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Abstract
Rapid urbanisation has led to significant environmental and climatic changes worldwide, especially in urban heat islands 
where increased land surface temperature (LST) poses a major challenge to sustainable urban living. In the city of Abha 
in southwestern Saudi Arabia, a region experiencing rapid urban growth, the impact of such expansion on LST and the 
resulting microclimatic changes are still poorly understood. This study aims to explore the dynamics of urban sprawl and its 
direct impact on LST to provide important insights for urban planning and climate change mitigation strategies. Using the 
random forest (RF) algorithm optimised for land use and land cover (LULC) mapping, LULC models were derived that had 
an overall accuracy of 87.70%, 86.27% and 93.53% for 1990, 2000 and 2020, respectively. The mono-window algorithm 
facilitated the derivation of LST, while Markovian transition matrices and spatial linear regression models assessed LULC 
dynamics and LST trends. Notably, built-up areas grew from 69.40 km2 in 1990 to 338.74 km2 in 2020, while LST in urban 
areas showed a pronounced warming trend, with temperatures increasing from an average of 43.71 °C in 1990 to 50.46 °C 
in 2020. Six landscape fragmentation indices were then calculated for urban areas over three decades. The results show that 
the Largest Patch Index (LPI) increases from 22.78 in 1990 to 65.24 in 2020, and the number of patches (NP) escalates from 
2,531 in 1990 to an impressive 10,710 in 2020. Further regression analyses highlighted the morphological changes in the 
cities and attributed almost 97% of the LST variability to these urban patch dynamics. In addition, water bodies showed a 
cooling trend with a temperature decrease from 33.76 °C in 2000 to 29.69 °C in 2020, suggesting an anthropogenic influence. 
The conclusion emphasises the urgent need for sustainable urban planning to counteract the warming trends associated with 
urban sprawl and promote climate resilience.

Keywords  Urban growth · Land surface temperature · Land use change · Spatial analysis · Urban heat island · Sustainable 
urban planning

Introduction

Accelerating global urbanisation is changing land use 
and land cover (LULC) and has a significant impact on 
urban areas, where an estimated 80% population growth 
is expected by 2050 (Nath et al. 2021; Seyam et al. 2023; 
Talukdar et al. 2020; Naikoo et al. 2020; Malanson and 
Alftine 2023; Yao et al. 2023). This expansion leads to a 
decline in green vegetation, which is crucial for maintaining 
the climatic balance (Rahaman et al., 2022; Mahmood et al. 
2014; Zhang et al. 2018; Gunawardena et al 2017; Moazzam 
et al. 2022), and drives up land surface temperatures (LST), 
which is an important issue in urban environmental studies 
(Shahfahad et al. 2023a; Lal et al. 2022; Thakur et al. 2021). 
The complicated relationship between LULC changes and 
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LST dynamics is further complicated by factors such as 
regional climate, topography and urban design and requires 
advanced methods for a better understanding of these phe-
nomena (Shahfahad et al. 2021; Garg and Anand 2022 ; 
Namgyal et al. 2023; Imran et al. 2021; Hou and Du 2020).

Through the use of remote sensing technologies, 
researchers can now observe urban environments in 
unprecedented detail utilizing satellite images like Landsat 
8’s TIRS and MODIS to study LST variations in different 
LULC classes (Talukdar et al 2020; Wulder et al 2018; 
Tsagkatakis et al 2019; Shahfahad et al 2021; AlDousari 
et al 2022; Gerace et al 2020; Yang et al 2023; Kabir et al 
2023; Almeida et al 2021; Elfarkh et al. 2020). The spatial 
dynamics of LULC, especially in urban areas, are critical 
to understanding the broader ecological impacts of urbani-
sation, including the ‘edge effect’ on LST and the need for 
scenario-based urban management strategies (Chakraborti 
et al 2019; Shen et al 2022; Derdouri et al 2021; He et al 
2023; Ignatieva et al 2011; Mohamed et al 2020; Talukdar 
et al 2021; Bartesaghi-Koc et al 2022; Yonaba et al 2023; 
Guo et al 2015; Mendes and Prevedello 2020;  Zhang et al., 
2022; Zhou et al 2017; Li et al 2014). However, despite the 
abundance of data, there is a lack of precision to explore 
the complexity of interactions between LULCand LST due 
to the lack of sophisticated techniques (Aryal et al. 2023; 
Singh et al. 2021). These technologies facilitate the study 
of the effects of urban sprawl on LST and fulfil the need 
for in-depth studies on the variability of LST in cities and 
the impact of urban fragmentation on LST (Zhang et al., 
2022; Shahfahad et al. 2021).

Recent literature emphasises the importance of machine 
learning in LULC mapping (Ouma et al. 2022; Shetty 2019; 
Sarkar et al. 2021) and highlights its potential to improve 
the accuracy and efficiency of LULC classification. Recent 
advances in machine learning have enabled innovative 
approaches for mapping and analysing LULC with high 
precision, providing insights into urban sprawl and its envi-
ronmental impacts (Aryal et al. 2023; Singh et al. 2021; 
Ouma et al. 2022; Jamali 2020). These methods enable the 
classification of complex urban landscapes and the moni-
toring of their evolution over time, which is helpful in the 
management and mitigation of urban heat islands (Shetty 
2019; Srivastava et al. 2022; Krivoguz et al. 2023; Loukika 
et al. 2021; Wang et al. 2022).

In addition, a deeper understanding of LST fluctuations 
and the factors influencing them is crucial for sustainable 
urban planning. Studies have shown that urbanisation leads 
to significant changes in LST, with impacts varying in dif-
ferent regions and at different time scales (Farid et al. 2022; 
Roy et al. 2020; Mukherjee and Singh 2020; Saleem et al. 
2020; Srikanth and Swain 2022). Advanced remote sensing 
and thermal imaging techniques have become indispensable 
tools in this research, providing valuable data for assessing 

the impact of LULC on LST and guiding urban development 
to minimise negative thermal impacts (Ermida et al. 2020; 
Guha and Govil 2022; Sekertekin and Bonafoni 2020; Yang 
et al. 2020; Li et al. 2023).

The intricate interplay between the spatial configurations 
of LULC and LST is a focus of dynamic research and is 
influenced by a variety of factors, including regional climate, 
topography, the characteristics of individual land patches 
and the cooling effect of green tree canopies (Chakraborti 
et al. 2019; Shen et al. 2022; Derdouri et al. 2021; An et al. 
2022). These elements emphasise the need for state-of-the-
art methods for LULC classification, LST extraction and 
simulation modelling to deepen our understanding of their 
complex relationship (Shahfahad et al. 2021; Garg et al., 
2022; Namgyal et al. 2023). Moreover, the spatial dynam-
ics of LULC, especially in urban environments, have broader 
ecological implications that extend beyond their immediate 
surroundings. Concepts derived from landscape ecology 
such as the edge effect and ‘neighbouring features’ play a 
crucial role in how urban change influences LST, requir-
ing a nuanced analysis of these factors and their broader 
ecological impacts (He et al. 2023; Ignatieva et al. 2011; 
Mohamed et al. 2020; Talukdar et al. 2021; Bartesaghi-Koc 
et al. 2022; Yonaba et al. 2023). Innovative approaches are 
used to explore these dynamics and gain insights for sustain-
able urban planning by establishing the relationship between 
urban sprawl and LST variations (Shahfahad et al. 2023b; 
Phelps and Nichols (2022); Guo et al 2015; Mendes and 
Prevedello 2020; Zhang et al., 2022; Zhou et al 2017; Li et al 
2014). This comprehensive approach aims to untangle the 
complex web of interactions between LULC and LST and 
pave the way for sound urban development strategies that 
mitigate the negative thermal impacts.

However, while a large number of studies have shed 
light on the impact of urban sprawl on seasonal and annual 
LST, the subtleties of the impact of urbanisation on inter-
annual LST variability in cities need to be investigated 
in more detail (Zhang et al., 2022; Shahfahad et al 2021; 
Li et al., 2022; Zhou et al 2011; Su et al 2021). As the 
influence of urban sprawl on LST can vary depending on 
regional characteristics, there is a clear need for advanced 
studies on urban sprawl and LST dynamics. While the tem-
poral evolution of LULC patterns and their influence on 
LST are well studied, there are still gaps in understand-
ing the complex spatial heterogeneity of urban landscapes 
(Gerace et al. 2020; Namgyal et al. 2023; Mohamed et al. 
2020; Shahfahad et al. 2023a & b). The current literature 
has not adequately addressed how specific LULC classes, 
particularly in terms of urban fragmentation, influence 
LST in different geographical contexts (Yang et al. 2023; 
Zhang et al., 2022; Zhou et al. 2017; Furlan et al. 2022). 
In addition, many studies do not use advanced statistical 
methods to establish causal relationships between LULC 
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classes and LST. The exact influence of urban areas, their 
fragmentation patterns and the corresponding effects on 
neighbourhood LST need to be further investigated.

The main objective of this study is to decipher the 
multi-layered relationship between urbanisation (in par-
ticular the fragmentation and growth patterns of built-up 
areas) and the microclimatic changes it induces, with a 
focus on LST. Through the use of a range of landscape 
metrics, the study aims to quantify urban sprawl, its frag-
mentation dynamics and the resulting changes in LST 
over three crucial decades. Furthermore, the study seeks 
to assess the accuracy and reliability of the LULC mod-
els developed using the random forest (RF) algorithm to 
ensure that subsequent analyses are soundly based. Fur-
thermore, the study aims to provide a probabilistic assess-
ment of possible transitions between different LULC 
classes and thus provide a predictive insight into the future 
landscape dynamics of the city.

The present study is ground-breaking in its approach 
to understanding the intricate relationship between the 
urban landscape and local surface temperature dynamics, 
especially in the context of the city of Abha. This research 
uses machine learning, specifically the RF algorithm, with 
advanced statistical tools to create a synergistic model to 
analyse the LULC-LST relationships. Unlike previous stud-
ies, which often relied on isolated methods, this research 
takes a holistic viewpoint. By transforming the traditional 
LULC data into a binary format, the research has focussed 
exclusively on built-up areas. This allows for a detailed 
assessment of urban sprawl and its climatic impacts at the 
micro level. This increased focus on urban landscapes, which 
differs from broader landscape analyses, provides unprec-
edented granularity for understanding urban heat dynamics. 
By focusing on urban fragmentation indices and their evolu-
tion over time, the study goes beyond general urbanisation 
metrics and sheds light on the nuanced ways in which urban 
morphology influences thermal behaviour. Essentially, the 
novelty lies in the in-depth examination of how specific frag-
mentation patterns and urban morphologies, quantified by 
customised landscape metrics, correlate with and potentially 
drive changes in LST.

Given the detailed examination of urban fragmentation 
and its thermal impacts, it is hypothesised that regions 
experiencing rapid urbanisation, especially those character-
ised by increased fragmentation, will experience a signifi-
cant increase in LST. This thermal increase is likely to be 
more pronounced in fragmented urban areas compared to 
other LULC classes. The underlying assumption behind the 
study is that the degree and type of urban fragmentation, as 
captured by specific landscape metrics, will have a direct 
and measurable influence on LST dynamics. The research 
assumes that a causal relationship exists where nuanced 
urban patches, especially those characterised by specific 

fragmentation features, play a central role in shaping LST 
dynamics.

Materials and methods

Study area

The semi-arid region of Asir, Saudi Arabia, encompasses 
four major cities: Abha, Khamis Mushayet, Alwadean and 
Ahad Rufaida. This area is situated in the southwestern 
part of Saudi Arabia, which is the largest country in the 
Middle East. Asir spans an area of 2286.59 square kilome-
tres and is located between latitudes 17°59′21.452″N and 
18°30′33.812″N, as well as longitudes 42°18′56.269″E 
and 42°56′25.909″E (Fig. 1). The terrain of the study area 
is characterized by rolling hills, with elevations ranging 
from 1038 to 2990 m above sea level, averaging at 2180 m. 
Annual rainfall in this region averages 355 mm, primarily 
occurring between April and June. The typical minimum and 
maximum temperatures are 18.50 and 31.50 °C, respectively. 
This area encompasses one of the most diverse and abundant 
floristic regions within the Asir Mountains. Jabal Al-Sooda, 
a renowned mountain in the region, stands at 2990 m in the 
northwestern part of the study area, boasting a rich variety of 
plant life. The combination of diverse climate and topogra-
phy in the Asir Province has resulted in a wide array of plant 
species (Abulfatih 1984). Anthropogenic activities, steep 
slopes, fragile geology and rainfall contribute to significant 
land loss and ecological imbalances in the area. Among the 
four cities, Abha City presently serves as the capital of the 
Asir region. According to the 2012 census by the General 
Statistics Authority, Abha City is home to 289,975 people, 
with Saudis constituting 78% of the population (Bindajam 
and Mallick 2020). The configuration of these cities, featur-
ing various topographical levels, often leads to urban expan-
sion. The main attractions for visitors to these cities are the 
scenic mountain vistas. Anticipated substantial urban growth 
in these four pivotal cities of the Asir region underscores the 
need for a sustainable approach to urban sprawl and develop-
ment, aiming to enhance the quality of life for both residents 
and tourists.

Data source

This research utilized multi-date Landsat satellite imagery 
from the years 1990, 2000 and 2020 to study landscape 
changes and land surface temperature (LST) over nearly 
three decades. The bands of the respective images were 
combined to create multispectral images for 1990, 2000 
and 2020. The details about the Landsat satellite imagery 
used in the study have been given in Table 1. These images 
were free from clouds and haze and exhibited good contrast. 
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Radiometric calibration and geometric registration were car-
ried out and subsequently applied for land use/land cover 
(LU/LC) extraction. A field survey was conducted from June 
20th to July 5th, 2020.

For the analysis, various software tools were employed, 
including ArcGIS 10.3, TerrSet 19.0.1, earth resources data 
analysis systems (ERDAS) Imagine 9.2, Fast Line-of-sight 
atmospheric analysis of spectral hypercubes (FLAASH) 4.8 
for GIS and image processing, as well as statistical package 
for the social sciences (SPSS) 24 for statistical computa-
tions. All machine learning data analysis and mapping tasks 
were performed in a Python integrated Jupyter Notebook 
environment.

The Garmin-GPS was used for field observations.

Method for LULC mapping using RF

In monitoring and assessing environmental changes, LULC 
mapping stands as an indispensable tool (Talukdar et al. 
2020). The RF algorithm, an ensemble learning technique, 
has become a linchpin in this domain due to its prowess 
in managing large, intricate datasets, effectively addressing 
multicollinearity and missing values and delivering supe-
rior classification accuracy (Atef et al. 2023; Talukdar et al. 
2020; Rihan et al. 2023). Its core methodology involves the 
construction of multiple decision trees during training and 
the subsequent derivation of the mode of the class labels by 
individual trees for the final classification prediction (Wang 
et al. 2019). When deployed on satellite or aerial imagery 
datasets, such as those sourced from Landsat or Sentinel, the 
RF classifier leverages spectral values, texture metrics and 
any available ancillary data to differentiate between various 
LULC classes. For LULC classification of Abha city span-
ning the years 1990, 2000 and 2020, multispectral and multi-
temporal datasets have been distinctly processed with the RF 
algorithm. To further bolster the classifier’s performance, 
hyper-parameter tuning is essential. The inherent robustness 

Fig. 1   Study area map of Abha city

Table 1   Details about the satellite data used in the study

S. no Landsat data Year Retrieval time Resolution

1 Landsat 5 TM 1990 02 Jun 1990 30 m
2 Landsat 5 TM 2000 28 May 2000 30 m
3 Landsat 8 OLI 2020 25 Jun 2020 30 m
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of the RF algorithm can be amplified by optimising hyper-
parameters like the number of trees (n_estimators), tree max 
depth (max_depth) and the requisite minimum samples for 
node splitting (min_samples_split). Grid Search, a prevalent 
hyper-parameter tuning technique, facilitates the exhaustive 
exploration of a predefined hyper-parameter space, evaluat-
ing model efficacy for each combination via cross-validation. 
Applying this to Abha city’s LULC mapping, a parameter 
grid for RF hyper-parameters has been defined, and through 
grid search coupled with cross-validation, the optimal 
parameter set is determined. The ensuing model, trained on 
the entirety of the dataset with these optimal parameters, 
assures a pinnacle of classification accuracy for the LULC 
mapping across the specified years.

Method for accuracy assessment of LULC

Land use and land cover map (LULC) accuracy assessment, 
which is crucial for evaluating the quality of map classifi-
cation (Chughtai et al. 2021; Naikoo et al. 2020), involves 
comparing field surveys and Google Earth–derived reference 
patterns with the map values to derive key metrics. For the 
LULC mapping of the city of Abha using an optimised ran-
dom forest (RF) model, the study uses a confusion matrix to 
distinguish between actual and classified categories and to 
highlight omission errors (false negatives) and walk-in errors 
(false positives). The user’s accuracy per class measures the 
probability of correct pixel classification on the map, while 
the producer’s accuracy evaluates the correct classifica-
tion of ground truth pixels. The overall accuracy and the 
kappa coefficient, which compares the observed accuracy 
to chance, provide a detailed performance evaluation of the 
RF model for the 1990, 2000 and 2020 datasets for the city 
of Abha.

Method for LST estimation

Land surface temperature (LST) plays a crucial role in 
understanding local climatic variations, urban heat islands 
and many ecological processes (Sumanta 2022; Gohain 
et al. 2023; Moazzam et al. 2022; Naikoo et al. 2022a, b; 
Mokarram et al. 2023; Mallick et al. 2008). Satellite remote 
sensing provides an efficient means to retrieve LST on a 
regional scale (Xu et al. 2023). The urban heat island (UHI) 
formation has been estimated using the Simulated Single 
Image (SSI) method, which integrates statistical analysis 
of LANDSAT time series data to map urban hot spots and 
UHI development (Corumluoglu 2023). Further, the Mono-
Window (MW) algorithm is one of the widely employed 
techniques for LST retrieval from thermal infrared (TIR) 
remote sensing data (Shahfahad et al. 2023a; Wang et al. 
2015; Sekertekin and Bonafoni 2020). The fundamental 
premise of the Mono-Window Technique is based on the 

radiative transfer equation, which relates at-satellite radi-
ance to ground emissivity and LST. Firstly, the at-satel-
lite brightness temperature (Tb) is derived from the digi-
tal numbers or radiance values of the thermal band. This 
requires sensor-specific calibration constants that convert 
the observed values into radiance and subsequently into 
brightness temperature using the Planck function.

However, the brightness temperature alone is not suffi-
cient for a true representation of LST, given the influences 
of atmospheric effects, especially water vapour. The Mono-
Window Technique, therefore, incorporates an atmospheric 
correction, which usually requires knowledge about atmos-
pheric water vapour content and the mean atmospheric 
temperature. The LST estimation using the Mono-Window 
algorithm is given by:

where Tb is the at-satellite brightness temperature; � repre-
sents the effective mean atmospheric temperature; � is the 
wavelength of emitted radiance, typically around 11.5 µm for 
most thermal infrared sensors; � is the Boltzmann constant, 
and � is the emissivity of the land surface, which can vary 
based on the surface type.

For the estimation of LST in Abha city for the years 
1990, 2000 and 2020, multispectral datasets that contain 
thermal infrared bands are necessary. For Landsat 4–5 TM, 
the thermal band (Band 6) captures data between 10.40 
and 12.50 µm, whereas for Landsat 8 OLI, the thermal 
bands (Band 10 and 11) operate in the 10.60–11.19-µm and 
11.50–12.51-µm ranges, respectively. After obtaining the 
brightness temperatures for each of these years, the Mono-
Window Technique can be applied by incorporating site-
specific and date-specific atmospheric parameters. Addition-
ally, for a city like Abha with diverse land cover, it might be 
necessary to have an emissivity map, which can be derived 
from the LULC map itself or other methods, to accurately 
represent the spatial variations in emissivity across the city.

Temporal evolution of LULC using change matrix 
and Markovian transition probability

The temporal analysis of land use and land cover patterns 
(LULC) is of crucial importance for sound urban planning 
and nature conservation. Change matrix and Markovian tran-
sition probability methods are used to track changes over 
time (Naikoo et al 2020; Chen et al 2022; Talukdar et al 
2021; Naikoo et al. 2022a, b; Bindajam et al 2023). The 
change matrix visualises the LULC transitions between two 
periods by capturing shifts from one class to another, with 
diagonal elements indicating stability and non-diagonal ele-
ments indicating change. The Markov approach, which is 

(1)LST =
Tb

1 + (�∗�∗Tb∕�) ∗ ln(�)
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based on the premise that future LULC states depend solely 
on the current state, uses transition probabilities to forecast 
future LULC scenarios and thus helps in strategic environ-
mental and urban development planning. This concise sum-
mary highlights the methods’ contributions to understand-
ing LULC dynamics over time and facilitates sustainable 
management practises.

Temporal evolution of LST using spatial linear 
regression model

Analysing the temporal evolution of LST provides insights 
into the changing thermal characteristics of a landscape 
(Zhou et al. 2011; Zhang et al., 2022; Li et al. 2014). A 
spatial linear regression model enables a pixel-wise study 
of how LST has evolved over different time periods. Such 
an approach allows us to account for the spatial heterogene-
ity inherent in urban landscapes, where various factors—
ranging from urban infrastructure, green spaces, water bod-
ies, to land use changes—can lead to diverse local thermal 
responses. The rationale behind this study lies in the recog-
nition that Land Surface Temperature (LST) values at indi-
vidual spatial points (pixels) can be affected by a range of 
both human-induced and natural factors, making it crucial 
to comprehend the pace and trend (whether increasing or 
decreasing) of these changes over time.

In the context of spatial linear regression, a linear regres-
sion is conducted for each pixel (i,j) within the study area, 
employing LST values from multiple time points (specifi-
cally, 1990, 2000 and 2020) as the dependent variables and 
the respective years as independent variables; the resulting 
output, denoted as the slope for each pixel, provides insight 
into the rate of LST change per year. The slope, represent-
ing the temporal trend, offers valuable information; posi-
tive values indicate a rise in land surface temperature (LST) 
over time, signifying areas undergoing warming potentially 
attributed to urbanization, deforestation or other land cover 
alterations, while negative values suggest a decline in LST, 
implying cooling trends linked to augmented vegetation, 
reforestation or urban green initiatives. The R-squared sta-
tistic, assessing the goodness of fit, quantifies the portion 
of the variation in the dependent variable (LST) accounted 
for by the independent variable (years), and elevated values 
indicate a stronger alignment of the linear model with the 
data; particularly in LST studies, a high R-squared value 
may imply that temporal factors, such as alterations in 
urban layout or land cover, exert substantial influence on 
LST changes in that specific location. The p value, assess-
ing the significance of the trend, offers a test of the null 
hypothesis positing no trend (slope equals zero); a low p 
value (often < 0.05) signifies the ability to reject the null 
hypothesis, indicating that the trend is statistically signifi-
cant. Therefore, spatial linear regression on LST provides a 

granular view of thermal dynamics, capturing the intricacies 
of local changes and offering a comprehensive perspective 
on landscape thermal behaviour over time.

Relationship between LULC classes and LST 
at temporal scale

Understanding the relationship between LULC classes and 
LST is critical in the domains of urban planning, environ-
mental science and climate studies (Varade et al. 2023; 
Shahfahad et al. 2023a; Zhou et al. 2014; Ghosh et al. 2022; 
Pande et al. 2023). This relationship is often non-linear and 
varies spatially and temporally, with different LULC classes 
having distinct thermal characteristics (Ghosh et al. 2022; 
Mallick et al. 2008). Thus, a robust analysis incorporates 
both zonal statistics for different LULC classes and a statis-
tical examination of temporal changes in LST within these 
classes.

Zonal statistics for LULC and LST

Zonal statistics serve as a computational method to extract 
and summarize the spatial characteristics of one dataset 
(e.g., LST) based on the categorical delineation provided 
by another (e.g., LULC classes). In the context of assess-
ing LST within LULC classes, the spatial domain of each 
LULC class is utilized to mask the LST data. This operation 
effectively filters out LST values that fall within the spatial 
boundaries of a specific LULC class. Following this, aggre-
gate statistics such as the mean, maximum and minimum 
LST are computed for this subset of data. By performing 
this computation iteratively across all unique LULC classes, 
a profile of LST behaviour within each class is obtained. 
Furthermore, when this process is replicated for LST data-
sets from different temporal points (e.g., 1990, 2000, 2020), 
it elucidates the temporal shifts in LST dynamics within 
each LULC category, reflecting the influence of land use 
changes, urbanization, or conservation efforts on surface 
temperatures.

Temporal LST trends via statistical analysis

To discern the statistical significance and nature of LST vari-
ations within each LULC class over time, linear regression 
and ANOVA are employed. For every LULC class, the mean 
LST values are regressed against the study years, generating 
a trend line. The slope of this trend signifies the direction 
and magnitude of change in LST over time. The coefficient 
of determination, R2, quantifies the proportion of variance in 
LST that can be attributed to the temporal progression, thus 
serving as a measure of the trend’s robustness. Simultane-
ously, an ANOVA test is conducted on LST values across 
the years within each LULC class. This assesses whether 
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the mean LST values differ significantly between the time 
points. The F-value from the ANOVA signifies the ratio of 
variance between the group means to the variance within 
the groups, and the associated p value gauges the statistical 
significance of this variance. Together, these statistical tools 
offer a comprehensive evaluation of LST evolution within 
the constructs of LULC classes.

Urbanization impact assessment as per landscape 
fragmentation analysis

Assessing the impact of urbanisation by analysing land-
scape fragmentation is a crucial method for deciphering 
the spatial patterns and intensity of urban sprawl (Salvati 
et al. 2018; Lin et al. 2023; Hu et al. 2022; Talukdar et al. 
2021). By reclassifying the LULC maps into binary repre-
sentations in which built-up areas are isolated, we can track 
the spatial progression of urbanisation over time (Lin et al. 
2023; Salvati et al. 2018; Bindajam et al. 2023; Dewa et al. 
2022). Landscape metrics applied to these binary repre-
sentations provide a quantitative framework for assessing 
urban growth. The Largest Patch Index (LPI) is calculated 
by identifying the largest contiguous urban area within the 
binary landscape matrix. The index is the size of this largest 
patch expressed as a percentage of the total landscape area. 
This metric is a direct measure of the dominance of the larg-
est urban fabric and is inversely related to fragmentation; a 
higher LPI indicates a more consolidated urban landscape. 
The number of patches (NP) is a simple count of the indi-
vidual urban patches within the landscape. An increase in 
NP over time indicates a fragmented landscape in which 
urban areas are increasingly dispersed and disjointed (Zhou 
et al. 2022; Wu et al. 2022; Li et al. 2022; Azabdaftari and 
Sunar 2022). Patch density (PD) is determined by dividing 
the NP by the total area of the landscape. This is a meas-
ure of density that reflects the degree of fragmentation and 
the intensity of urban sprawl. A higher PD indicates a more 
fragmented urban structure, with numerous small patches 
scattered across the landscape. The landscape shape index 
(LSI) is derived by examining the shapes of individual urban 
areas and comparing them to a standard geometric shape, 
usually a square or circle. The LSI is calculated by dividing 
the total perimeter of the patch by the square root of the total 
area of the landscape and then comparing this value to a 
neutral shape index of the same area. This metric measures 
the complexity and irregularity of urban patch shapes, with 
higher values indicating more irregular urban shapes (Tang 
et al. 2023). Mean patch area (MPA) is the average size of 
individual urban patches and is calculated by dividing the 
total urban area by the NP. It provides an indication of the 
extent of urbanisation, with larger average sizes indicating 
fewer and larger urban areas and smaller sizes indicating 
a more granular and fragmented urban pattern (Tian et al. 

2022). The fractal dimension (FD) is a measure of the com-
plexity of form resulting from the ratio of perimeter to area 
of urban areas. It is calculated according to the following 
formula:

This index provides a dimensionless value that captures 
the complexity of urban patch shapes. Values closer to 1 
indicate simple, smooth patch perimeters, while values 
closer to 2 indicate highly complex, convoluted patch shapes 
characteristic of sprawling urban development (Kotrosits 
2013).

Calculating these metrics allows for a temporal and spa-
tial comparison of landscape structure, allowing patterns 
and trends in urbanisation to be identified. By applying 
these metrics to binary maps across different points in time, 
researchers can quantify and visualise the dynamic process 
of urban growth and its impact on the landscape.

Temporal dynamics of urban fragmentation

Analysing these metrics across time, specifically for the 
years 1990, 2000 and 2020, can uncover temporal patterns 
of urban evolution. A rise in LPI over the years might signify 
a trend towards urban consolidation or the emergence of 
mega urban clusters. On the other hand, an increasing trend 
in NP and PD would indicate a progression towards more 
fragmented urban landscapes. An augmenting LSI would 
reflect increasingly irregular urban shapes, possibly due to 
haphazard development or encroachments into non-urban 
zones. These temporal patterns, captured by the fragmenta-
tion metrics, offer quantitative foundations to urban change 
narratives, linking back to driving forces like policy shifts, 
economic trends or population dynamics.

Statistical interpretation of urbanization and LST 
correlation

Upon obtaining these landscape metrics, it becomes piv-
otal to statistically assess their relationship with the LST. 
Employing linear regression techniques, it is feasible to 
ascertain the strength and significance of associations 
between landscape fragmentation indicators and LST. For 
instance, a positive regression slope between FD and LST 
would suggest that as urban areas become more complex (or 
fragmented), there is a corresponding rise in LST. The R2 
value from the regression delineates how much of the LST 
variation can be explained by changes in a specific fragmen-
tation metric. A significant p value would further confirm 
that the observed relationships are unlikely due to random 
chance. Thus, through rigorous statistical tests, the intricate 
interplay between urbanization patterns and LST can be 

FD = 2 ∗ log(NP)∕log(Area)
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deciphered, providing a robust basis for urban planning and 
policy-making endeavours.

The entire methodology employed in this study is illus-
trated in Fig. 2.

Results

Temporal LULC mapping and accuracy assessment

LULC modeling using RF model

The application of a Grid Search optimized RF model for 
LULC mapping of Abha city for the years 1990, 2000 and 
2020 revealed distinct optimal hyper-parameters for each 
period. For 1990, the model preferred a relatively moderate 

tree depth (max_depth: 25) with a higher number of trees 
(n_estimators: 150). These parameters, combined with ‘auto’ 
for max_features (which equates to the square root of the 
number of features), indicate a balanced trade-off between 
model complexity and generalization. The scenario in 2000 
demonstrated a slight inclination for deeper trees (max_
depth: 30) and a more conservative approach to node split-
ting, as indicated by min_samples_split: 5 and min_sam-
ples_leaf: 2, which ensures a more pronounced reduction 
in overfitting. Conversely, for the 2020 mapping, there was 
a surge in the number of trees (n_estimators: 200) with a 
return to the 1990’s tree depth, suggesting potentially richer 
or more varied data inputs, warranting a more robust for-
est. The consistent use of auto for max_features across all 
years underscores the stability in data dimensionality and the 
algorithm’s preference for considering a subset of features at 

Fig. 2   A comprehensive 
flowchart depicting the meth-
odologies employed for the 
spatiotemporal assessment of 
urban sprawl and its influence 
on LST in the context of urban 
planning
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each split. When applied to the diverse LULC classes such 
as built-up, water body and various vegetation types, among 
others, these hyper-parameters ensure precise and accurate 
mapping, capturing the city’s nuanced environmental and 
urban dynamics over the three-decade span.

Accuracy assessment of the LULC models

The RF-based LULC models for Abha city over the years 
1990, 2000 and 2020 have demonstrated a commendable 
level of accuracy when assessed against reference datasets. 
The models, while generally consistent, revealed some 
nuanced variations across different classes and years. Eval-
uating LULC with precision against ground truth data is 
paramount.

In 1990, the overall accuracy was 89.99% with a kappa 
coefficient of 0.8843, reflecting a high degree of reliability. 
User accuracy for categories such as built-up and exposed 
rock was high, with values above 0.89, meaning that most 
users would correctly identify these classes (Supplemen-
tary Table 1 and 2). However, for water bodies, user accu-
racy was lower at 0.67474, indicating some confusion 
in identifying the classes. Producer accuracy was above 
0.82 for most classes, with water bodies and exposed rocks 
scoring above 0.95, indicating a high probability that these 
classes were correctly identified. In 2000, overall accuracy 
increased slightly to 90.15% with a kappa coefficient of 
0.8862. In this year, user accuracy improved for built-up 
areas and dense vegetation with values above 0.91, indicat-
ing that users were more likely to correctly identify these 
classes (Supplementary Table 3 and 4). Producer accuracy 
remained high for water bodies and exposed rocks, also 
above 0.97. In 2020, the accuracy assessment showed the 
best performance with an overall accuracy of 91.72% and 
a kappa coefficient of 0.9043 (Supplementary Table 5 and 
6). In particular, user accuracy for built-up areas increased 
to 0.952484 and for water bodies improved significantly 
to 0.793522. Producer accuracy for agricultural land and 
exposed rocks was particularly high at 0.91 and 0.979 
respectively, indicating a very accurate representation 
of these classes in the LULC map. Commission errors 
remained relatively low for all classes and years, although 
some categories such as water bodies in 1990 and sparse 
vegetation in 2000 and 2020 had higher values. Omission 
errors were also low, with the highest errors observed in 
sparse vegetation in 1990 and 2000. The consistent reduc-
tion in omission errors by 2020 for most classes indicates 
an improvement in the completeness of the classification 
over time. In all years, user accuracy was high for most 
LULC classes, especially for built-up areas and exposed 
rocks, suggesting that map data users were able to identify 
these categories with high confidence. Producer accuracy 
was also high, particularly for water bodies and exposed 

rocks, confirming the precision of these classifications 
in the map. The low commission and omission errors for 
most classes across all years confirm the robustness of the 
classification, although some classes had higher errors, 
indicating areas for future improvement. The increasing 
trend in overall accuracy and kappa values over the years 
shows that LULC classification techniques and data qual-
ity have improved over time.

Land use land cover classification results

The LULC patterns, as illustrated in Fig. 3, present the spa-
tial distribution of distinct land cover types over three dis-
tinct periods: 1990, 2000 and 2020, derived using the RF 
algorithm. The quantitative representation of these patterns 
is tabulated in Table 2, which meticulously computes the 
areal extent of each LULC class across the three observation 
years. From Table 2, we discern several noteworthy trends 
and shifts in LULC dynamics over the three-decade span. 
There is an evident expansion of built-up regions, grow-
ing from 69.40 km2 in 1990 to a substantial 338.74 km2 by 
2020. This threefold increase underscores rapid urbaniza-
tion or infrastructural development in the area under study. 
The area encompassed by water bodies has seen a decline, 
contracting from 1.51 km2 in 1990 to just 0.54 km2 in 2020, 
which could be indicative of water bodies being subjected to 
anthropogenic pressures or changes in hydrological patterns. 
Dense vegetation has experienced a gradual increase over 
the years, expanding from 43.36 km2 in 1990 to 52.22 km2 
in 2020. Conversely, sparse vegetation demonstrated a dip 
in 2000 (193.52 km2) but rebounded in 2020 to 237.21 km2, 
suggesting potential shifts between dense and sparse vegeta-
tion classifications or land management practices. Croplands 
have witnessed fluctuations, with an initial expansion from 
105.24 km2 in 1990 to 135.03 km2 in 2000, followed by a 
significant reduction to 64.76 km2 by 2020. This could be 
attributed to changes in land use practices, urban encroach-
ment or alterations in agricultural policy. Scrubland, consti-
tuting a major portion of the land, experienced a decrease 
from 1032.72 km2 in 1990 to 785.58 km2 in 2000 and a 
slight resurgence to 827.35 km2 in 2020. Bare soils, on the 
other hand, peaked in 2000 at 353.57 km2 but reduced sub-
stantially by 2020 to 186.14 km2. Exposed rocks showed a 
consistent increase till 2000 but witnessed a slight decline 
by 2020.

Therefore, the LULC dynamics, as visualized in Fig. 3 
and quantified in Table 2, portray a landscape undergoing 
considerable transformations, with burgeoning urban areas, 
fluctuating vegetation and changes in natural terrains. These 
shifts, reflective of both anthropogenic interventions and nat-
ural processes, offer critical insights for land management, 
urban planning and environmental conservation efforts.
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Fig. 3   Distribution and divergence of various land cover types over time
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Land surface temperature results

LST data extracted from Landsat 4–5 TM and Landsat 8 
OLI imagery show a pronounced change in the thermal 
landscape of the city of Abha over three decades. The LST 
images were first validated with ground-based measurements 
(Supplementary Table 7), which confirmed the reliability of 

the satellite observations. The field observations conducted 
in June 2018 showed a high correlation with the satellite-
derived LST, indicating that the temporal evolution of the 
LST is consistent with the in situ data. In particular, the 
Landsat 4–5 TM and Landsat 8 OLI-derived LST values 
agreed well with the ground-based measurements: dense 
vegetation at 35.40 °C versus 33.05 °C, built-up concrete 
at 47.35  °C versus 45.50  °C, asphalt at 56.75  °C ver-
sus 54.60 °C and exposed rocky areas at 53.70 °C versus 
52.60 °C. This validation emphasises the credibility of our 
satellite-based LST analysis. The temporal trajectory of LST 
spanning three decades, as depicted in Fig. 5, underscores 
marked alterations in the region’s thermal milieu. Leverag-
ing the mono-window algorithm, satellite imageries from 
Landsat 4–5 TM for 1990 and 2000, juxtaposed with Land-
sat 8 OLI data for 2020, facilitated these LST derivations. 
In 1990, the first year of observation, the land surface tem-
perature (LST) values ranged from a low of 16.74 °C to a 
high of 58.58 °C, defining the thermal range of the area. In 
2000, the thermal boundary had shifted, and the LST val-
ues ranged from a minimum of 19.50 °C to a maximum of 

Table 2   Area (in km2) under different LULC categories

LULC classes Areas in (km2)

1990 2000 2020

Built-up 69.40 117.60 338.74
Water body 1.51 1.14 0.54
Dense vegetation 43.36 47.23 52.22
Sparse vegetation 228.46 193.52 237.21
Cropland 105.24 135.03 64.76
Scrubland 1032.72 785.58 827.35
Bare soil 262.31 353.57 186.14
Exposed rocks 503.57 612.90 539.62

Fig. 4   Spatial representation of land use and land cover (LULC) classes for the years 1990, 2000 and 2020

Fig. 5   Spatial distribution of land surface temperature (LST) for the years: 1990, 2000 and 2020
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62.63 °C. In 2020, the thermal profile continued to evolve, 
with temperatures ranging from 23.29 °C at the lowest to 
62.70 °C at the highest.

A spatial analysis shows that the western ends of the city, 
which are equipped with vegetation, consistently had LST 
values of below 30 °C. Remarkably, this vegetative foot-
print, which acts as a heat buffer, has decreased over the 
years, in line with the expansion of built-up areas. In con-
trast, the northern quadrant of the city, which is predomi-
nantly characterised by rocks and barren terrain, is a hotspot 
with temperatures consistently above 45 °C, and this ther-
mal intensity is on a rising trajectory. The core of the city, 
stretching from the eastern to the central zone, is home to 
Abha’s main urban conglomerate. In this area, the LST has 
intensified and frequently exceeds the 48 °C mark. As urban 
sprawl has increased, so have the regions where tempera-
tures above 48 °C are recorded. This emphasises the urban 
heat island effect and the impact of urban expansion on the 
local heat regime. A clear increase in the extent of exposed 
rock can be seen in Figs. 3 and 4 between 1990 and 2020, 
which appears to correspond to an increase in LST over the 
same period. This correlation suggests that the decrease in 
vegetation cover and the subsequent increase in exposed 
rock could contribute to an increase in local temperatures. 
Exposed rock surfaces naturally have a lower albedo than 
vegetation, meaning that they reflect less solar radiation and 
absorb more heat, leading to higher observed temperatures 
in these areas. Such changes in land cover not only affect 
local thermal profiles, but can also have wider ecological 
and environmental impacts, including altered microclimates 
and potentially negative impacts on biodiversity. The paral-
lel trends highlighted in these figures emphasise the critical 
interaction between land cover and regional climate dynam-
ics (Fig. 5).

Land use land cover dynamics

In this study, we used change matrix and Markovian tran-
sitional probability analysis to explore the urban dynamics 
over 30-year span. The change matrix provided in Fig. 6 
offer a granular insight into the nuanced shifts and dynamics 
of the LULC over a span of three decades. The initial decade 
highlighted the burgeoning urban footprint. Built-up areas 
expanded notably by approximately 49.58 km2 from its origi-
nal state. This urban sprawl predominantly encroached upon 
scrublands (8.82 km2), exposed rocks (7.52 km2) and bare 
soils (2.47 km2). Water bodies exhibited a commendable 
resilience with retention of approximately 0.92 km2, with 
only minor transitions from built-up (0.03 km2) and dense 
vegetation areas (0.04 km2). Sparse vegetation, accounting 
for about 124.27 km2, was in a dynamic state, showcasing 
significant interchange with scrublands (49.81 km2) and 
exposed rocks (30.70 km2).

The period from 2000 to 2020 further emphasized the 
urban expansion narrative. Built-up areas surged dramati-
cally, capturing an additional 96.52 km2 of the landscape. A 
significant portion of this expansion occurred at the expense 
of scrublands, which saw a reduction of about 89.00 km2 
transitioning to urban territories. Moreover, croplands, 
which spanned 34.23 km2, also underwent a substantial 
metamorphosis, primarily converting into and out of scrub-
lands (49.07 km2). The 30-year overview accentuates the 
macroscopic LULC dynamics. Urban (built-up) regions bur-
geoned predominantly by annexing territories from scrub-
lands, bare soils and exposed rocks. The dense vegetation 
largely maintained its integrity, spanning around 37.15 km2, 
with only minor areas transitioning to and from sparse veg-
etation (8.07 km2). Sparse vegetation, covering 117.87 km2, 
exhibited fluidity, especially with scrublands (43.32 km2). 
Croplands, over the three decades, oscillated primarily with 
scrublands, with an interchange of about 49.07 km2.

Therefore, the LULC transition matrices present a land-
scape undergoing profound transformations. The relent-
less urban expansion, especially at the expense of natural 
habitats like scrublands and exposed rocks, underscores the 
anthropogenic pressures. This comprehensive, quantitative 
assessment accentuates the need for sustainable urban plan-
ning and conservation strategies to balance development and 
ecological preservation.

The Markovian transition matrices in Fig.  6 provide 
a probabilistic assessment of the potential transitions 
between different LULC classes over two distinct intervals: 
2000–2020 and 1990–2020. Examining the data from Fig. 6, 
urban (built-up) regions showcased a high-retention prob-
ability of 82.08% over the two decades. This indicates a pre-
dominant stability in urban areas, with minor expansions 
primarily at the expense of scrublands (9.33%) and exposed 
rocks (3.83%). Water bodies demonstrated a retention prob-
ability of 43.65%, but also showed a significant transition 
potential to dense vegetation (23.99%). Dense vegetation 
areas exhibited a substantial stability with a 78.64% reten-
tion probability, with the most significant outflux to sparse 
vegetation (17.09%). Sparse vegetation, with a 60.91% reten-
tion probability, experienced notable transitions to scrub-
lands (22.39%). Croplands, while maintaining a 25.35% 
retention probability, showed a strong inclination to tran-
sition into scrublands (36.34%). Scrublands and exposed 
rocks, with retention probabilities of 66.76% and 73.59% 
respectively, showed the most stable dynamics in this period.

The cumulative transition matrix over three decades, 
as elucidated in Fig.  6, reiterates many of the trends 
observed in the 2000–2020 interval. Built-up areas main-
tained a dominant stability, with a 82.08% retention prob-
ability. The most significant flux from this category was 
towards scrublands (9.33%). Water bodies, despite a mod-
erate retention probability of 43.65%, showed a marked 
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tendency to morph into dense vegetation (23.99%). 
Dense and sparse vegetations largely mirrored the trends 
from the previous interval, with retention probabilities 
of 78.64% and 60.91%, respectively. Croplands and 
scrublands continued their trend, with croplands lean-
ing towards transitioning into scrublands (36.34%) and 
scrublands maintaining a retention probability of 66.76%. 
Bare soils and exposed rocks, with retention probabilities 
of 38.77% and 73.59%, respectively, indicated the land-
scape’s inertia against rapid changes in these classes.

The change matrices and transitional probability 
assessments offer a rigorous, quantitative insight into the 
multi-decadal evolution of the landscape. These analyses 
underscore the dynamic interplay between anthropogenic 
influences and natural processes, revealing persistent pat-
terns of urban expansion, habitat alterations and the rela-
tive stabilities of various land cover classes over time.

Assessment of LST dynamics

The assessment of LST trends over time is pivotal for under-
standing the intricate interplay between anthropogenic influ-
ences and natural processes. To understand deeper into these 
temporal dynamics, a spatial linear regression model was 
implemented at the granular pixel level. This approach ena-
bles the capture of nuanced, site-specific thermal variations, 
offering a detailed insight into the landscape’s evolving ther-
mal profile and the driving factors behind these changes. The 
model’s strength lies in its ability to quantify three essential 
metrics: the slope (indicating trend magnitude and direction-
ality), R2 (representing the goodness of fit) and the p value 
(denoting statistical significance). Together, these metrics 
serve as a comprehensive toolkit, elucidating the magnitude, 
consistency and significance of LST dynamics across diverse 
landscapes.

Fig. 6   LULC change and transition matrices for 1990–2000, 2000–2020 and 1990–2020
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The slope or gradient of the regression line represents 
the rate of change in LST over the temporal scale. From 
Fig. 7, it is discernible that the study area, especially the 
urban regions radiating from the middle to the eastern parts, 
manifests an approximate positive slope, suggesting a warm-
ing trend of around 1–2 °C per decade. This is emblem-
atic of the urban heat island effect, a phenomenon where 
urban areas experience elevated temperatures due to human 
activities and modifications to the land surface. In contrast, 
the extreme western part, which is predominantly forested, 
exhibits a relatively stable or slightly increasing trend, with 
an approximate slope of 0.5 °C per decade. The northern 
regions, dominated by bare soil and rocky surfaces, also 
indicate an increasing LST trend, potentially attributable to 
the inherent low albedo of such surfaces and the absence of 
vegetation cover.

Regions in the urban belt, especially those spreading 
towards the eastern parts, display an R2 value of approxi-
mately 0.6 or higher. This suggests that over 50% of the vari-
ability in LST in these regions can be accounted for by the 
temporal factor alone. The forested regions in the extreme 
west, while showing a lower trend magnitude, also demon-
strate a moderately high R2 value, indicating a consistent, 
albeit slower, temperature change.

The p value sheds light on the statistical significance of 
the observed trends. From the plots, it is evident that the 
urban areas, especially those expanding towards the east 
and the west, exhibit p values lower than 0.05. This signi-
fies that the warming trends in these regions are statisti-
cally significant and unlikely due to random variations. The 
northern regions, dominated by rocky surfaces and bare soil, 
also manifest statistically significant warming trends, with p 
values approximating 0.05 or lower.

Combining the insights from the trend magnitude, R2 val-
ues and p values, certain patterns emerge. The urban areas, 
especially those sprawling towards the eastern and western 
fringes, are undergoing rapid warming. This warming is not 
only statistically significant but also accounts for a major 

portion of the LST variability. The forested regions in the 
west, despite their slower temperature increase, exhibit con-
sistent trends, underlining the subtle influences of defor-
estation or land-use changes. The northern terrains, with 
their rocky surfaces, further corroborate the importance of 
vegetation in modulating LST, as their barrenness results in 
marked and significant warming trends.

Assessing the relationship between LULC classes 
and LST at temporal scale

The interplay between LULC changes and LST dynamics 
stands as a cornerstone in understanding the ecological and 
climatic shifts of a region. To unravel this intricate relation-
ship, zonal statistics and statistical tests have been employed, 
offering a detailed quantification and correlation between 
LULC classes and their consequent LST values over time.

Table 3 presents a comprehensive overview of the LST’s 
temporal dynamics across various LULC classes over three 
decades. One striking observation is the evident increase 
in average LST values for built-up areas, which have risen 
from 43.71 °C in 1990 to 50.46 °C in 2020. This increment 
can be attributed to factors such as urban heat island effects, 
increased anthropogenic activities and infrastructural devel-
opments in urban regions. Such trends are indicative of the 
growing thermal footprint of urbanization. Water bodies, 
which generally serve as thermal sinks, interestingly show-
case a decrease in average LST from 33.762 °C in 2000 
to 29.695 °C in 2020. This decline might be a reflection 
of changes in the volume or quality of water bodies, varia-
tions in aquatic vegetation or fluctuations in inflow-outflow 
dynamics. Dense vegetation areas, typically associated with 
cooler temperatures due to evapotranspiration processes, 
have also witnessed an increment in average LST from 
25.168 °C in 1990 to 32.283 °C in 2020. Such an uptick 
might be indicative of possible deforestation, land degrada-
tion or other anthropogenic pressures reducing the cooling 
effect of these zones.

Fig. 7   Detailed spatial linear regression analysis of temporal LST trends using (slope), goodness of fit (R.2) and statistical significance (p value)
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The statistical parameters from Fig. 8 further shed light 
on the relationship between LULC and LST. The R2 values, 
which represent the proportion of LST variability explained 
by LULC changes, are notably high for certain classes. 
Built-up areas have an R2 of approximately 0.843, suggest-
ing that around 84.3% of the variation in LST within these 
areas can be attributed to changes in the built-up class. Simi-
larly, dense vegetation and sparse vegetation classes have R2 
values of 0.892 and 0.926 respectively, further underscor-
ing the strong correlation between LULC changes and LST 
dynamics in these regions.

Moreover, the F-values from the ANOVA tests indicate 
the statistical significance of these relationships. All LULC 
classes have p values close to 0, highlighting the fact that the 

observed relationships between LULC and LST are statisti-
cally significant and not due to random chance.

Geographically, the directionality of these changes is also 
crucial. In the extreme western part, which is primarily a for-
ested region, the LST has been consistently cooler. However, 
as urban areas radiate from the middle to the eastern parts, 
an increase in LST is evident, with heightened values often 
exceeding 48 °C. The northern regions, dominated by bare 
soil and rocky surfaces, also exhibit elevated LSTs, often 
surpassing 45 °C. Over time, these high LST zones have 
expanded, signalling an escalation in land surface warming, 
potentially exacerbated by diminishing vegetative cover and 
increasing built-up zones. Therefore, based on these results, 
we decided to study further on only urban landscape how 

Table 3   Zonal statistics illustrating the relationship between LULC classes and their corresponding LST values for the years 1990, 2000 and 
2020

LULC classes Built-up Water body Dense vegetation Sparse vegetation Cropland Scrubland Bare soil Exposed rocks

Average_1990 43.710 27.718 25.168 33.546 37.238 40.272 42.659 44.798
Maximum_1990 54.980 43.185 42.093 52.988 49.900 55.212 55.434 58.581
Minimum_1990 25.636 19.411 16.743 19.038 21.547 21.840 26.043 19.917
Average_2000 48.376 33.762 29.621 36.847 40.415 44.353 46.494 49.724
Maximum_2000 59.606 57.738 57.728 54.524 54.902 60.867 58.631 62.635
Minimum_2000 28.305 21.841 19.495 21.882 23.230 24.454 29.350 24.865
Average_2020 50.460 29.695 32.283 39.294 43.309 45.911 49.555 49.769
Maximum_2020 61.729 46.559 57.249 59.672 59.703 61.299 59.878 62.701
Minimum_2020 26.565 25.524 23.292 25.265 27.270 27.765 29.665 26.198

Fig. 8   Results of statistical tests delineating the correlation and significance of LST changes in response to LULC transformations over time



29063Environmental Science and Pollution Research (2024) 31:29048–29070	

different arrangements of urban landscape have influence 
LST.

Urbanization impact assessment based 
on landscape fragmentation analysis

Built‑up area extraction and associated LST dynamics

Analysing the impacts of urbanization on local climate 
dynamics is paramount in the realm of urban ecology and 
planning. A novel approach in this study is the meticulous 
dissection of urban sprawl’s fragmentation patterns and 
their subsequent influence on LST. By transforming the 
LULC data into a binary format (visualized in Fig. 9), we 
exclusively focused on built-up areas, enabling a detailed 
assessment of urbanization’s micro-scale impacts. This nar-
rowed perspective enhances the precision of the evaluation, 
especially when using fragmentation indices in conjunction 
with LST.

The histograms highlight the frequency distribution of 
LST within urban patches over three distinct years. In the 
1990 histogram, the LST distribution appears to be skewed 
towards cooler temperatures, with the peak frequency 
observed around approximately 28  °C (Fig.  10). This 
suggests that a significant portion of the urban areas had 

relatively cooler temperatures during this year. By 2000, the 
histogram showcases a slight shift towards warmer tempera-
tures, with the most frequent LSTs gravitating around 32 °C. 
This could be indicative of urban heat island effects intensi-
fying due to increased built-up areas or reduced vegetation. 
By 2020, the histogram takes on a broader distribution, hint-
ing at a greater variability in urban temperatures. The peak 
frequency seems to have shifted further to around 34 °C, 
emphasizing the continued warming trend. However, the 
broader spread also suggests diverse microclimates within 
the urban patches, potentially due to factors like urban plan-
ning, the introduction of green spaces or variations in build-
ing materials.

Fragmentation analysis

Over the span of three decades, the urban landscape of the 
region has undergone substantial transformation, as evident 
from the fragmentation metrics. The LPI, which measures 
the size of the largest urban patch as a percentage of the total 
landscape, has exhibited a noticeable increase, surging from 
22.78 in 1990 to 65.24 by 2020. This uptrend suggests a 
growing dominance of larger urban patches, potentially indi-
cating a fusion of previously isolated urban fragments or the 
outward expansion of major urban hubs. Concurrently, the 

Fig. 9   Spatial distribution of built-up areas

Fig. 10   Frequency distribution of LST within urban patches
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NP metric, signifying the count of discrete urban patches, 
has catapulted from 2531 in 1990 to an impressive 10,710 
in 2020.

This substantial increment in LPI highlights the height-
ened fragmentation and proliferation of urban areas, possibly 
fuelled by sporadic urban developments, the emergence of 
satellite towns or infrastructure ventures bisecting existing 
urban regions. Meanwhile, the MPA offers a slightly con-
trasting perspective. Its increment from 27,421.73 sq. m in 
1990 to 31,628.06 sq. m in 2020, while moderate, suggests 
that the average size of these burgeoning urban patches has 
also expanded. This could be attributed to the consolidation 
of smaller urban fragments or the organic growth of existing 
ones. The evolution of PD and LSI provides further nuance. 
A mild decline in PD from 36.467 in 1990 to 31.617 in 2020 
indicates a subtle drop in urban patch density. In contrast, the 
LSI’s leap from 57.14 in 1990 to 95.059 in 2020 pinpoints a 
growing complexity in the shape and configuration of urban 
patches, a potential repercussion of unchecked urban sprawl 
or eclectic urban designs.

Statistical analysis

The regression analysis reveals profound insights into the 
relationship between urban fragmentation and the corre-
sponding variations in LST (Fig. 11). The R2 values, which 
signify the proportion of LST variance explained by each 
metric, are particularly telling. For instance, the LPI, with 

an R2 of 0.97, showcases that approximately 97% of the 
variability in LST can be explained by the changes in the 
largest urban patch size. Similarly, the NP and LSI metrics, 
with R2 values of 0.96 and 0.98 respectively, affirm their 
substantial roles in influencing LST dynamics. The slopes 
of these metrics provide insights into the rate of change over 
the years. The LPI has a slope of 1.47, suggesting a steady 
increase in the size of the largest urban patch over the years. 
In contrast, the NP, with a slope of 283.19, underscores the 
rapid proliferation of urban patches. The LSI, with its slope 
of 1.3, also reinforces the growing complexity in urban patch 
configurations. However, the p values introduce an element 
of caution. While metrics like LPI, NP and LSI have rela-
tively low p values, suggesting statistically significant rela-
tionships, others like MPA (p = 0.380) and PD (p = 0.390) 
approach the conventional significance thresholds, hinting at 
potential nuances or externalities that might be influencing 
their relationships with LST.

Urban areas, as evidenced by their evolving fragmenta-
tion patterns, play a crucial role in modulating local temper-
ature dynamics. The escalating fragmentation and irregular-
ity in urban patches, as indicated by metrics like NP and LSI, 
can lead to diverse microclimates within a city, influenc-
ing local weather patterns, heat stress and urban livability. 
Among the metrics, LPI, NP and LSI particularly stand out 
in their capability to elucidate LST dynamics, underscor-
ing the importance of urban planning and design in climate 
adaptation and resilience. Overall, the regression outcomes 

Fig. 11   Temporal trends of selected landscape metrics for the urban built-up areas from 1990 to 2020
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highlight the profound influence of urban fragmentation on 
LST dynamics, underscoring the necessity of sustainable 
urban planning to mitigate escalating urban temperatures.

Discussion

The intricate interplay between LULC and LST has been 
the subject of extensive research, especially in the context 
of urbanization and its resulting environmental effects (Nath 
et al. 2021; Rahaman et al. 2022). Abha city, in this study, 
serves as a representative example of many rapidly urban-
izing areas, particularly in developing nations, where urban 
expansion often leads to discernible changes in local micro-
climates (Moazzam et al. 2022). As the built-up expanse 
of Abha enlarged nearly fivefold from 69.40 km2 in 1990 
to 338.74 km2 by 2020, a corresponding uptick in LST to 
50.46 °C in 2020 was observed. This trend echoes findings 
from various other studies where urban growth, character-
ized by an increase in impervious surfaces, has been directly 
linked to a rise in LST (Shahfahad et al. 2023a, b; Lal et al. 
2022). Abha city’s near fivefold increase in built-up areas 
over three decades underscores a predominant shift towards 
urban infrastructure, characterized by concrete, asphalt and 
other man-made surfaces. Such materials typically have high 
heat capacities and low albedos (Abulibdeh 2021). Conse-
quently, during the day, these surfaces absorb and store more 
solar radiation compared to natural surfaces. At night, the 
stored heat is gradually released, leading to elevated tem-
peratures, a phenomenon evident in our study where LST 
escalated to 50.46 °C in 2020.

This phenomenon aligns with several studies across the 
globe. For instance, Moisa et al. (2022) observed a similar 
rise in LST with declining vegetation cover. Vegetation, with 
its natural ability to provide shade and facilitate evapotran-
spiration, acts as a cooling agent, reducing LST (Naikoo 
et al. 2020). As urban areas expand, vegetation is often the 
first casualty, leading to reduced evapotranspiration and 
increased heat retention (Zhao et al. 2017). Çorumluoğlu 
(2023) identified industrial regions, roads, bare lands and 
certain urban land parts as primary contributors to urban 
heat islands (UHI) and Urban Hot Spots (UHS) in Izmir. 
Utilizing the Simulated Single Image (SSI) method, it dem-
onstrated spatial patterns of UHI development influenced 
by urban land cover and structure types. Additionally, the 
fragmentation metrics, which highlighted the city’s evolving 
urban morphology, provide insights into the urban structure 
and layout. A fragmented urban structure, with more patches 
and edges, can exacerbate heat stress due to increased sur-
face area exposed to solar radiation. Our observation, where 
the number of patches surged from 2531 in 1990 to 10,710 
in 2020, indicates increased fragmentation and potentially 

more heat islands within the city. This could be one of the 
reasons for the substantial increase in LST.

Recent research has established a clear link between 
changes in land use and land cover (LULC) and land surface 
temperature (LST). Studies from Seoul to Nanjing show the 
profound impact of urban development on the local climate. 
The study from Seoul used advanced artificial intelligence 
to predict a significant reduction in LST following the con-
version of urban areas into green spaces, highlighting the 
potential of strategic urban planning to combat heat (Kim 
et al. 2022). Similarly, an analysis in the Dongting Lake 
emphasised the need for precise LST measurements, linking 
specific LULC types to different temperature profiles (Tan 
et al. 2020). Studies in rapidly urbanising regions confirmed 
the trend and showed a marked increase in LST in response 
to the loss of vegetation, particularly in autumn. In Nan-
jing, the cooling effect of croplands and forests was mapped, 
indicating opportunities to mitigate the effects of the urban 
heat island (Kaiser et al. 2022). These studies show that 
land use dynamics are an important factor in LST changes 
and provide information for sustainable urban management 
(Wang et al. 2020).

Comparatively, cities with similar geographical and 
climatic contexts have reported analogous trends. For 
instance,  Alqurashi and Kumar (2019) noted urban expan-
sion-induced LST hikes in cities like Riyadh, Jeddah and 
Makkah. The commonality in these observations, despite 
regional nuances, is the profound impact of urban morphol-
ogy on local thermal dynamics. Furthermore, the inherent 
topography and microclimatic factors unique to Abha might 
have compounded the urbanization-induced effects. It is pos-
sible that specific geographical or topographical attributes 
of Abha have a role in the pronounced LST changes. While 
urbanization is a primary driver, the city’s microclimate, 
influenced by its geographical setting, can either amplify or 
mitigate the UHI effects. Considering the escalating LST 
trends, there is a pressing need for Abha’s urban planning 
authorities to prioritize the integration of green infrastruc-
ture within city limits. Strategic placement of parks, green 
roofs, water sprinkle systems and tree-lined streets can 
mitigate the UHI effect, offering cooler microenvironments 
and improving overall urban livability. Also, urban plan-
ners should prioritize holistic and connected urban layouts 
over fragmented developments. Ensuring that built-up zones 
are complemented with contiguous green belts can help in 
heat dispersion, reducing localized UHI effects. Compara-
tive studies, such as those by Alqurashi and Kumar (2019) 
and  Alqurashi et  al. (2016), have noted similar urban-
induced LST rise in other Saudi Arabian cities. However, 
each city has its unique geographical and climatic nuances. 
Abha’s inherent topographical attributes might also influ-
ence its microclimate, potentially amplifying urbanization-
induced effects. Urban planning should align with the city’s 
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natural geographical attributes. Sloped regions, for instance, 
can be developed as terraced green spaces, promoting natu-
ral cooling.

The hypothesis of the study postulates a direct link 
between the accelerated urbanisation of the city of Abha and 
the significant increase in LST, a theory that is confirmed 
by the results of this study. The almost fivefold increase in 
built-up areas between 1990 and 2020 is reflected in a sig-
nificant increase in LST. This supports the hypothesis that 
urban expansion and the associated increase in imperme-
able surfaces are major factors in the increased temperatures 
in cities. This hypothesis is consistent with global research 
findings linking urban growth to higher LST due to reduced 
evapotranspiration and increased heat storage by artificial 
surfaces. The observed fragmentation of urban structure, 
resulting in increased patchiness and edges, further confirms 
the hypothesis by showing how urban form can influence 
microclimatic conditions and potentially contribute to the 
urban heat island effect. The results of the study argue in 
favour of urban planning that emphasises green infrastruc-
ture to mitigate these thermal effects and are in line with 
current urban climate resilience strategies.

The results of the study on rapid urbanisation in Abha, 
Saudi Arabia, and the resulting impact on LST have signifi-
cant policy implications. The evidence that urban sprawl leads 
to a significant increase in LST, as shown by the growth of 
built-up areas and the sharp rise in temperature over three dec-
ades, points to the urgent need for integrated urban planning. 
Policy makers should consider enforcing green building codes 
that incorporate heat-reflective materials and urban greening 
initiatives to mitigate the urban heat island effect. The cool-
ing trend observed in water bodies suggests that measures to 
promote the preservation and enhancement of natural water 
bodies could be a strategic component of urban climate man-
agement. Furthermore, the study’s finding that almost 97% 
of LST variability is due to urban morphology highlights the 
need for land use planning that prioritises climate resilience. 
This could include the development of open spaces and the 
preservation of larger, uninterrupted green spaces in cities to 
counter fragmentation and promote ecosystem services that 
cool urban areas. To promote sustainable urban living, urban 
planners and local governments should implement strategies 
based on the study’s findings. This includes spatial planning 
that regulates urban expansion, improves green infrastructure 
and utilises water bodies as natural cooling elements.

Conclusion

The relationship between urban morphology and climatic 
responses, particularly land surface temperature (LST), has 
attracted considerable interest in the field of urban ecology 
and planning. In the rapidly developing city of Abha, this 

study meticulously mapped the evolution of the urban fab-
ric over three decades, revealing stark changes in the land-
scape. The land use and land cover (LULC) models built 
using advanced methods based on the random forest (RF) 
algorithm showed a robust accuracy of 87.70%, 86.27% and 
93.53% for the years 1990, 2000 and 2020, respectively. A 
strong urban expansion was observed, with the built-up area 
increasing from 69.40 km2 in 1990 to 338.74 km2 in 2020. 
At the same time, the city’s LST dynamics reflected this 
urban sprawl, with temperatures rising from an average of 
43.71 °C in 1990 to a sweltering 50.46 °C in 2020.

These findings emphasise the profound impact of urban 
growth patterns on local microclimates and reinforce the 
global discourse on urban heat islands and sustainable urban 
planning. The novelty of the study is that it focuses on urban 
landscapes and uses customized landscape metrics to find 
out how specific urban fragmentation patterns correlate with 
LST variations. The intricate analysis, particularly of urban 
sprawl fragmentation patterns and their influence on LST, 
sets this study apart from others. However, like all scientific 
endeavours, this study is not without limitations. The time 
frame, limited to three decades, may overlook longer-term 
patterns. Furthermore, while the study focuses on the city 
of Abha, extrapolating the results to other urban contexts 
should be done with caution due to the different local condi-
tions and urbanization trajectories.

Future research can broaden the temporal and spatial 
scales and include more diverse urban contexts and longer-
term data sets. Given the emerging challenges of climate 
change, understanding the relationship between cities and 
LST is crucial. This study paves the way, and it is hoped 
that researchers around the world will build on this founda-
tion and explore more deeply the multi-layered relationship 
between urbanization and its climatic impacts to support the 
formulation of sustainable urban policy.
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