochemical variables correlation

A correlation matrix was calculated to explore associa-
tions among the different physicochemical variables in the 
dataset under study (Fig. 2). There was a positive and sta-
tistically significant correlation between the parameters P 
and OM (0.98), conductivity and P (0.89), and P and TDS 
(0.90) with p values < 0.001, between pH and DO (0.84), 
OM and TDS (0.83), and OM and conductivity (0.82) with 
p values < 0.01, between OM and nitrate (0.72) with p 
value < 0.05, and finally, between P and nitrate (0.60) with 
p values < 0.1. Figure 2 also depicts a negative and statis-
tically significant correlation between the parameters DO 
and OM (−0.92), P and DO (−0.97), DO and conductivity 
(−0.95), MO and pH (−0.96), pH and P (−0.93), and OD 
and TDS (−0.95) all with p values < 0.001, and between 
pH and nitrate (−0.78), pH and conductivity (−0.74), and Ta
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Table 3   Average SIWQ determined and classification of water for 
each studied sampling site of the San Luis River

Site SIWQ Quality Recommended use

JA_w 78.8 Good Swimming and fishing
JB_w 79.8 Good Swimming and fishing
JC_w 60.7 Good Swimming and fishing
JD_w 71.1 Good Swimming and fishing
JE_w 70.8 Good Swimming and fishing
JF_w 75.3 Good Swimming and fishing
JG_w 59.6 Medium Irrigation and industry
JPO_w 18.2 Very bad Navigation, very restricted use
JZ1_w 17.6 Very bad Navigation, very restricted use
JZ2_w 19.2 Very bad Navigation, very restricted use
JZ3_w 21.9 Very bad Navigation, very restricted use
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pH and TDS (−0.74) both with p values < 0.01. A corre-
lation coefficient of 1 was observed between the variable 
conductivity and TDS, as well as between turbidity and 
SST.

Spatial and temporal similarity and site grouping

PCA was then applied using average data to associate the 
parameters that characterized the groups (Fig. 3).

The PCA resulted in the selection of two principal com-
ponents, which represent 88.1% of the variability data. 
PC1 (Dim1) explains 72% of the variability. The linear 
combination of the original parameters that originated this 
component is:

Data show that conductivity, OM, P, DO, and pH are the 
variables with the greatest contribution to PC1. Figure 3 
shows conductivity, OM, and P present a positive correla-
tion with each other, with a higher correlation between 
OM and P, while DO and pH present a positive correla-
tion with each other and a negative correlation with the 
parameters conductivity, OM, and P.

PC1 = − 0.4243 pH − 0.1099 Turbidity + 0.3880 Conductivity

− 0.4251 DO + 0.4407 OM + 0.2940 Nitrate + 0.4427 P

The second component, PC2 (Dim2), represents 16.1% of 
the variability of the data and is the result of the following 
linear combination of the original parameters:

Turbidity and nitrate contribute significantly to this com-
ponent. As indicated by the length of the vectors represent-
ing these parameters in Fig. 3, turbidity and nitrate exhibit 
a greater variability compared to the other variables. The 
parameters that contribute to PC1 are related to water pollu-
tion resulting from the organic load, while those contributing 
to PC2 are linked to pollution originating from land use in 
areas near the river (Rentier and Cammeraat 2022), with tur-
bidity being the parameter with a major contribution to PC2.

The grouping of sites in Fig. 3 reveals that post-discharge 
sites (JZ1_w, JZ2_w, and JZ3_w) are characterized by OM, 
P, and conductivity. Conversely, JA_w, JB_w, JD_w, JE_w, 
and JF_w sites are associated with DO and pH, indicating 
a stronger connection to PC1. The discharge site JPO_w is 
related to the nitrate variable, while the JC_w and JG_w 
sites are linked to the turbidity parameter, representing PC2.

As part of the initial exploratory analysis, a dendrogram 
was created to determine site grouping. We used the Ward 

PC2 =0.2388 pH − 0.7527 Turbidity + 0.2687 Conductivity

− 0.1995 DO − 0.0846 OM − 0.5100 Nitrate

+ 0.0320 P

Fig. 2   Correlation matrix of physicochemical variables of water samples from the San Luis River: scatterplots, values, and statistical signifi-
cance of each correlation coefficient (Pearson correlation coefficients [r]). Signification codes: 0 ***0.001; **0.01; *0.05; “.” 0.1; “ ” 1
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method with the Manhattan distance technique to produce 
the dendrogram shown in Fig. 4.

Figure 4 shows that all monitoring sites were classified 
according to four clusters: the first group includes JC_w and 
JG_w sites and is related to the second group, which consists 
of JA_w, JB_w, JE_w, JD_w, and JF_w sites. JPO_w site, 

the only one in the third group, is related to the fourth group, 
which consists of JZ1_w, JZ2_w, and JZ3_w sites.

The first and second clusters constitute the first branch of 
this dendrogram. Both clusters present similarities, although 
to a lesser degree. Sites grouped in the first cluster present 
similar characteristics due to the presence of comparable 

Fig. 3   Biplot showing the pro-
jections of the variables in the 
first two PCs and the distribu-
tion of the sampling sites from 
the San Luis River

Fig. 4   Dendrogram based on 
hierarchical clustering (Ward’s 
method) for all studied sites in 
the San Luis River
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anthropogenic disturbances in the upstream sampling sites, 
such as sand mining, truck washes, and household sewage 
effluent discharges. In the second cluster, JA_w and JB_w 
sites, located in the city of Juana Koslay, show greater simi-
larity with each other rather than JE_w, JD_w, and JF_w 
sites located in a river segment that flows through a highly 
urbanized area of the city of San Luis.

The third and fourth clusters constitute the second branch 
of this dendrogram. The JPO_w site corresponds to an efflu-
ent discharge and integrates a conglomerate by itself. How-
ever, the municipal effluent discharge site JPO_w and sites 
downstream, JZ1_w, JZ2_w, and JZ3_w, exhibit a great 
similarity, suggesting that the river cannot naturally recover 
from the impact of organic pollution.

The clustering outcomes were illustrated using both a 
dendrogram tree and a heatmap. The heatmap technique 
combines information from dendrograms obtained for sites 
and variables. Results performed using average data are 
shown in Fig. 5, allowed us to determine which parameters 
characterized or gave rise to the clusters obtained in the den-
drogram technique.

Figure 5 shows that JA_w and JB_w, reference sites 
with low-moderate anthropogenic activity, have nearly all 
the analyzed parameter values lower or equal to those of 
sites upstream of the municipal effluent discharge (JC_w, 

JD_w, JE_w, JF_w, and JG_w). Sites JC_w and JG_w 
exhibit higher turbidity values compared to other sites 
located prior to the aforementioned effluent discharge. 
This can be attributed to activities related to sand mining 
(Da and Le Billon 2022; Rentier and Cammeraat 2022) 
that exist in areas upstream. The exploitation of sand 
has increased in the area due to the high demand for this 
resource, primarily driven by its various uses, especially 
in construction (Da and Le Billon 2022). This increased 
demand can be attributed to the growth in population 
(Kemgang Lekomo et al. 2021). The continued resuspen-
sion of sediments resulting from in-stream sand removal 
affects local and downstream water quality. The presence 
of a certain amount of suspended solids is beneficial for 
the river system since suspended sediment and nutrients 
contribute to the ecosystem of the river. However, a large 
concentration of suspended solids leads to increased tur-
bidity in the main channel, negatively affecting the stream 
of the river. Furthermore, during sand mining, fuel spills 
and leaks from excavation machinery and transport vehi-
cles can occur. These contaminants can be adsorbed by 
sediments and transported downstream (Juez and Franca 
2022; Rentier and Cammeraat 2022).

Data show that land uses and anthropogenic activities 
(sand mining, effluent discharges, etc.) are related to water 

Fig. 5   Heatmap with dendro-
gram tree represents phys-
icochemical variables values 
among sampling sites in the San 
Luis River
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quality, particularly with changes in variables such as tur-
bidity (Lu et al. 2023; Nasrabadi et al. 2016; Obisesan and 
Christopher 2018; Yan et al. 2023), nutrient concentra-
tions (P, nitrate, among others), etc. (Lu et al. 2023). Other 
authors who studied ponds receiving clandestine discharges 
(Fontanarrosa et al. 2023) proposed similar results.

The group of sites located downstream of the JPO_w 
site is associated with higher values of parameters like OM, 
conductivity, and P, inferring that the discharge of poorly 
treated municipal effluents (Giorda 2021) has an impact on 
water quality. Nitrate is the most relevant parameter at the 
JPO_w site. High concentrations of nitrate are mainly due to 
household effluents, according to various studies (Chilundo 
et al. 2008; Pisani et al. 2020; Schirmer et al. 2013; Sikakwe 
et al. 2020). Both urban areas and crops are important con-
tributors of nitrogen and phosphorus in water bodies (Wang 
et al. 2023).

This same technique was used with average data for wet 
and dry season parameters separately (data not shown). We 
observed that the JPO_w site presented the highest concen-
tration of nitrate compared to the other sites for both dry and 
wet seasons. P and MO variables exhibited higher concentra-
tions for sites after JPO_w for both periods. In addition, the 
conductivity of sites downstream of JPO_w is higher in the 
wet season. This could be explained by considering land use 
in the area associated with livestock.

Inferential multivariate analysis

After conducting exploratory or descriptive multivariate 
analysis and inferring differences in site groupings and 
parameter influences, we proceeded with inferential multi-
variate analysis. This study was performed in order to define 
whether variations in the studied parameters for the sampled 
sites were statistically significant or not.

Inferential analysis (Dormann 2020) requires, as a neces-
sary condition, to verify that the data have a normal distri-
bution and homogeneity of variance. These requirements 
were verified using Royston’s multivariate normality tests 
(Trujillo-Ortiz and Hernandez-Walls 2007), obtaining a p 
value of 1.17 × 10−36. In addition, the Lilliefors (Kolmoro-
gov–Smirnov) univariate normality test was applied for 
samples with n > 50, obtaining p values < 0.01 for conduc-
tivity, MO, OD, turbidity, nitrate, and P variables, and a p 
value of 0.39 for pH variable. The Cramer–von Mises test 
(Baringhaus and Henze 2017) was also applied, obtaining 
the same results and a p value of 0.226 for the variable pH. 
Considering this, we can conclude that only this variable 
exhibits a univariate normal distribution at the significance 
level of 0.01.

A multivariate homoscedasticity test was performed 
by applying Box’s M-test for homogeneity of covariance 

matrices, both for site and period, obtaining a p value < 2.2 
× 10−16 for both cases. Considering p values are less than 
0.05, they indicate there is no homogeneity in site or period.

The MANOVA.WIDE function from R software was used 
to calculate WTS and MATS. Both statistics reported a sig-
nificant difference between period, site, and the site–period 
interaction, with a significance level of less than 0.001.

Multiple linear model to monitoring San Luis River

Based on the multivariate statistical analysis carried out, a 
model that allows monitoring the water quality of the San 
Luis River was proposed. This model, named the multiple 
linear model for monitoring San Luis River (MRSL), was 
developed considering OM as the dependent variable. Two 
reasons lead us to select this variable as a dependent one: 
on the one hand, it represents organic load; and on the other, 
this variable was clearly modified in river sections most 
affected by anthropogenic disturbances, as can be seen in 
PCA, heatmap, and inferential analysis.

The proposed multiple linear regression model evaluates 
the impact of each predictor (independent variable), consid-
ering the influence of all other predictors simultaneously. 
The categorical variable site was included in the model since 
it was significant. Values of categorical variable site are: 0 
for site JA_w, 0.1429 for site JB_w, 0.9171 for site JC_w, 
−0.5170 for site JD_w, −0.4093 for site JE_w, −0.7866, 
−0.7866 for site JF_w, 0.9135 for site JG_w, −0.9654 for 
site JPO_w, 10.6203 for site JZ1_w, 2.6424 for site JZ2_w, 
and 7.394 for site JZ3_w.

The achieved model is determined by the following 
equation:

The statistics of the multiple linear models obtained 
reveals that when all the physicochemical variables and the 
categorical variable site as predictors are included, the model 
can effectively account for 97.06% of the OM variance in the 
San Luis River. Furthermore, the F-test statistic of 178.8 
indicates a high significance of the model, supported by a p 
value of 2.2 × 10−1, which demonstrates a good association 
between the predictors and the OM variable. The physico-
chemical variables P, nitrate, turbidity, and the sites JZ1_w 
and JZ3_w have a statistically significant relationship with 
the response variable OM (p values < 0.001).

As evidenced by R2, the multiple linear regression model 
formulated by MRSL demonstrated that it effectively 
captured 97.06% of the overall variability of the variable 
explained by de-regression. The analysis of variance per-
taining to the dependent variable OM (P: p value < 2.2 × 
10−16, nitrate: p value < 2.2 × 10−16, turbidity: p value = 
0.000596, and site: p value = 6.084 × 10−7) indicated that 

OM = 1.631 + 1.47 Nitrate + 4.204 P − 0.005 Turbidity + Site
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all physicochemical variables and the categorical variable 
site were statistically significant at the 0.01 level. Several 
authors have documented models that employ organic load 
as a basis for predicting parameters of water bodies, with 
the selection of dependent variables associated with organic 
load (Jiang et al. 2021) or parameters such as DO (Ahmed 
2017; Ouma et al. 2020) or BOD (Vigiak et al. 2019), which 
serve as dependable indicators of water quality.

One noteworthy aspect of this work is that it helps bridge 
the gap in scientific data on the physicochemical parameters 
of the San Luis River, making this research a valuable study 
to initiate analysis of the area. The effort and costs related 
to sampling in order to obtain data from each site can be 
reduced by using this model capable of predicting parameter 
values such as OM.

The ability to predict OM is of great importance because 
it poses challenges for drinking water treatment plants. 
The main issues associated with OM include degradation 
of organoleptic quality, bacterial growth in the distribution 
network, and significant chlorine consumption during dis-
infection (LeChevallier 1990).

As shown in Fig. 6, the obtained model adheres to the 
necessary assumptions of normality, homoscedasticity, 
and independence of residuals. This is because it does not 
contain outliers, and there is no discernible pattern in the 
residual distribution. These assumptions were confirmed 
using the Kolmogorov–Smirnov test (D = 0.51, p value = 
1), the studentized Breusch–Pagan test (BP = 20.52, df = 13, 
p value = 0.08), and the Durbin–Watson test (DW = 1.86, 
p value = 0.06). In all cases, the tests confirmed normality, 

homogeneity of variance, and residual independence, with 
p values greater than the 0.01 significance level. The cor-
relation matrix showed a correlation of 0.14 between nitrate 
and turbidity and a correlation of 0.50 between P and nitrate, 
confirming the absence of multicollinearity. The calculated 
VIF values were all below 10, providing further evidence 
against multicollinearity. Cook’s distance values were also 
below 1.5, indicating no significant influence of the vari-
ables. Additionally, the Grubbs test did not detect any outli-
ers (p value = 0.2845).

The MRSL model obtained is parsimonious (few param-
eters, but it fits well, is easier to understand, and has strong 
predictive ability), and it satisfies all the necessary assump-
tions for this type of multiple linear regression. Table 3 
shows the minimum and maximum values of each phys-
icochemical variable that must be considered to apply the 
MRSL model successfully.

The independent variables in the MRSL model, nitrate, 
turbidity, and P, are associated with the anthropogenic activ-
ities discussed throughout the study. This suggests the model 
allows for the rapid identification of increases in the quantity 
or frequency of effluent discharge or activities related to soil 
removal impacting the river.

The MRSL model fulfilled the assumptions of normality, 
homoscedasticity, linearity, and independence; hence, it was 
used to predict OM in different rivers of the province. The 
evaluated rivers were San Luis (SLRL2022, SLRPO2022, 
SLRA2021, SLRI2021, SLRL2021, SLRAG2019), Los 
Molles (LMRHP2019), Rosario (RRLT2022, RRLT2019), 
Conlara (CRC2023, CRSR2023, CRPG2023, CRPG2022, 

Fig. 6   Verification of residuals 
homoscedasticity and inde-
pendence (top left), residuals 
normality: Q–Q plot (top right), 
residual boxplot (bottom left), 
and influence plot (bottom 
right)
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CRPG2021, CRPG2019), Quines (QR2022B, QR2022A, 
QR2019, QR 2021), Nogolí (NR2022b NR2022a), and 
San Francisco (SFR2021, SFR2022). For this purpose, 
river sites with similar characteristics to those studied in 
this work were selected. The physicochemical parameters 
experimentally determined at each site were within the range 
stipulated in Table 4. OM values estimated using the model 
were compared to OM determined experimentally (Fig. 7). 
The results in the prediction of OM values were satisfactory.

Normality and homoscedasticity of the data were evalu-
ated in order to verify if the difference between the experi-
mentally determined OM values (OMExp) and the model-
estimated OM values (OMEst) (Fig. 7) was significant. 
Shapiro–Wilks test was used to test normality, obtaining a 
p value = 4.322 × 10−08 for estimated OM and a p value 
= 1.655 × 10−07 for the experimentally determined OM, 
indicating the data were not normal. Homoscedasticity was 
evaluated using the F-test, obtaining a p value = 0.995. This 
p value indicates the data are homoscedastic. Although the 
data present homogeneity of variances when graphing the 
boxplots (Fig. 8), the presence of outliers is observed.

The non-normal distribution and the presence of atypi-
cal data (outliers) required the application of a robust test to 
detect differences between the OMExp and OMEst groups. 
The Yuen test (Mair and Wilcox 2020) was used for paired 
samples, obtaining a p value = 0.179. A p value > 0.05 
indicates that there are no significant differences between 
the trimmed means of OMExp and OMEst (trimmed means 
difference: −0.32; 95% confidence interval between −0.7955 
and 0.1555). Based on this, we can conclude that the pro-
posed multiple linear models satisfactorily predicts OM, not 
only for samples from the San Luis River but also for sam-
ples from different rivers with similar characteristics.

The accuracy of the model was tested using the cross-
validation (set approach method). Two different train and test 
datasets were selected, and R2, RMSE, and error rate were 

Table 4   Statistics of each physicochemical variable used to develop 
the MRSL model

Statistics OM (mg L−1) Turbidity 
(NTU)

Nitrate (mg 
L−1)

P (mg L−1)

Min. 0.90 1.21 0.20 0.002
1st Qu. 2.45 11.55 0.80 0.019
Median 3.70 21.90 1.10 0.037
Mean 6.72 69.49 1.84 0.506
3rd Qu. 4.90 42.65 1.65 0.075
Max. 48.40 1050.00 17.70 7.200

Fig. 7   Dotchart comparing 
experimental values of OM 
(turquoise) and estimated values 
of OM using the MRSL model 
(blue) for sites located at dif-
ferent rivers in the Province of 
San Luis

Fig. 8   Box plots comparing experimental values of OM and esti-
mated values of OM using the MRSL model for different rivers in 
San Luis Province
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determined after 75 iterations. The values of these statistics 
were R2 = 0.999, RMSE = 0.44, and error rate = 3.9% for 
the training dataset, and R2 = 0.99, RMSE = 0.584, and 
error rate = 5.11% for the test dataset. The learning curves 
of the training and validation datasets (Fig. 9) indicate the 
model is neither under-fit nor over-fit. These statistics exhibit 
the accurate prediction power of the model for this urban 
river since an error of 0.58 mg L−1 of OM in a range of 
values from 2 to 50 mg L−1 is acceptable.

Conclusions

In this study, it was evidenced through the SIWQ that the 
quality of the water in the San Luis River is affected by 
anthropogenic activities. Furthermore, the application of 
multivariate statistics made it possible to detect significant 
differences in the temporal and spatial variation of the vari-
ables under study.

The multiple linear regression model developed demon-
strates robustness in predicting and monitoring the water 
quality of the San Luis River and different rivers in semi-arid 
areas with similar characteristics affected by organic load 
pollution. Results provide reference information for authori-
ties responsible for the environmental management of the 
San Luis River regarding how anthropogenic activities in 
the river and its banks affect water quality.
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