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Abstract
Landslide susceptibility mapping is essential for reducing the risk of landslides and ensuring the safety of people and infra-
structure in landslide-prone areas. However, little research has been done on the development of well-optimized Elman 
neural networks (ENN), deep neural networks (DNN), and artificial neural networks (ANN) for robust landslide susceptibil-
ity mapping (LSM). Additionally, there is a research gap regarding the use of Bayesian optimization and the derivation of 
SHapley Additive exPlanations (SHAP) values from optimized models. Therefore, this study aims to optimize DNN, ENN, 
and ANN models using Bayesian optimization for landslide susceptibility mapping and derive SHAP values from these 
optimized models. The LSM models have been validated using the receiver operating characteristics curve, confusion matrix, 
and other twelve error matrices. The study used six machine learning-based feature selection techniques to identify the most 
important variables for predicting landslide susceptibility. The decision tree, random forest, and bagging feature selection 
models showed that slope, elevation, DFR, annual rainfall, LD, DD, RD, and LULC are influential variables, while geology 
and soil texture have less influence. The DNN model outperformed the other two models, covering 7839.54 km2 under the 
very low landslide susceptibility zone and 3613.44 km2 under the very high landslide susceptibility zone. The DNN model is 
better suited for generating landslide susceptibility maps, as it can classify areas with higher accuracy. The model identified 
several key factors that contribute to the initiation of landslides, including high elevation, built-up and agricultural land use, 
less vegetation, aspect (north and northwest), soil depth less than 140 cm, high rainfall, high lineament density, and a low 
distance from roads. The study’s findings can help stakeholders make informed decisions to reduce the risk of landslides 
and ensure the safety of people and infrastructure in landslide-prone areas.

Keywords  Landslide susceptibility · Neural network · Bayesian optimization · SHapley Additive exPlanations (SHAP) · 
Landslide risk mitigation

Introduction

Landslides constitute a significant geomorphological haz-
ard in mountainous regions around the world and pose con-
siderable risks to human life, infrastructure, and economic 
stability. The annual economic impact of these events is 
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considerable as they affect roads, railways, and buildings 
(Arabameri et al. 2022; Achour and Pourghasemi 2020; Bil-
lah et al. 2019). The occurrence and severity of landslides 
are influenced by a combination of natural phenomena such 
as seismic activity and extreme meteorological events, as 
well as anthropogenic factors such as deforestation and 
uncontrolled urban expansion (Haque et al. 2016; Sahin 
2022; Kavzoglu et al. 2019; Althuwaynee et al. 2014). In 
India, especially in the Himalayan belt, landslides pose a 
formidable geological challenge with far-reaching socio-eco-
nomic and environmental impacts. The state of Uttarakhand, 
nestled in the Indian Himalayas, is particularly prone to such 
events due to its unique geological and climatic conditions, 
which include frequent heavy rainfall and seismic activity. 
This susceptibility is exacerbated by human activities such 
as road construction and urbanization, making Uttarakhand 
a focus area for landslide research (Awasthi et al. 2022; 
Kaur et al. 2018; Martha et al. 2021; Kumar et al. 2017). To 
minimize landslide damage, landslide susceptibility map-
ping (LSM) must be used as a cornerstone of the hazard 
mitigation strategy. LSM provides important insights for 
preventive measures, ongoing monitoring, and informed 
land-use planning and thus plays a crucial role in reducing 
the damaging effects of these natural disasters (Razavi et al. 
2021; Shi et al. 2017).

LSM is pivotal for managing landslide hazards, employ-
ing a wide array of analytical techniques from classical sta-
tistical methods to cutting-edge machine learning (ML) and 
deep learning (DL) models (Mallick et al. 2021). Traditional 
statistical methods like frequency ratio, principal compo-
nent analysis (PCA), and weight of evidence (WOE) offer 
simplicity and interpretability but may not fully capture the 
intricate, non-linear dynamics of landslide data (Saha and 
Saha, 2020). While index-based methods like entropy index 
and logistic regression systematically assess susceptibility, 
they can overlook the subtle spatial interactions among 
landslide predictors (Alqadhi et al. 2022a, b, c). Recent 
advancements have seen ML algorithms such as random for-
est, support vector machine (SVM), and XGBoost gaining 
prominence due to their ability to manage complex datasets 
and variable interplays (Alqadhi et al., 2022a; Mallick et al., 
2022). However, these methods are not without criticism, 
particularly for their tendencies toward overfitting and chal-
lenges in handling large data volumes, which can obscure 
their decision-making processes. To overcome these limita-
tions, DL models with sophisticated architectures have been 
introduced, showing promise in deciphering complex data 
patterns and offering enhanced predictive accuracy, particu-
larly with unstructured big data like images (Mahato et al., 
2021; Zhang et al., 2019). Despite these advancements, the 
quest for the most effective LSM method remains unre-
solved, with a notable absence of consensus in regions with 
complex geological backgrounds like Uttarakhand, known 

for its frequent landslides. While some studies (Dey et al., 
2021; Gupta et al., 2016) have explored GIS and ML inte-
gration for LSM at local levels, comprehensive state-wide 
analyses remain scarce, underscoring the need for extensive 
research to inform disaster management strategies.

The success of LSM methods depends, to a considerable 
extent, on factors such as the choice and resolution of map-
ping units, algorithm selection and parameter optimization, 
sample selection, and identification of relevant influencing 
factors. The choice of mapping units is pivotal in LSM, as it 
directly influences the model’s ability to accurately predict 
landslide susceptibility. In this study, we have opted for grid 
units with a resolution of 30 m, a decision driven by the 
balance between detail and practicality at the state level. 
High-resolution mapping, while offering finer detail, poses 
significant challenges due to the extensive computational 
resources required and the frequent unavailability of high-
resolution data across large areas. A 30-m resolution strikes 
an optimal balance, ensuring sufficient detail for effective 
LSM while maintaining feasibility for state-wide modeling. 
This approach aligns with findings from previous studies 
which highlight the importance of selecting appropriate 
mapping units and resolutions to optimize LSM performance 
(Sun et al., 2023; Liao et al., 2022). In the quest for optimal 
hyperparameters within LSM models, various optimization 
techniques have been explored. Bayesian optimization has 
emerged as a particularly effective method, as evidenced by 
its successful implementation in previous studies (Sun et al., 
2021a; Sun et al., 2020a, c). Unlike traditional optimiza-
tion methods, Bayesian optimization excels in navigating 
complex optimization landscapes by efficiently balancing 
the exploration of new parameter spaces and the exploitation 
of known high-performing areas. This characteristic makes 
it especially suitable for optimizing deep learning models 
where the evaluation of model performance can be compu-
tationally expensive and time-consuming.

Building on the success of Bayesian optimization in 
previous research, this study aims to develop new DL 
models that leverage this optimization technique. By 
integrating Bayesian optimization, we aim to refine the 
selection of hyperparameters for artificial neural net-
works (ANN), deep neural networks (DNN), and Elman 
neural networks (ENN). This integration is anticipated 
to enhance the models’ ability to capture the non-linear 
relationships between landslide conditional factors and 
landslide occurrence data, particularly within the chosen 
30-m grid resolution framework. The rationale for this 
approach is supported by studies demonstrating the sig-
nificant impact of mapping units on LSM performance 
and the proven effectiveness of Bayesian optimization 
in achieving optimal model configurations (Zhang et al., 
2021; Sun et al., 2021b; Zhou et al., 2021). A novel aspect 
of this research is the integration of SHapley Additive 
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exPlanations (SHAP) values into the LSM models, which 
deviates from the traditional use of XGBoost models for 
SHAP calculation (Lundberg & Lee, 2017). By quantify-
ing the contribution of each feature to the model’s predic-
tions, SHAP values provide interpretability, solving the 
challenges associated with the reliability and understand-
ing of landslide risk assessments. This integrated meth-
odology is suited to address the limitations highlighted in 
recent studies (Zhang et al., 2023; Liu et al., 2023; Rihan 
et al., 2023; Yu & Chen, 2024; Wang et al., 2024), which 
have primarily focused on model performance rather than 
interpretability and regional applicability.

Therefore, this research contributes to the LSM field 
by employing Bayesian optimization for hyperparameter 
tuning, an approach that has not been extensively explored 
in this context. By incorporating the SHAP value calcu-
lation into the modeling process, this study aims to pro-
vide a more accurate and reliable understanding of the 
determinants that influence landslide susceptibility. This 
study not only addresses the need for state-level LSM in 
Uttarakhand but also presents an innovative methodology 
that could shape future research and practical applica-
tions in landslide risk management and ultimately help 
stakeholders make informed decisions to strengthen the 
safety and resilience of communities and infrastructure in 
landslide-prone regions.

Materials and methodology

Study area

Uttarakhand is located in the Indian Himalayan range, 
between latitudes 28°43′ N and 31°28′ N and longitudes 
77°34′ E and 81°03′ E. The state covers an area of approxi-
mately 53,483 km2, which is 1.63% of the country’s total 
land area (refer to Fig. 1). As of the 2011 census, the popu-
lation of Uttarakhand was approximately 10 million, and 
this population is evenly distributed across all 13 districts 
of the state. The two most populous districts in the state are 
Dehradun and Haridwar, with a combined population of over 
3.59 million. The study area of this research is classified as 
a mountainous region with elevations ranging from 250 to 
7817 m above mean sea level. The geology of Uttarakhand is 
complex and comprises of folded igneous, sedimentary, and 
metamorphic rocks. The state is geographically divided into 
six regions: the Great Himalaya, the Lesser Himalaya, the 
Shivalik Himalaya, the Upper Ganga Plain, the Terai region, 
and the Bhabar region (Anamika et al., 2020).

Uttarakhand has a subtropical monsoon climate, with an 
average annual rainfall ranging between 920 and 2370 mm. 
The monsoon season usually occurs from July to August and 
brings persistent and heavy rainfall. The maximum tempera-
ture typically reaches about 40 °C in May and June, while 

Fig. 1   Location of the study 
area and some landslide spots
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the minimum temperature drops to −7 °C in December and 
January (Dobriyal and Bijalwan, 2017). The vegetation and 
climate in this region vary significantly with altitude, from 
the Ganga plains to the high-altitude glaciers.

Materials

This study area experiences recurrent landslides annually, 
and to obtain the historical landslide inventory for this study, 
data was gathered from the Geological Survey of India 
(https://​bhuko​sh.​gsi.​gov.​in/​Bhuko​sh/​Public) (Table 1). Sat-
ellite images of Landsat-9 (OLI-2/TIRS-2) were downloaded 
from the United States Geological Survey (USGS) website 
(https://​earth​explo​rer.​usgs.​gov/) to generate a land use and 
land cover (LULC) map and normalized differential vegeta-
tion index (NDVI). The topographic and hydrological fea-
tures of the study area were extracted from the SRTM map 
with a spatial resolution of 30 m. Soil depth and soil texture 
were downloaded from the Bhuvan Portal, India (https://​
bhuvan.​nrsc.​gov.​in/​home/​index.​php). The annual rainfall 
data for the study area was collected from the India Mete-
orological Department (IMD).

Creation of landslide inventory

The landslide inventory, essential for developing the land-
slide susceptibility map through Bayesian-optimized deep 
learning techniques, was compiled from historic landslide 
data sourced from the Bhukosh website, a portal managed by 
the Geological Survey of India. This portal provides spatial 
data on landslide occurrences across India in polygon for-
mat. For this study, 1600 random landslide incidents were 
selected from the Bhukosh dataset and converted from poly-
gons to point representations to serve as the target variable 
for model training and validation. It is noteworthy to men-
tion that the Bhukosh portal, while a rich source of spatial 
data on landslides, does not provide specific temporal infor-
mation for each landslide event. Consequently, the dataset 
used in this study encompasses landslide locations without 
explicit temporal details. These landslide points were further 

validated through field investigations, GPS surveys, and the 
review of various landslide reports and articles, ensuring 
their accuracy and relevance for the susceptibility mod-
eling. Alongside the 1600 landslide points, an equivalent 
number of non-landslide locations, which have not experi-
enced any recorded landslides for a substantial period, were 
identified to create a balanced binary classification model 
from Google Earth Imageries and field survey. These non-
landslide samples were selected based on the absence of 
landslide events in historical records and were included to 
improve the robustness of the predictive models. For the 
modeling process, the dataset of 3200 points was divided 
into training and testing sets, with 70% of the points used for 
model training and the remaining 30% allocated for model 
testing. This segmentation facilitated the effective training 
and evaluation of the Bayesian-optimized deep learning 
models, which were then applied to develop comprehensive 
landslide susceptibility maps. The lack of temporal data in 
the landslide inventory is a limitation acknowledged in this 
study, and future research could benefit from incorporating 
time-specific landslide occurrences to enhance the predictive 
capabilities of susceptibility models.

Preparation of landslide conditioning parameters

The accuracy of landslide prediction depends largely on the 
quality of the prediction parameters (Azarafza et al., 2021). 
In this study, sixteen landscape characteristic parameters 
(LCPs) were employed to predict landslide susceptibility and 
map the study area. These LCPs include elevation, slope, 
curvature, aspect, annual rainfall, distance from river (DFR), 
drainage density (DD), lineament density (LD), distance 
from built-up (DFB), topographic wetness index (TWI), 
road density (RD), land use/land cover (LULC), normalized 
difference vegetation index (NDVI), soil depth, soil texture, 
and geology, each of which will be detailed below.

Firstly, elevation is a critical component of topography 
and a crucial indicator for detecting changes in relative 
relief as it reveals the highest and lowest points of eleva-
tion (Nawazelibe et al., 2022; Liu et al., 2021). The study 

Table 1   Overview of data sources and their utilization in landslide susceptibility modeling

Data type Source Purpose

Historical landslide inventory Geological Survey of India (https://​bhuko​sh.​gsi.​gov.​in/​
Bhuko​sh/​Public)

To obtain the historical landslide inventory for the study

Landsat-9 (OLI-2/TIRS-2) 
satellite images

United States Geological Survey (https://​earth​explo​rer.​
usgs.​gov/)

To generate a land use and land cover (LULC) map and 
NDVI

SRTM map SRTM map with a spatial resolution of 30 m To extract topographic and hydrological features of the 
study area

Soil depth and texture Bhuvan Portal, India (https://​bhuvan.​nrsc.​gov.​in/​home/​
index.​php)

To gather soil depth and texture information

Annual rainfall data India Meteorological Department (IMD) To collect annual rainfall data for the study area

https://bhukosh.gsi.gov.in/Bhukosh/Public
https://earthexplorer.usgs.gov/
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
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area’s elevation map was divided into six groups using 
the natural break categorization tool, namely below 960, 
960 to 2005, 2005 to 3260, 3260 to 4633, and above 4633 
m (Fig. 2a). Secondly, the slope angle is one of the most 
significant factors in predicting landslide susceptibility 
as steeper slopes are more prone to failure (Bui et al., 
2020). The slope angle was manually grouped into five 
categories, namely < 10.06°, 10.06–21.87°, 21.87–31.94°, 
31.94–43.40°, and > 43.40° (Fig. 2b). Thirdly, curvature 
refers to the shape of a surface created by the intersection 

of random planes (Canavesi et al., 2020; Gautam, 2022). 
Plan curvature controls flow divergence and convergence 
and is perpendicular to the direction of the steepest slope 
(Sameen et al., 2020). The study area was divided into 
one of three groups based on curvature values using the 
natural break classification tool, namely convex, flat, and 
concave (Fig. 2c). Fourthly, aspect is another significant 
factor that affects landslide susceptibility in the study 
area as it reveals the directions of slopes and regulates 
the quantity of water on hillsides, both of which can 

Fig. 2   Multifaceted geospatial parameters for landslide susceptibility 
mapping, such as a elevation variance across the study area, b gradi-
ent slope categorization, c surface curvature classification, d spatial 
distribution of annual rainfall, e proximity to river networks, f drain-
age density heatmap, g lineament density overlay, h distance from 
built-up areas, and i topographic wetness index (TWI). Integrated 

environmental and anthropogenic factors for landslide susceptibility 
assessment, such as j road density distribution, k land use and land 
cover (LULC) classification, l normalized differential vegetation 
index (NDVI) analysis, m soil depth variation, n soil texture types, o 
geological formations with fault lines, and p aspect orientation
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contribute to slope instability (Bui et al., 2020). The pre-
sent study manually classified aspects into nine categories 
(Fig. 2p). Fifthly, annual rainfall is a crucial determinant 
of landslide risk as it increases soil wetness and pore water 
pressure, which decreases soil cohesiveness and triggers 
landslides (Yang et al., 2020; Zhu et al., 2020; Chen et al., 
2020). The average annual rainfall in the study area ranges 
from 768 to 1797 mm (Fig. 2d). Then, groundwater flow 
toward streams and rivers is known to influence under-
cutting processes, which in turn cause landslides on val-
ley slopes (Zaruba and Mencl, 2014; Tang et al., 2011). 
The distance from the river was calculated using ArcGIS 
and divided into five classes, namely 0–798 m, 798–1794 

m, 1794–2870 m, 2870–4185 m, and 4185–10161 m 
(Fig. 2e). Next, drainage density fluctuates based on rock 
permeability, soil infiltration, precipitation intensity, and 
slope gradient (Arulbalaji et al., 2019), which significantly 
affects vegetation cover and landforms in a region (Gao 
et al., 2022) and contributes to landslides. In this study, the 
drainage density was calculated in ArcGIS and classified 
into five classes: 1.08–1.60 km2, 1.60–1.83 km2, 1.83–2.05 
km2, 2.05–2.31 km2, and 2.31–2.95 km2 (Fig. 2f).

LD is a measure of the density of lineaments in a par-
ticular region. To calculate the LD, the number of line-
aments recorded in the region is divided by the total 
area under consideration. The lineaments are identified 

Fig. 2   (continued)
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by analyzing the Geological Survey of India website, 
which helps to identify fault lines and fractures. The 
presence of lineaments is then used to create a density 
map, which is classified into five different classes based 
on their density in km2 (Fig. 2g). Distance from built-up 
(DFB) is an important parameter for landslide susceptibil-
ity calculations and estimates. The distance between the 
research area and built-up areas is crucial for determin-
ing the region’s vulnerability to landslides. The distance 
from built-up areas in the research region varies from 0 
to 53,955 m (Fig. 2h). Topographic wetness index (TWI) 
is a measure of the geographical scale on hydrological 
processes. Topographical variables play a significant 
role in governing hydrology, which in turn affects pore 
water pressure and slope stability. In this study, the TWI 
value varies from 0.27 to 27.43 (Fig. 2i). The proximity 
of roadways to slopes can increase the susceptibility of 
the slopes to landslides. In this study, the road density 
was calculated using ArcGIS and divided into five classes 
based on distance: < 1978 m, 1978–4645 m, 4645–8000 
m, 8000–13,591 m, and > 13,591 m (Fig. 2j). Land use/
land cover (LULC) is an important factor in determining 
slope stability. Landslides are commonly associated with 
the development of roads, houses, bridges, dams, defor-
estation, and agricultural land growth. For this study, the 
LULC map was classified into eight classes: forest, scrub-
land and grassland, agricultural land, snow and glaciers, 
barren land, river bed, water bodies, and built-up (Fig. 2k). 
Vegetation is a critical factor in slope stability. The NDVI 
is used to quantify vegetation cover and was extracted 
from Landsat 9 satellite data using the NDVI equation 
(Eq. 1). The high value (0.22 to 1) represents vegetation, 
while the low value (−0.25 to 0.22) indicates a lack of 
vegetation (Fig. 2l).

Soil depth—soil depth is an important factor in predict-
ing LSM. The soil depth map of the study region shows 
that the depth ranges from about 128 to 300 cm (Fig. 2m). 
Soil texture—the soil in the research region has a combina-
tion of loamy, clayey, and sandy characteristics, with loamy 
soils being the most dominant, followed by sandy soils in 
various patches (Fig. 2n). Geology plays a significant role 
in determining the frequency of landslides due to variations 
in the strength and permeability of rocks and soils caused 
by lithological and structural variables. The geological map 
of the study area is shown in Fig. 2o.

Method for feature selection

Feature selection is a crucial step in building effective 
machine learning models, as it involves identifying the most 
relevant features that contribute to the predictive power of 
the model. This subsection details the implementation of 
various feature selection methods used in our study.

Decision tree

Decision trees are employed for feature selection by evaluat-
ing the importance of each feature in making the split deci-
sions. During the tree construction, the algorithm calculates 
the decrease in node impurity (e.g., Gini impurity for clas-
sification, variance for regression) for each feature at every 
split. Features that result in significant impurity reduction 
are considered more important. In our implementation, we 
utilize the feature importance scores generated by the deci-
sion tree to select the top features that contribute most to the 
model’s predictive accuracy.

Random forest

Random forest extends the feature selection capability of 
decision trees by averaging the feature importance scores 
across all trees in the forest. Since each tree is built on a ran-
dom subset of features, this method provides a more robust 
estimation of feature importance. We aggregate the feature 
importance scores from all the trees within the random for-
est to identify and select the most significant features for 
our model.

Bagging

While bagging itself is more of an ensemble method than a 
direct feature selection technique, we leverage the individ-
ual base estimators (e.g., decision trees) within the bagging 
ensemble to assess feature importance. Similar to random 
forest, we average the feature importance scores across all 
base estimators in the bagging ensemble to determine the 
key features. This approach helps in reducing the variance of 
the feature importance estimates, making the feature selec-
tion process more stable.

LightGBM

LightGBM employs a novel feature selection approach by 
constructing gradient-boosted trees using a leaf-wise growth 
strategy rather than a level-wise strategy. Feature importance 
in LightGBM is determined based on the number of times 
a feature is used in splitting the nodes, weighted by the gain 
of each split. This method allows us to identify features that 
not only frequently contribute to splits but also significantly 
improve the model’s performance.

XGBoost

XGBoost provides a quantitative measure of feature impor-
tance based on the number of times a feature appears in the 
trees across all the boosting rounds, weighted by the gain 
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associated with each feature split. This approach allows for 
a comprehensive understanding of how each feature contrib-
utes to the model’s predictions, enabling the selection of the 
most impactful features.

SVM

Feature selection with SVM involves analyzing the weight 
coefficients associated with each feature in the hyperplane 
equation. In linear SVM, features with larger absolute weight 
values are considered more important as they have a greater 
influence on the decision boundary. For non-linear classifi-
cation, the selection of features can be more complex and 
may involve techniques such as recursive feature elimination 
(RFE) with SVM where features are recursively removed 
based on their weights in the SVM model.

Method for LSM using Bayesian‑optimized deep 
learning models

Bayesian optimization

Bayesian optimization is a probabilistic model-based 
approach for global optimization of black-box functions 
that are expensive to evaluate. It is particularly effective for 
hyperparameter tuning in complex machine-learning mod-
els where direct optimization is computationally infeasible. 
Bayesian optimization employs the Gaussian process (GP) 
to model the objective function and utilizes an acquisition 
function to decide where to sample next. This process itera-
tively updates the GP model based on observed evaluations 
and selects new hyperparameters to evaluate by optimizing 
the acquisition function. In the context of landslide suscepti-
bility modeling, Bayesian optimization is used to systemati-
cally explore the hyperparameter space of ANN, DNN, and 
ENN models, aiming to find the optimal configuration that 
maximizes model performance, typically measured in terms 
of prediction accuracy or minimizing loss on a validation 
dataset.

Artificial neural network

Artificial neural networks (ANNs) are computational models 
inspired by the structure and functional aspects of biological 
neural networks. They consist of layers of interconnected 
nodes or neurons where each connection represents a weight. 
In the context of landslide susceptibility modeling, an ANN 
takes various geographical and environmental features as 
input, such as slope angle, aspect, soil type, vegetation cover, 
and hydrological factors. These inputs are processed through 
one or more hidden layers where the network learns to iden-
tify complex patterns and relationships through the adjust-
ment of weights during training. The final layer produces 

a binary output indicating the susceptibility to landslides. 
Training an ANN involves using backpropagation and opti-
mization algorithms like stochastic gradient descent (SGD) 
or Adam to minimize a loss function, typically binary cross-
entropy for classification problems.

Deep neural network

Deep neural networks (DNNs) extend ANNs by incorpo-
rating multiple hidden layers, allowing for the hierarchical 
extraction and learning of high-level features from input 
data. In landslide susceptibility applications, DNNs can 
model the intricate, non-linear interactions between vari-
ous factors contributing to landslide occurrence, such as 
geological, topographical, and meteorological conditions. 
Each layer in a DNN transforms its input data into a slightly 
more abstract and composite representation, capturing com-
plex patterns that simpler models might miss. Implementing 
DNNs for landslide susceptibility involves careful design 
considerations, such as the number of layers, the number 
of neurons in each layer, activation functions, and regulari-
zation techniques like dropout to prevent overfitting. The 
training process uses advanced optimization techniques to 
adjust the weights and biases to minimize prediction errors.

Elman neural network

Elman neural networks (ENN), a type of recurrent neural 
network (RNN), are particularly suited for modeling tempo-
ral or sequential data, making them ideal for incorporating 
time-dependent factors into landslide susceptibility mod-
eling, such as sequential rainfall data or temporal land-use 
changes. ENNs feature a set of recurrently connected hidden 
units that provide memory capabilities, allowing the network 
to maintain information about previous inputs in its internal 
state. This feature enables ENNs to capture dynamic tem-
poral behaviors in the data, offering a significant advantage 
over traditional feedforward neural networks when deal-
ing with time-series or spatial-temporal data. Implement-
ing ENNs for landslide susceptibility involves selecting the 
appropriate architecture, including the number of hidden 
layers and units, and training the model to learn temporal 
patterns that are indicative of landslide occurrences.

Implementation

The implementation of ANN, DNN, and ENN models for 
landslide susceptibility modeling involves a systematic 
approach that begins with data preprocessing, including 
normalization or standardization of input features to ensure 
effective model training. The models are then trained using 
the training dataset, comprising various landslide-related 
features and labels indicating landslide occurrences. The 
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training process involves forward propagation to make pre-
dictions, calculation of loss using a suitable loss function, 
and backward propagation to update the model weights. 
Model validation is conducted using a separate validation set 
to tune hyperparameters and avoid overfitting. Once trained, 
the models can classify unseen geographical areas into cat-
egories based on their susceptibility to landslides. Model 
performance is evaluated using metrics such as accuracy, 
precision, recall, and F1 score. The trained models serve 
as powerful tools for identifying potential landslide-prone 
areas, contributing to risk assessment, early warning sys-
tems, and informed decision-making for disaster manage-
ment and mitigation strategies.

Validation and comparison of the models

Model validation and comparison are critical steps in assess-
ing the performance and reliability of machine learning 
models. In the context of landslide susceptibility modeling 
using ANN, DNN, and ENN, various metrics and graphi-
cal analyses are employed to validate and compare model 
outputs.

Model validation using ROC and precision‑recall curves

The receiver operating characteristic (ROC) curve and the 
precision-recall curve are two widely used tools for evalu-
ating the performance of classification models. The ROC 
curve plots the true positive rate (TPR) against the false 
positive rate (FPR) at various threshold settings, provid-
ing insight into the model’s ability to distinguish between 
classes. The area under the ROC curve (AUC) serves as a 
summary measure, with values closer to 1 indicating better 
model performance. Precision-recall curves, on the other 
hand, plot precision (the proportion of true positive predic-
tions in the positive predictive class) against recall (the pro-
portion of actual positives correctly identified by the model), 
which is particularly useful in scenarios with imbalanced 
datasets. Average precision (AP) summarizes the precision-
recall curve as the weighted mean of precisions achieved at 
each threshold, emphasizing the contribution of high-recall 
regions. By comparing these curves and summary metrics 
for ANN, DNN, and ENN models, researchers can gauge the 
models’ discriminative power and their trade-offs between 
sensitivity (recall) and specificity.

Quantitative metrics for model comparison

Beyond graphical methods, a set of quantitative metrics pro-
vides a comprehensive view of model performance. Accuracy 
measures the proportion of true results (both true positives 
and true negatives) among the total number of cases exam-
ined. Precision assesses the model’s accuracy in predicting 

positive labels, while recall (or sensitivity) evaluates how well 
the model identifies actual positives. Specificity and negative 
predictive value (NPV) are metrics focusing on the model’s 
performance in predicting and identifying negative outcomes, 
respectively. The F1 score offers a balance between precision 
and recall, helpful in comparing model performance in situa-
tions of uneven class distributions. The Matthews correlation 
coefficient (MCC) and Cohen’s Kappa provide overall perfor-
mance indicators, taking into account true and false positives 
and negatives, ideal for imbalanced datasets. By computing 
these metrics for each model, researchers can conduct a thor-
ough comparison, identifying strengths and weaknesses in the 
context of landslide susceptibility prediction.

Graphical analysis for in‑depth model evaluation

Graphical analyses, such as Bland-Altman plots and cumula-
tive distribution function (CDF) plots, offer deeper insights 
into model predictions relative to actual observations. Bland-
Altman plots highlight the agreement between predicted and 
true values, illustrating the mean difference (bias) and limits 
of agreement, which can indicate systematic errors or biases 
in model predictions. CDF plots, by visualizing the cumulative 
probability distribution of model predictions, allow researchers 
to assess the overall distribution and variance of predictions, 
providing a visual comparison of model performance across 
the entire range of predicted values. These graphical analyses 
complement traditional metrics, offering a nuanced view of 
model behavior, predictive accuracy, and reliability in classify-
ing areas based on their susceptibility to landslides. Together, 
these validation and comparison methods form a robust 
framework for evaluating and refining ANN, DNN, and ENN 
models, ensuring their effectiveness in landslide susceptibil-
ity modeling and contributing to informed decision-making in 
disaster risk management.

Behavioral assessment using game theory

Game theory offers a mathematical framework for strategic 
decision-making among multiple agents, and it has found 
applications in machine learning for analyzing how individual 
features or parameters influence a model’s predictions. SHAP 
(SHapley Additive exPlanations), grounded in cooperative game 
theory, provides a systematic method to quantify the contribu-
tion of each feature to the prediction of a model, even for com-
plex models like deep neural networks (DNNs), Elman neural 
networks (ENNs), and generalized linear models (GLMs).

The essence of SHAP values can be understood through 
the Shapley value concept in cooperative game theory, which 
assigns a value to each player (feature) that reflects their con-
tribution to the total payout (prediction). Mathematically, 
the Shapley value for a feature i in a prediction model can be 
expressed as follows:
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 where N is the set of all features, S is a subset of features 
excluding i, v(S) is the prediction model’s payout (or pre-
dicted value) with features in set S, and |S| is the cardinality 
of set S. This formula calculates the average marginal contri-
bution of feature i over all possible combinations of features.

In the context of landslide susceptibility modeling, SHAP 
values can demystify the impact of various parameters like 
topographic variables (e.g., slope, elevation, aspect), soil 
properties, land use, and geological characteristics on model 
predictions. SHAP plots visually represent these contribu-
tions, highlighting key factors influencing landslide occur-
rences. Beyond SHAP, other game theory constructs like 
Nash equilibrium and game payoff matrices further enrich 
the analysis of parameter behavior within landslide suscepti-
bility models. For instance, a game payoff matrix can model 
the interplay among different parameters affecting land-
slide likelihood, with Nash equilibrium pinpointing param-
eter configurations most associated with landslide events. 
Incorporating game theory and SHAP values into landslide 

𝜙
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susceptibility models not only aids in understanding the sig-
nificance of different factors but also enhances model trans-
parency and interpretability. This approach facilitates the 
development of more accurate, reliable models for landslide 
hazard assessment and risk management, ultimately contrib-
uting to informed decision-making in geohazard mitigation 
strategies. The methods utilized in the entire work has been 
presented in a methodological flow chart (Fig. 3).

Results

Feature selection analysis

In this study, six feature selection methods, namely deci-
sion tree, random forest, bagging, LightGBM, XGBoost, 
and SVM, were used to identify critical factors for landslide 
susceptibility prediction. Methods such as decision tree, 
random forest, bagging, LightGBM, and XGBoost gener-
ate direct measures of feature importance based on their 
algorithmic structures, using metrics such as information 
gain, Gini importance, or gain scores. In contrast, the SVM 

Fig. 3   Flowchart of the overall 
methodology
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model, particularly with linear kernels, does not inherently 
provide a direct metric for feature importance, as its mecha-
nism is focused on identifying the optimal hyperplane for 
classification. In this context, the coefficients associated with 
each feature in the SVM decision function are considered 
approximations of the feature’s importance. The magnitude 
of these coefficients indicates the relative importance of each 
feature in shaping the decision boundary, with larger abso-
lute values indicating a stronger influence on the model’s 
predictions. In the study, the absolute values of the coeffi-
cients of a linear SVM model, scaled to the range 0–1, were 
used to estimate the importance of the features. This method 
facilitated the inclusion of SVM in the comparative analysis 
of feature selection techniques alongside other models that 
provide a direct output of importance metrics. The results 
of each method are presented in Fig. 4, providing a holistic 
overview of the most influential factors for landslide suscep-
tibility identified by the different feature selection strategies.

The decision tree analysis showed the overriding impor-
tance of features such as slope and elevation, while factors 
such as soil texture and land use/land cover (LULC) were 
found to be less influential. Similarly, the random forest and 
bagging methods emphasized the importance of variables 
such as distance from rivers (DFR) and lineament density 
(LD), while soil texture and geology were considered less 

crucial. The LightGBM and XGBoost analyses were consist-
ent with these observations and indicated that geology and 
soil properties play a lesser role in landslide susceptibility. 
The results of the SVM model, which indicated less influ-
ence of topographic wetness index (TWI) and curvature, 
confirmed this trend. These findings led to the exclusion of 
geology, soil texture, and curvature from further modeling, 
as their influence on predictive capabilities was consistently 
minimal. This decision, based on the observation of their 
limited influence on model predictions, aims to improve 
the efficiency and accuracy of landslide susceptibility mod-
els and ensure their robustness and focus. Such a targeted 
approach is intended to optimize decision-making and plan-
ning in landslide-prone regions by concentrating resources 
and analytical efforts on the factors that are most important 
for understanding landslide susceptibility.

Implementation of Bayesian‑optimized deep 
learning models

Optimization of DL models

The optimization of the ANN model in this study was metic-
ulously performed using Bayesian optimization, a powerful 
strategy for fine-tuning hyperparameters. The search space 

Fig. 4   Feature selection using six machine learning models for appropriate parameter selection
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for the hyperparameters was defined to include three layers’ 
unit counts (ranging from 32 to 512 for each layer), learn-
ing rate (ranging from 0.0001 to 0.1), dropout rate (ranging 
from 0.1 to 0.5), the number of layers (from 1 to 5), and 
batch size (ranging from 32 to 256). These hyperparameters 
were selected based on their known influence on the train-
ing process and overall model performance, considering the 
depth and complexity of the model, the speed and stability 
of learning, regularization effects to combat overfitting, and 
the efficiency of the training process. The hyperparameter 

tuning results were plotted on a 2-dimensional surface using 
the function “plot_objective(res_gp)” (Fig. 5). The objec-
tive plot, comprising various subplots, offers a detailed 
view of the hyperparameter search. Each subplot shows 
the interplay between two hyperparameters and their influ-
ence on the model’s performance. The different shades of 
color represent the model’s performance, with darker shades 
typically indicating better performance (higher accuracy or 
lower loss). The black dots represent combinations of hyper-
parameters that were evaluated, while the red star marks 

Fig. 5   Objective function plot to show hyperparameter search of ANN model for finding best hyperparameters
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the combination of hyperparameters that resulted in the 
best performance. This graphical representation allows for 
an intuitive understanding of how hyperparameter values 
relate to model success and where the optimization algo-
rithm focused its search. The objective plot demonstrated 
that the optimal hyperparameters were found at [256, 445, 
359] for the neuron counts across the layers, with a learning 
rate of approximately 0.045, a dropout rate just above 0.1, 
indicating a preference for model complexity moderated by 
regularization to prevent overfitting. The model complexity 
was further substantiated by the optimal number of layers 
set to the maximum of 5 and a mid-range batch size of 158, 
balancing the computational load with model performance. 
The convergence plot reinforces the effectiveness of the opti-
mization process, where the minimum negative accuracy 
score rapidly stabilizes after the initial iterations, signify-
ing a swift approach to the optimal hyperparameter region 
(Fig. 6a). This stabilization, depicted as a flat line in the 
convergence plot, suggests that additional iterations beyond 

the initial ones provided diminishing returns, quantitatively 
supporting the adequacy of the optimization procedure and 
the robustness of the identified hyperparameters in predict-
ing landslide susceptibility.

The search space parameters of DNN model were set to 
include neuron counts for three layers (32 to 512), learn-
ing rate (0.0001 to 0.1), dropout rate (0.1 to 0.5), number 
of layers (5 to 20), and batch size (32 to 256). The objec-
tive plot revealed the intricate landscape of hyperparam-
eter efficacy, with darker shades indicating regions of 
higher model performance and the red stars pinpointing 
the optimal hyperparameter values (Fig. 7). These optimal 
values were determined as [32, 512, 32] for the neuron 
counts, a learning rate at the upper limit of 0.1, a moder-
ate dropout rate of 0.1, a depth of 5 layers for the network, 
and a batch size of 124. The convergence plot further 
validated the effectiveness of the optimization process, 
depicting a rapid initial decrease in the minimum negative 
accuracy score, followed by a plateau, which indicates 

Fig. 6   Convergence plot to show the performance of hyperparameter search for a ANN, b DNN, and c ENN
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that the optimal hyperparameters were identified early in 
the 50 iterations (Fig. 6b). This early stabilization sug-
gests that the chosen hyperparameters are robust, provid-
ing a DNN model that is well-suited for the complexity 
of landslide susceptibility prediction.

The optimization of the ENN model was executed 
through Bayesian optimization within a defined hyper-
parameter search space, which included the number of 
hidden layers (1 to 10), hidden layer size (16 to 128), 

learning rate (0.001 to 0.01), batch size (10 to 50), and 
number of epochs (10 to 100). The optimal hyperparam-
eters, determined by this process, were found to be a 
configuration with 10 hidden layers, a hidden layer size 
of 72, a learning rate of 0.01, a batch size of 22, and 18 
epochs. These parameters were discerned through the 
interpretation of the objective plot, which presents a vis-
ual exploration of hyperparameter performance, where 
the color gradient indicates varying levels of model 

Fig. 7   Objective function plot to show hyperparameter search of DNN model for finding best hyperparameters
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accuracy and the red star marks the peak of model per-
formance (Fig. 8). The convergence plot solidifies the 
effectiveness of the chosen hyperparameters, exhibiting 
an initial sharp improvement in model accuracy that pla-
teaus with subsequent iterations, suggesting early attain-
ment of an optimal hyperparameter set (Fig. 6c). This 
plateau, where further calls do not significantly change 
the minimum negative accuracy score, quantitatively 
affirms the efficiency of the optimization process and 

the robustness of the resulting ENN model for predicting 
landslide susceptibility.

Evaluation of optimized deep learning models 
through learning curves

Learning curves are essential for understanding a model’s 
learning dynamics and diagnosing issues related to its learning 
process, such as underfitting or overfitting. By examining these 

Fig. 8   Objective function plot to show hyperparameter search of ENN model for finding best hyperparameters
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curves, we can assess how well the model is generalizing from 
the training data to unseen data and ensure the robustness of 
the model’s predictive capabilities. The learning curve for the 
optimized ANN model shows a characteristic rapid decrease 
in training loss within the initial epochs, indicating that the 
model is quickly learning from the training dataset (Fig. 9a). 
The validation loss decreases in tandem with the training loss 
but starts to plateau, suggesting the model is generalizing well 

to unseen data. Both training and validation loss curves con-
verge to a low value, which indicates a minimal gap between 
the two. This is indicative of a well-fitted model with a bal-
ance between bias and variance. The training and validation 
accuracy curves mirror this behavior, rapidly ascending to high 
values and converging, with the validation accuracy slightly 
below but closely following the training accuracy, reaching 
a stable state after about 20 epochs. For the DNN model, the 

Fig. 9   Learning curves for the 
optimized a ANN, b DNN, and 
c ENN model, displaying the 
training and validation loss and 
accuracy over epochs
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learning curve depicts a different pattern. The initial training 
loss is substantially higher, followed by a steep decline, which 
then stabilizes (Fig. 9b). The validation loss mirrors the sharp 
descent but then shows a slight increase, which could be indic-
ative of overfitting as the model starts to learn noise from the 
training data. However, the training and validation accuracy 
both show a steep increase, with the training accuracy reach-
ing near-perfect levels and the validation accuracy trailing at a 
high level but not plateauing as smoothly as the training accu-
racy, suggesting that the model is optimal, but might benefit 
from further tuning of regularization parameters or training 
on more diverse data to improve generalization. Lastly, the 
ENN model’s learning curves reveal an efficient learning pro-
cess, with the training loss rapidly dropping to a low level and 
the validation loss closely following, indicating good model 
generalization (Fig. 9c). The slight divergence between the 
training and validation loss curves implies a small amount of 
overfitting. Nonetheless, the accuracy curves for both train-
ing and validation quickly ascend to high levels, maintaining 
a narrow gap between them throughout the training process. 
This closeness of the training and validation accuracy curves, 
maintaining high values, suggests the ENN model has learned 
the patterns within the data well and generalizes effectively to 
new data, potentially making it a robust model for predicting 
landslide susceptibility.

Accuracy assessment of the models

The ROC and precision-recall curves provide a visual and 
quantitative assessment of model performance for the ANN, 
DNN, and ENN models (Fig. 10). The ROC curve illustrates 
the trade-off between the TPR and the FPR, with both ANN 

and DNN achieving a perfect AUC of 1.00 and ENN slightly 
behind at 0.99. In the precision-recall space, which is often 
more informative in unbalanced datasets, all models perform 
well, with ANN and DNN achieving a perfect AP score of 
1.00 and ENN just below 0.99, indicating a high degree of 
reliability in predicting positive classes.

In terms of quantitative metrics, ANN and DNN have 
identical scores across the board, with an accuracy, preci-
sion, and F1 score of approximately 0.979 and a perfect recall 
of 1.000 (Table 2). These results indicate that both models 
correctly identified every instance of the positive class. The 
specificity and NPV are 0.958 and 1.000, respectively, with 
a very low FPR of 0.0417, indicating few false positives. 
MCC and Cohen’s Kappa, which both consider true and 
false positives and negatives, are also high at around 0.959, 

Fig. 10   Comparative ROC and precision-recall curves for ANN, DNN, and ENN models. The curves demonstrate the performance of each 
model in terms of true positive rate vs. false positive rate (left) and precision vs. recall (right)

Table 2   Performance metrics for ANN, DNN, and ENN models

Metric ANN DNN ENN

Accuracy 0.9789 0.9789 0.9684
Precision 0.9592 0.9592 0.9583
Recall 1.0000 1.0000 0.9787
Specificity 0.9583 0.9583 0.9583
F1 score 0.9792 0.9792 0.9684
NPV 1.0000 1.0000 0.9787
FPR 0.0417 0.0417 0.0417
FNR 0.0000 0.0000 0.0213
FDR 0.0408 0.0408 0.0417
Balanced accuracy 0.9792 0.9792 0.9685
MCC 0.9588 0.9588 0.9371
Cohen’s Kappa 0.9579 0.9579 0.9368
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emphasizing the strong performance of the models. The ENN 
model lags slightly behind with a precision of 0.9684 and an 
F1 score of the same value, but still shows high precision and 
specificity, albeit with a slightly lower recall of 0.9787, sug-
gesting that some positive instances were missed. Overall, the 
ANN and DNN models exhibit superior performance met-
rics, making them the best candidates for landslide suscepti-
bility prediction in this study, with the DNN perhaps offering 
a slight advantage due to its more complex architecture that 
may capture more nuanced patterns in the data.

Comparative analysis

The Bland-Altman plot and CDF diagram provide insights 
into the comparative analysis of the predictive performance 
of the ANN, DNN, and ENN models. Together, these plots 
quantify the predictive accuracy and reliability of the mod-
els in the assessment of landslide susceptibility. The Bland-
Altman plot, which assesses the agreement between the pre-
dicted and true values, shows that the mean differences for all 
three models are close to zero—ANN at 0.019157, DNN at 
0.021028, and ENN at 0.010684, indicating that the predic-
tions are, on average, closely aligned with the true values. The 
standard deviations of these differences are slightly larger for 
the ENN model (0.173863) than for the ANN (0.141141) and 
DNN (0.143528), suggesting greater variability in the predic-
tions of the ENN model. The limits of agreement, calculated 
as the mean difference plus or minus 1.96 times the standard 

deviation, are closest for the ANN model and widest for the 
ENN model, further indicating that the ANN and DNN models 
have closer agreement with the true values.

The trend lines in the Bland-Altman plots show negligible 
slopes for all models, confirming that there is no obvious 
proportional bias over the entire range of predictions. In the 
CDF plot, which illustrates the cumulative probability of the 
predicted values, all models quickly approach a cumulative 
probability of 1, indicating high confidence in their predic-
tions (Fig. 11). However, the Bland-Altman results provide a 
more accurate assessment, with the ANN and DNN models 
showing slightly better agreement with the true values than 
the ENN model (Fig. 11). Overall, the ANN and DNN mod-
els appear to perform best, with the DNN model having the 
smallest lead due to the slightly lower mean difference and 
tighter limits of agreement, suggesting that its predictions are 
in better agreement with the true values.

LSM modeling using optimized models

In this study, the researchers have used Bayesian optimization 
to train three deep learning models (ENN, ANN, and DNN) 
to generate a LSM that ranges from 0 to 1. The LSM values 
were then classified into five categories, i.e., very high, high, 
moderate, low, and very low, using a natural break algorithm. 
The area (km2) under the five categories for all three models 
was computed, and the results were presented in Fig. 12.

Fig. 11   Comparative analysis of model predictions. The Bland-Alt-
man plot (left) illustrates the agreement between the true values and 
the predictions made by ANN, DNN, and ENN models, with mean 
differences and limits of agreement indicating the precision of each 

model. The CDF plot (right) displays the cumulative distribution of 
the predicted probabilities, reflecting the confidence in the models’ 
predictive performances
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The results show that the DNN model outperformed the 
other two models in terms of area covered under each cat-
egory. For example, the DNN model covered 7839.5497 
km2 under the very low landslide susceptibility zone, 
whereas the ENN and ANN models covered 8524.828 and 
8802.5497 km2, respectively. Similarly, the DNN model cov-
ered 3613.4442 km2 under the very high landslide suscep-
tibility zone, whereas the ENN and ANN models covered 
4018.0906 and 4613.4442 km2, respectively.

These findings suggest that the DNN model is better 
suited for generating landslide susceptibility maps, as it can 
classify areas with higher accuracy compared to the other 
two models. This information can be used by decision-mak-
ers and planners to prioritize resources for areas that are 
more susceptible to landslides. For example, areas under the 
very high and high susceptibility zones may require more 
attention and resources to reduce the risk of landslides.

Behavioral assessment using game theory 
and SHAP analysis

The application of SHAP values for interpretability in machine 
learning offers a compelling insight into the contribution of 
each feature toward the model’s predictions. This study has 

employed the SHAP method to elucidate the factors influenc-
ing landslide susceptibility in Uttarakhand, India, incorporat-
ing the valuable precedents set by Pradhan et al. (2023) and 
Zhou et al. (2022) in leveraging SHAP for explainable AI in 
landslide modeling. By integrating SHAP with our Bayesian-
optimized DNN, ENN, and ANN models, we have derived a 
nuanced understanding of the parameter relationships contrib-
uting to landslide occurrences, depicted in Fig. 13.

The SHAP summary plots reveal the relative impact of 
each variable on the model’s prediction. The plots exhibit a 
range of color intensities, with red indicating a higher impact 
and blue a lower impact on the prediction outcome. The 
SHAP summary for the ENN model indicates that slope 
and annual rainfall hold the most substantial influence on 
predictions, consistent with established landslide literature 
(Pradhan et al., 2023) (Fig. 13a). The high SHAP values 
for slope and annual rainfall underscore their critical role 
in landslide occurrences. Factors like aspect and land use, 
specifically built-up and agricultural areas, also show sig-
nificant impact, depicted by their red shading. Interestingly, 
the impact of soil depth and distance from the river (DFR) is 
less pronounced compared to the other factors, as indicated 
by the narrower spread of SHAP values. The distribution of 
SHAP values for soil texture and the topographic wetness 

Fig. 12   Landslide susceptibil-
ity mapping using Bayesian-
optimized a ENN, b DNN, and 
c ANN models
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index (TWI) shows a mix of positive and negative impacts, 
suggesting a complex interaction with landslide susceptibil-
ity. The DNN model’s SHAP plot reveals a slightly differ-
ent hierarchy of feature importance (Fig. 13b). Elevation 
and land use/land cover (LULC) exhibit the most substan-
tial positive impact on model predictions, aligning with the 
notion that higher elevations and certain land uses are more 
susceptible to landslides. NDVI and aspect follow closely, 
suggesting that vegetation density and slope orientation are 

also key contributors to landslide risk. Soil depth, while 
important, shows a wide distribution of impact across sam-
ples, indicating variability in how this factor affects land-
slide susceptibility across different regions. The features like 
geology and distance from the river (DFR) present a lower 
impact, as evidenced by their less intense SHAP values. For 
the ANN model, elevation stands out as the most influen-
tial factor, with a high density of positive SHAP values, 
suggesting that areas of higher elevation are more prone to 

Fig. 13   SHAP summary plot for behavioral assessment of LCPs on the prediction of LSM using a ENN, b DNN, and c ANN models
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landslides (Fig. 13c). Land use (LULC) follows closely, par-
ticularly highlighting the importance of human activities and 
land management in landslide susceptibility. Soil depth and 
aspect are also notable factors but with less intensity com-
pared to elevation and LULC. Interestingly, the plot indi-
cates that while slope is a significant factor, its impact is less 
dominant in the ANN model compared to the ENN model. 
Additionally, the SHAP values for NDVI and distance from 
the river bank (DFB) are relatively lower, suggesting these 
factors have a moderate influence on the model’s output.

The cumulative impact of these factors, as detailed in the 
SHAP analysis, provides a scientific foundation for practi-
cal landslide disaster prevention and mitigation, offering a 
quantifiable approach to prioritize interventions. By apply-
ing the SHAP method to deep learning models, we gain not 
just a predictive model for landslide susceptibility but also a 
valuable interpretive tool that imparts more profound scien-
tific guidance. The SHAP analysis bridges the gap between 
predictive accuracy and practical applicability, guiding tar-
geted interventions for disaster prevention and enhancing 
the models’ reliability. The discussion is thus expanded to 
emphasize the superior performance of the DNN model, 
as suggested by the model evaluation metrics and SHAP 
analysis, asserting its suitability for generating accurate and 
interpretable landslide susceptibility maps.

Discussion

Landslides are one of the most catastrophic natural disasters 
that have caused severe damage to property and human life 
worldwide. In India, landslides are a common phenomenon, 
and the state of Uttarakhand is highly prone to landslides 
due to its geographical location and topography. Uttarakhand 
has been hit by several landslide disasters in the past, which 
have caused enormous loss of life and property. Therefore, 
predicting landslide susceptibility zones in Uttarakhand is 
of paramount importance to minimize the damage caused by 
landslides. Here, three important issues have been discussed, 
such as landslide susceptibility assessment, understanding 
of the novelty, and policy implication.

Landslide susceptibility assessment

In this study, six different feature selection techniques were 
employed, namely decision tree, random forest, bagging, 
LightGBM, XGBoost, and SVM, to identify the most influ-
ential variables for predicting landslide susceptibility zones 
in Uttarakhand. Based on the results of feature selection, 
three variables—geology, soil texture, and curvature were 
excluded, and eight variables were selected, including slope, 
elevation, DFR, annual rainfall, LD, DD, LULC, and soil 
depth.

Next, three different models, namely DNN, Elman neu-
ral network, and ANN, were implemented using a Bayes-
ian optimization technique to predict the landslide suscep-
tibility zones in Uttarakhand. To understand the behavior 
of the model and how each variable contributes to the 
prediction of landslide susceptibility, the SHAP (SHap-
ley Additive exPlanations) method was used. The DNN 
model projected that 7839.5497 km2 would fall under the 
“very low” landslide susceptibility zone, while the ENN 
and ANN models covered 8524.828 and 8802.5497 km2, 
respectively. On the other hand, the DNN model pre-
dicted that 3613.4442 km2 would be classified under the 
“very high” susceptibility zone, while the ENN and ANN 
models covered 4018.0906 and 4613.4442 km2, respec-
tively. The study found that the areas predicted to have 
high landslide susceptibility are primarily located in the 
southern foothills and Ganga river valley in Uttarakhand 
where there is rapid urban expansion and infrastructure 
development (Gupta et al., 2022). The increase in urban 
growth and new construction in these areas has a signifi-
cant impact on triggering landslides. The “very high” and 
“high” susceptibility zones are also located in urban clus-
ters such as Dehradun, Haridwar, Mussoorie, Tehri, Hald-
wani, Pauri, Nainital, Pithoragarh, and Almora. These 
observations on susceptibility to landslides are consistent 
with previous studies conducted by Ram et al. (2020) in 
the Mussoorie region and Pham et al. (2017) in the Tehri 
urban cluster region. Thus, the results of this study on 
landslide susceptibility in Uttarakhand are in line with 
previous findings and provide valuable insights for land 
use planning and disaster management in the region.

Understanding the factors that contribute to landslide 
susceptibility is critical for developing effective land-
slide risk management strategies. The susceptibility of 
landslides is caused by the interaction of several land 
cover parameters (LCPs), such as topographic and human 
influences (Gupta et al., 2022). A number of studies have 
addressed the complex problem of quantifying the rela-
tionship between landslide susceptibility and the param-
eters that influence it (Pham et al., 2017; Ram et al., 
2020; Tran et al., 2021). To understand the behavior of 
the model and how each variable contributes to the pre-
diction of landslide susceptibility, the SHAP (SHapley 
Additive exPlanations) method was used in this study. 
The results showed that high elevation, built-up and 
agricultural land use, less vegetation, aspect (north and 
northwest), soil depth less than 140 cm, and annual rain-
fall above 1500 mm significantly influence and initiate 
landslides in Uttarakhand. These findings are consist-
ent with previous studies that have identified slope and 
rainfall as the most important parameters for landslide 
triggering (Pham et al., 2017; Tanyu et al., 2021; Gupta 
et al., 2022).
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Understanding the novelty

Landslide susceptibility mapping is an important task for 
reducing the risk of landslides and ensuring the safety of 
people and infrastructure in landslide-prone areas. Many 
previous studies have focused on the use of DNN models for 
this task, and various optimization techniques such as grid 
search, particle swarm optimization, and genetic algorithms 
have been used to improve the performance of these models.

However, there has been little research on the use of 
ENN and ANN for landslide susceptibility mapping, and 
even fewer studies have focused on optimizing these models 
(Zhang et al., 2023; Liu et al., 2023; Wang et al., 2024; Yu & 
Chen, 2024). This is where the current study stands out, as 
it employs Bayesian model optimization to optimize DNN, 
ENN, and ANN models for landslide susceptibility map-
ping, and derives SHAP values from these models. The use 
of Bayesian model optimization is a novel approach in this 
field, and the results obtained are very promising. Bayesian 
optimization is a powerful tool for hyperparameter tuning, 
and its application to the optimization of DNN, ENN, and 
ANN models for landslide susceptibility mapping could 
have a significant impact on future research in this field. 
This study has a unique aspect that has not been explored 
before: it derives SHAP values from three optimized models 
(DNN, ENN, and ANN), which is different from the meth-
ods used by other researchers who typically use XGBoost 
and random forest. Moreover, the derivation of SHAP values 
from these optimized models is another novel aspect of this 
study. SHAP values are an important tool for interpreting the 
results of machine learning models and can help to identify 
the factors that contribute most to landslide susceptibility. 
The fact that the SHAP values were computed using opti-
mized DNN, ENN, and ANN models further adds to the 
reliability of the results obtained.

Therefore, the novel approaches taken in this study, 
namely the use of Bayesian model optimization and the 
derivation of SHAP values from optimized DNN, ENN, and 
ANN models, make a significant contribution to the field of 
landslide susceptibility mapping. This is important because 
the results of landslide susceptibility mapping can have sig-
nificant implications for management and safety purposes. 
The use of these optimized models and the derivation of 
SHAP values from them can help stakeholders make more 
informed decisions and take appropriate actions to reduce 
the risk of landslides and ensure the safety of people and 
infrastructure in landslide-prone areas.

Policy implication

The results of this study have important implications for 
landslide risk management in Uttarakhand. The identi-
fied LCPs should be considered in land use planning and 

development activities to reduce the risk of landslides. 
For example, strategies to reduce the impact of urbani-
zation and agricultural land use on the susceptibility of 
landslides could include enforcing zoning regulations, 
adopting appropriate building codes and designing retain-
ing structures, and establishing effective drainage systems. 
In addition, there is a need to increase the resilience of the 
society against landslides. This can be achieved by raising 
public awareness on the dangers of landslides and edu-
cating communities on how to prepare for and respond to 
landslide events. Effective communication strategies, early 
warning systems, and emergency response plans should 
be developed and implemented to minimize the impact of 
landslides on society. Furthermore, research efforts should 
focus on developing more accurate and efficient land-
slide susceptibility models that incorporate a wide range 
of LCPs and other relevant factors such as land use, soil 
properties, and vegetation cover. These models can help 
in predicting and mitigating the impact of landslides and 
inform policymakers and stakeholders on the most effec-
tive landslide risk management strategies to adopt in the 
region. Therefore, the results of this study demonstrate the 
importance of considering a range of LCPs in landslide 
susceptibility analysis and provide valuable insights for 
landslide risk management and mitigation strategies in 
Uttarakhand. A comprehensive and collaborative approach 
that integrates land use planning, community prepared-
ness, and effective communication strategies is essential 
for developing a landslide-resilient society in the region.

Conclusion

This study employs Bayesian model optimization to opti-
mize three deep learning models (ENN, ANN, and DNN) 
for landslide susceptibility mapping and derive SHAP values 
from these optimized models. The study uses six different 
feature selection techniques to identify the most important 
variables for predicting landslide susceptibility. The results 
indicate that slope, elevation, and drainage density are the 
most influential variables, while geology and soil texture 
have less influence. The DNN model outperformed the other 
two models in terms of the area covered under each land-
slide susceptibility zone, suggesting that it is better suited 
for generating landslide susceptibility maps. However, this 
study also highlights the need for further research on the use 
of Bayesian optimization and the derivation of SHAP values 
from optimized models, as well as the need to apply these 
techniques in different regions with varying geological and 
environmental conditions. Moreover, the study highlights 
the importance of evaluating the performance of models 
using various performance metrics to ensure their accuracy 
and reliability.
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The study highlights the need for further research on the 
application of these techniques in different regions with 
varying geological and environmental conditions. Addi-
tionally, there is a need to investigate how the use of these 
optimized models and SHAP values can be translated into 
practical decision-making for landslide risk management. 
The current issue with SHAP values, which require separate 
runs with XGBoost models, can be overcome by integrating 
the computation with the landslide susceptibility models. 
This study’s innovative approaches provide a foundation 
for future research and management decisions in the field 
of landslide susceptibility mapping. Further research can 
explore the use of different deep learning models, feature 
selection techniques, and optimization methods to improve 
the accuracy and reliability of landslide susceptibility map-
ping. Ultimately, this can contribute to reducing the risk of 
landslides and ensuring the safety of people and infrastruc-
ture in landslide-prone areas.
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