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Abstract
Water, an invaluable and non-renewable resource, plays an indispensable role in human survival and societal development. 
Accurate forecasting of water quality involves early identification of future pollutant concentrations and water quality indices, 
enabling evidence-based decision-making and targeted environmental interventions. The emergence of advanced compu-
tational technologies, particularly deep learning, has garnered considerable interest among researchers for applications in 
water quality prediction because of its robust data analytics capabilities. This article comprehensively reviews the deploy-
ment of deep learning methodologies in water quality forecasting, encompassing single-model and mixed-model approaches. 
Additionally, we delineate optimization strategies, data fusion techniques, and other factors influencing the efficacy of deep 
learning-based water quality prediction models, because understanding and mastering these factors are crucial for accurate 
water quality prediction. Although challenges such as data scarcity, long-term prediction accuracy, and limited deployments 
of large-scale models persist, future research aims to address these limitations by refining prediction algorithms, leverag-
ing high-dimensional datasets, evaluating model performance, and broadening large-scale model application. These efforts 
contribute to precise water resource management and environmental conservation.

Keywords  Deep learning · Water quality prediction · Hybrid model · Optimization algorithm · Data decomposition 
algorithm · Neural network

Introduction

Water, an essential resource for human survival, is inher-
ently vulnerable and non-renewable. Rapid industrialization 
and urbanization have caused ecological and environmental 
destruction and a considerable upsurge in water pollution 
(Tirkolaee et al. 2018). Both human activities and natural 
processes, such as rock weathering, erosion, and climate 

change, impact water quality (Lyu et al. 2020). The per-
sistent presence of pollution and deteriorating water envi-
ronments pose serious threats to human health (Vörösmarty 
et al. 2010). Water quality prediction plays a crucial role in 
addressing specific environmental challenges, such as effec-
tive management and pollution reduction. It enables early 
detection, warning, and water pollution treatment, ensuring 
the safe use of water. First, water quality prediction aids 
water resource managers in understanding the current sta-
tus and trends in water pollution. This insight enables the 
implementation of targeted management measures, opti-
mization of water supply strategies, and preservation of 
water resources through judicious usage. Second, it assists 
in monitoring and controlling pollution sources, promptly 
detecting and responding to potential pollution incidents. 
This, in turn, helps reduce water pollution and preserve the 
health of water ecosystems. Last, the early detection and 
resolution of potential water pollution issues contribute to 
ensuring personal safety and well-being.

Water quality prediction methods can be categorized 
into traditional and machine learning methods. Traditional 
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methods typically consist of physical and statistical models. 
Physical models utilize mathematical equations to describe 
water movement, transport, and transformation processes 
(Magar et al. 2017, Post et al. 2018, Rong et al. 2019, Wool 
et al. 2020, Zamani et al. 2018), such as the Soil and Water 
Assessment Tool, Hydrological Simulation Program-FOR-
TRAN, and MIKE System Hydrological European. When 
applied to water quality prediction, these models are typi-
cally build upon a foundation of understanding physical 
processes and factors with parameters possessing rigorous 
physical explanations. However, challenges such as difficulty 
with parameter calibration, modeling structure complexity, 
parameter uncertainty, and high computational costs restrict 
their utility in river basin water quality prediction. Addi-
tionally, these models are often challenging to calibrate and 
require a high level of professional expertise to achieve accu-
rate results (Liu and Tong 2011, Moshtaghi et al. 2018; Wan 
et al. 2021; Zhou et al. 2021). Statistical models are based 
on probability theory and mathematical statistical methods. 
While some processes cannot be derived through theoretical 
analyses, the functional relationship between variables can 
be obtained through methods such as multiple regression 
and principal component analysis (PCA) using experimental 
data. Statistical models, unlike physical models, require only 
historical data for water quality prediction, making them 
simpler and more effective (Guo et al. 2020; Shi et al. 2019). 
However, the simplistic nature of statistical models means 
they typically assume a normal and linear distribution in the 
correlation between water quality and explanatory variables, 
and linearizing nonlinear relationships between water qual-
ity changes and influencing factors can reduce the model’s 
accuracy (Avila et al. 2018; Yang et al. 2017).

Deep learning (LeCun et al. 2015) is a machine learning 
branch that utilizes neural network models. These methods 
involve learning complex feature representations and pat-
tern recognitions through multi-layer neural networks. These 
multi-layer neural networks offer enhanced expressive power 
and adaptability, with wide-ranging applications in big data 
analytics, including but not limited to computer vision 
(Badrinarayanan et al. 2015), image classification (Rawat 
and Wang 2017), speech recognition (Zhang et al. 2020), 
time series prediction (Sezer et al. 2019), natural language 
processing (Otter et al. 2020), and anomaly detection (Malki 
et al. 2022). In the context of water quality prediction, deep 
learning technology has significantly improved both predic-
tion accuracy and model effectiveness. It enables not only 
water quality concentration predictions but also classifica-
tions based on water quality levels (Islam and Irshad 2022). 
In the water quality prediction field, deep learning technol-
ogy and traditional machine learning methods exhibit nota-
ble distinctions. Deep learning methods employ neural net-
work models that autonomously learn intricate features for 
feature extraction and generalization. Conversely, traditional 

machine learning methods utilize simpler models that neces-
sitate manual feature design and selection. Consequently, 
deep learning tends to achieve higher accuracy. Despite 
this advantage, deep learning models are often considered 
‘black boxes’ because of their lower interpretability com-
pared with traditional machine learning models. Nonethe-
less, researchers are striving to enhance deep learning model 
interpretability. Therefore, advancements in deep learning 
techniques are crucial for water quality prediction technolo-
gies and governing strategies for water resource management 
and environmental preservation.

This study aims to furnish a comprehensive review of 
deep learning algorithms applied to water quality prediction. 
The screened literature covers a variety of pollutants and 
a wide range of algorithms used for prediction. Literature 
screening for research studies on deep learning technology 
in water quality prediction involves three stages: search, 
collation, and analysis. During the search stage, the search 
engines used include Web of Science, Google Scholar, 
SpringerLink, and ScienceDirect; the specific keywords 
used include water quality prediction, artificial intelligence, 
deep learning, meta-heuristic method, data decomposition, 
groundwater quality, and surface water quality. Additional 
articles were identified using the cross-citation method by 
reviewing the selected articles’ references, resulting in a 
total of 253 articles. The collation stage involved a com-
prehensive evaluation of articles based on title, keywords, 
abstracts, etc., leading to the selection of 87 highly relevant 
articles. Finally, in the analysis stage, each article was care-
fully reviewed to examine the advancements in deep learning 
technology for water quality prediction. “The application 
of deep learning technology in water quality prediction” of 
this article provides an overview of existing deep learning 
technology applied to water quality prediction, as shown 
in Fig. 1, categorized into single and hybrid deep learning 
models. “Model performance evaluation indicators and fac-
tors affecting deep learning technologies for water quality 
prediction” discusses the evaluation indicators for model 
performance and the factors influencing water quality pre-
diction using deep learning technology. “The limitations of 
current deep learning techniques in water quality predic-
tion” explores deep learning technology limitations in water 
quality prediction. Finally, this article concludes by outlin-
ing prospective research avenues and opportunities in this 
burgeoning field.

The application of deep learning technology 
in water quality prediction

A systematic analysis of the 87 highly correlated articles 
was conducted to examine the deep learning prediction of 
water quality based on the number of deep learning models 
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utilized. This analysis revealed two main categories: single-
model predictions of water quality and hybrid-model predic-
tions of water quality, as illustrated in Fig. 1. In single-model 
predictions, a deep learning model is employed to forecast 
water quality. In contrast, to enhance prediction accuracy, 
hybrid-model predictions involve integrating various deep 
learning models or combining deep learning models with 
other techniques, such as traditional machine learning, data 
decomposition methods, and optimization algorithms.

General steps in water quality prediction based 
on deep learning technology

The process of predicting water quality using deep learning 
is schematically represented in Fig. 2 and encompasses the 
following steps:

1.	 Data gollection: gather relevant data on water quality 
indicators and environmental factors from sensors, mon-
itoring stations, and historical records.

2.	 Data preprocessing: clean data by addressing missing 
values and outliers and standardizing the features.

3.	 Feature dimension reduction: apply methods such as 
PCA to reduce feature dimensionality.

4.	 Model selection and training: choose an appropriate 
deep learning model for water quality prediction and 
train and optimize the model using the preprocessed 
dataset and evaluate its performance using a test dataset.

5.	 Model optimization: fine-tune the model parameters or 
improve the model structure based on the evaluation 
results to enhance its performance further.

6.	 Real-time prediction and monitoring: utilize the opti-
mized model to predict real-time water quality, include 
monitoring data into the model to obtain water quality 

prediction results, monitor the water quality in real-time, 
and take necessary actions accordingly.

Single deep learning model predictions of water 
quality

Convolutional neural network (CNN)

Inspired by biology, CNNs have been successfully applied 
to tasks such as image recognition, object detection, and 
text processing (Banan et al. 2020; Kumar et al. 2021). A 
CNN consists of three main components: the convolution 
layer, the pooling layer, and the fully connected layer. The 
convolution layer applies a series of filters that slide over 
the input image to perform dot products based on input data. 
The pooling layer reduces the dimensionality of the result-
ing matrix, and the fully connected layer compresses the 
extracted features to produce the final result.

CNNs can be utilized for time series prediction by con-
structing an end-to-end model. For instance, water quality 
time series data can serve as the model input, with the pre-
dicted water quality as the output. Pyo et al. (2020) employed 
a CNN by inputting synthetic nutrient, environmental, and 
atmospheric grid unit data to predict the cyanobacteria con-
centration in water. Ta andWei (2018) proposed a simplified 
reverse understanding CNN model for predicting dissolved 
oxygen, which showed a faster convergence speed and better 
prediction stability compared with a back propagation neural 
network (BPNN). Additionally, CNN can effectively reduce 
data dimension and extract spatial features. When CNNs 
are used for predictions in this context, they are commonly 
incorporated into mixed models, as explained in “Hybrid-
model predictions of water quality.”

Fig. 1   Classification of water 
quality prediction methods 
based on deep learning technol-
ogy
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CNNs are capable of effectively extracting both spa-
tial and temporal features for water quality prediction 
while effectively reducing data feature dimensionality. 
Despite their relatively simple architecture and train-
ing ease, CNNs possess certain limitations. Specifically, 
they exhibit restricted capabilities in processing extended 
sequences and offer limited model interpretability. Cur-
rently, CNNs are primarily used as data processing mod-
els to extract various features from water quality data to 
enhance prediction accuracy (Fan et al. 2020, Habib and 
Qureshi 2020, Xue et al. 2021).

Temporal convolutional network (TCN)

TCNs (Bai et al. 2018) represent a specialized sequence 
modeling architecture that leverages CNNs to discern 
patterns and features within sequence data. Unlike tradi-
tional CNNs, TCNs incorporate a dilation factor, allowing 
the convolution kernel to skip a certain number of inputs. 
This expands the receptive field and captures long-distance 
dependencies in the sequence effectively. Upon gradually 
increasing the expansion factor layer by layer, TCNs can 
model temporal patterns at various scales and consider mul-
tiple time scales simultaneously.

Zhang and Li (2022) proposed a multi-input, multi-out-
put end-to-end prediction model called MIMO-TCN based 
on a TCN. ConvNeXt was utilized to extract features from 
input data, and a TCN was employed to enhance the predic-
tion accuracy using extracted feature data. To address the 
issue of gradient disappearance with an increasing number 
of network layers, the model incorporates skip connections 
between its modules.

TCNs offer several advantages, including the ability to 
consider time series correlations, process indefinite long 
time series data, and enable parallel computing. However, 
TCNs also possess some limitations, such as a lack of con-
sideration for spatial correlation, data imbalance issues, and 
limited explanatory power. Despite these shortcomings, 
TCNs show promising application prospects, particularly 
in time series prediction tasks that prioritize computational 
efficiency, modeling long-term dependence, and achieving 
better results with fewer parameters (Zhang et al. 2019c).

Recurrent neural network (RNN)

RNNs are a type of neural network capable of process-
ing data with a time series structure (Schmidhuber 2015). 
Unlike traditional feedforward neural networks (FFNNs), 
RNN neurons receive activation values from the hidden layer 
in the previous time step as well as input from the current 
time step. This allows RNNs to update their internal states 
dynamically and to consider both past inputs and states when 
computing the current output, making them particularly apt 
for sequence modeling and forecasting.

Mohamed et al. (2012) implemented deep learning tech-
niques using RNN algorithms. Xiang and Demir (2020) 
utilized an RNN and sequence learning to develop a neural 
runoff model and enhanced flow prediction by integrating 
water level data from an upstream flowmeter. Zhang et al. 
(2019b) proposed a water quality prediction model based 
on kernel PCA (kPCA) and an RNN for predicting trends 
in dissolved oxygen. kPCA was employed to reduce noise 
in the original dataset while retaining relevant information. 
The RNN was used to leverage past information for future 
trend prediction. Compared with FFNNs, support vector 

Fig. 2   General procedure for utilizing deep learning technologies in 
water quality prediction
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regression (SVR), and general regression neural networks, 
this model demonstrated higher prediction accuracy.

RNNs possess the theoretical capability to handle 
sequences of any length. However, they are susceptible to 
issues such as gradient disappearance or explosion when 
dealing with long sequences. Additionally, the sequential 
nature of RNN computations can negatively impact the 
model’s training speed and efficiency, especially when work-
ing with large-scale data. Furthermore, the transmission of 
information in RNNs occurs step by step through time steps, 
leading to subpar modeling performance in long-term rela-
tionships. These limitations restrict its practical applicability 
(Chen et al. 2018, Hochreiter and Schmidhuber 1997).

Long short‑term memory network (LSTM)

LSTMs (Hochreiter and Schmidhuber 1997) are an enhanced 
model derived from RNNs. They incorporate three essential 
gating mechanisms, namely, the input gate, forgetting gate, 
and output gate, aiding in effective information retention 
and omission. This improves the model’s long-term memory 
capacity and its ability to capture time series patterns (Gers 
et al. 2000, 2003). Building upon the LSTM, Bi-LSTM 
(Graves and Schmidhuber 2005) introduces a reverse LSTM 
network to consider both the forward and backward informa-
tion in a sequence.

LSTM and bidirectional LSTM (Bi-LSTM) models have 
gained significant popularity in the water quality prediction 
field. These models have proven to be effective tools for 
predicting various aspects of water quality, such as water 
quality indexes (Saroja et al. 2023), drinking water quality 
(Liu et al. 2019a), and river algal blooms (Lee et al. 2018). 
Several studies have demonstrated that LSTM models out-
perform other models, such as support vector machines 
(SVMs) and artificial neural networks (ANNs) in water qual-
ity prediction (Essam et al. 2022; Yang et al. 2023a). Addi-
tionally, an improved LSTM model has shown promise as a 
practical method for early warnings of water pollution risks 
(Guan et al. 2022). Furthermore, Bi-LSTMs have also been 
widely adopted (Khullar and Singh 2022), as they provide 
more accurate water quality prediction results. Overall, the 
research literature indicates that LSTM and Bi-LSTM mod-
els possess significant application value and high prediction 
accuracy in water quality prediction.

LSTMs effectively address the issues of gradient disap-
pearance and explosion through their gating structure. They 
excel at preserving long-term memory and exhibit a robust 
modeling capability for handling lengthy sequences and 
intricate temporal dependencies. However, it is important 
to note that LSTMs incur a higher computational cost com-
pared with ordinary RNNs, as they necessitate more param-
eters and computing resources. Additionally, when handling 

shorter sequence data, they may become overly complex and 
prone to overfitting (Chen et al. 2018; Zhou 2020).

Gated recurrent unit (GRU)

GRUs (Chen et al. 2018) are an RNN structure that improves 
upon LSTMs. By simplifying the LSTM gating mechanism, 
GRUs reduce the number of parameters and improve model 
efficiency. Unlike LSTMs, GRUs only comprise two gating 
units: the reset and the update gates. The reset gate controls 
the degree of reset for the hidden state at the previous time 
step, while the update gate determines how the current input 
updates the hidden state. By reducing the number of gating 
units, GRUs reduce computational complexity and enhance 
their ability to handle long-term dependencies (Chung et al. 
2014).

Researchers have successfully integrated GRUs with 
other models or employed different data processing meth-
ods to improve prediction accuracy. For instance, Liu et al. 
(2020) introduced a deep learning network called bidirec-
tional stacked simple recurrent units. Additionally, GRU has 
the advantage of faster convergence compared with LSTM 
and higher training efficiency (Cheng et al. 2020).

GRUs offer advantages such as fewer parameters and 
increased computational efficiency compared with LSTMs. 
GRU utilizes a memory unit similar to LSTM, enabling it to 
learn both long-term and short-term dependencies. However, 
GRU’s modeling ability in very long sequence data remains 
constrained. In certain tasks, GRU demonstrates comparable 
or slightly better performance than LSTM. Additionally, the 
reduced parameter count in GRUs makes them less prone 
to overfitting (Gruber and Jockisch 2020, Yan et al. 2021).

Transformer

Transformer (Vaswani et  al. 2017) is a neural network 
architecture that addresses the issue of gradient disappear-
ance or explosion in traditional RNNs when handling long 
sequences. It comprises an encoder and a decoder, which are 
composed of multiple identical layers. Each layer consists 
of two sub-layers: a multi-head self-attention and an FFNN. 
The encoder encodes the input sequence, while the decoder 
generates the output sequence.

Currently, there are limited Transformer applications 
in water quality prediction. Yao et al. (2022) conducted a 
study in the Chaohu area and employed various deep learn-
ing models, including RNN, LSTM, multi-layer perceptron 
(MLP), and transformer-based models, to predict a long-
term comprehensive water quality index. The results demon-
strated that all selected models performed well in the study 
area. However, as the length of the prediction sequence 
increased, the performance of informer, a transformer-based 
model, was notably better. Particularly, informer showed 
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significant advantages in long-term water quality prediction, 
offering effective modern tools for water quality monitoring 
and management.

The transformer model is a promising tool for water 
quality prediction, especially for large-scale predictions. 
It offers parallel computing capabilities for processing 
long sequence data, resulting in high efficiency. However, 
the transformer model applied to water quality prediction 
requires a substantial amount of high-quality training data. 
Additionally, this model has numerous parameters and 
high computational complexity, which limits its applica-
tion research range. Nevertheless, the research prospects 
for the transformer model in water quality prediction are 
extensive.

Deep belief neural network (DBN)

DBNs (Mohamed et al. 2012) are a probabilistic genera-
tion model consisting of a series of constrained Boltzmann 
machine elements. They serve as a tool for unsupervised 
learning, similar to an autoencoder, and can also be used 
for supervised learning and classification purposes. These 
models comprise multiple hidden layers interconnected 
by weights. The DBN training process involves a greedy 
layer-by-layer approach. Initially, each restricted Boltzmann 
machine (RBM) is trained to obtain the weight parameters 
for each layer. Subsequently, the entire DBN is established 
by connecting these layers. By combining unsupervised pre-
training and supervised fine-tuning, the model’s expressive 
capability can be enhanced, making it adaptable to the target 
task.

Yan et al. (2020) proposed a water quality prediction 
model called PSO-DBN-LSSVR, which combines the par-
ticle swarm optimization (PSO) algorithm and the least 
squares SVR machine. This model demonstrates improved 
accuracy and robustness in predicting water quality param-
eters compared with traditional neural networks and model 
combination methods. In order to address the complex 
relationship between variables in wastewater treatment pro-
cesses, Niu et al. (2020) introduced a GA-DBN method that 
utilizes genetic algorithms (GAs) to reduce dimensional-
ity and simplify network structure. Comparing GA-DBN 
with traditional DBN and back propagation neural network 
models, it achieves higher accuracy in predicting variables 
in complex wastewater treatment processes and improves 
prediction accuracy.

DBNs are seldom utilized as standalone approaches in 
water quality modeling because of their relatively lower pre-
diction accuracy compared with other deep learning models. 
Instead, DBNs are commonly combined with other optimi-
zation algorithms or data processing methods to evaluate and 
showcase the effectiveness of these algorithms. Additionally, 

DBNs can be used as a benchmark model to highlight the 
superior prediction accuracy of other models (Niu et al. 
2020; Ren et al. 2020).

Autoencoder

The autoencoder is an unsupervised learning algorithm 
used to learn high-dimensional representation and extract 
feature data (Zhao et al. 2019). It is composed of two parts: 
the encoder and the decoder. The encoder combines input 
data into a low-dimensional coding representation, which is 
then decoded into an output that resembles the original input 
data. Through training, the encoder can learn meaningful 
features from the input data and map these features back to 
the original data using the decoder.

Autoencoders are unsuitable for water quality prediction. 
They are commonly employed for reducing data dimension-
ality or enhancing prediction accuracy when combined with 
other models. For instance, Kayalvizhi et al. (2023) devel-
oped a denoising autoencoder (DAE) model by combining 
an autoencoder with an LSTM. They used the LSTM as both 
an encoder and decoder to predict the nitrate and chloride 
levels in groundwater.

While autoencoders may not be directly applicable to 
water quality prediction, they can serve as a valuable auxil-
iary tool in such tasks. Autoencoders can be utilized for data 
preprocessing and feature extraction, ultimately enhancing 
water quality prediction model performance. The potential 
for autoencoders in data preprocessing is vast and holds 
promising application prospects.

Hybrid‑model predictions of water quality

Our comparative analysis of recent literature studies on 
deep learning for water quality prediction revealed a sig-
nificant increase in research focusing on mixed model pre-
dictions. In contrast, applying single-model predictions is on 
a downward trend. Typically, researchers combine multiple 
deep learning models or integrate deep learning with tra-
ditional machine learning algorithms, data decomposition 
algorithms, optimization algorithms, etc., to leverage their 
respective strengths in capturing complex relationships and 
patterns within data.

Fusion of multiple deep learning models to predict water 
quality

The fusion of multiple deep learning models leverages the 
unique characteristics of different methods, such as CNN, 
RNN, LSTM, TCN, and attention, to address the challenges 
posed by complex time series problems arising from spa-
tial and temporal variations in datasets. By combining these 
deep learning methods, hybrid models can achieve improved 
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prediction results. This approach is particularly effective in 
handling large quantities of time series data and can adapt 
well to diverse data structures.

Using the timing processing ability of the original RNN 
and the ability of attention to weight or focus on differ-
ent input positions (Geng et al. 2022; Liu et al. 2019b), 
more accurate predictions can be achieved. LSTM can be 
improved by combining it with attention (Chen et al. 2022). 
Upon combining the spatiotemporal feature extraction abil-
ity of CNN with the timing processing ability of LSTM, 
the prediction accuracy and training speed for water qual-
ity can be improved (Prasad et al. 2022). LSTM-TCN (Li 
et al. 2022) outperforms LSTM in capturing characteristics 
from historical data, while MPA-RNN (Geng et al. 2022) 
improves prediction accuracy compared with RNN. There 
are various applications of CNN and RNN (including LSTM 
and GRU) after fusing with Attention (Mei et al. 2022; Yang 
et al. 2023b, c, 2021). These models primarily utilize CNN 
to extract features, RNNs and their improved models to cap-
ture long-term dependencies, and the attention mechanism 
to dynamically adjust the model’s focus. The prediction 
accuracy of these fusion models is superior to that of single 
models (LSTM, GRU, etc.) and simple hybrid models (such 
as CNN-LSTM and LSTM-attention).

The fusion of different deep learning models in time 
series prediction is an efficient method that combines 
their individual advantages. This approach, known as the 
hybrid prediction model, demonstrates improved prediction 
accuracy and stability compared with single deep learning 
methods. By integrating multiple deep learning models, this 
approach offers novel ideas and methods for addressing time 
series prediction problems.

Fusion of deep learning and traditional machine learning 
to predict water quality

Traditional machine learning methods refer to using statis-
tical theory and algorithms to construct models for solv-
ing machine learning problems. These methods include 
linear regression (LR), random forest (RF), SVM, PCA, 
SVR, MLP, and other algorithms. While some traditional 
machine learning methods can be used alone for water 
quality prediction (such as LR, RF, SVM, MLP, etc.), their 
prediction accuracy is generally lower compared with deep 
learning methods. Therefore, they are often used as bench-
mark models to compare the prediction accuracy of deep 
learning models. Additionally, traditional machine learning 
algorithms are utilized for data processing.

Juan et al. (2022) utilized RF to interpolate missing data 
and then fed these processed data into an RNN with an atten-
tion mechanism for the multi-step prediction of dissolved 
oxygen. The findings demonstrate that RF can compensate 
for a lack of dissolved oxygen monitoring data, contribute to 

creating high-quality water quality monitoring datasets, and 
enhance the model’s prediction accuracy. Similarly, Shan 
et al. (2022) proposed a hybrid deep learning architecture 
called XG-LSTM, which comprises an XGBoost module 
and two parallel LSTM models. XGBoost is employed to 
process variables and predict algal cell density and micro-
cystin concentration in the Three Gorges Reservoir. The 
results indicate that the XG-LSTM model outperforms other 
models in terms of prediction accuracy, and the ensemble 
learning approach exhibits advantages in handling noise 
and missing data in water quality datasets. The utilization 
of various algorithms in combination enhances the model 
performance, accelerates convergence speed, and improves 
prediction accuracy for water quality prediction challenges. 
Moreover, integrating deep learning models with ensemble 
techniques effectively addresses complex temporal and spa-
tial dependencies, allowing for powerful expression capa-
bilities. This approach enables the model to learn intricate 
patterns and features from data, ultimately reducing predic-
tion errors and enhancing prediction accuracy (Zamani et al. 
2023).

Traditional machine learning methods possess certain 
advantages in handling raw and noisy data. However, in 
terms of improving water quality prediction accuracy, their 
effectiveness is limited compared with deep learning meth-
ods. It is important to carefully consider the characteristics 
and suitable scenarios for both methods.

Fusion of deep learning and data decomposition 
algorithms to predict water quality

Deep learning models often encounter complex data when 
performing time series prediction. This complexity can 
greatly reduce the model’s prediction efficiency and ren-
der simple predictors unreliable. To address this issue, 
data decomposition methods have been implemented in 
data processing. These methods aim to handle larger and 
more complex data sequences. In recent years, the sig-
nificance of data decomposition methods in time series 
prediction has grown, leading to their widespread use in 
signal decomposition and noise reduction to enhance pre-
diction accuracy.

The general steps for predicting water quality using deep 
learning and data decomposition are outlined in Fig. 3. First, 
data for the time series prediction are collected and organ-
ized, ensuring a time sequence and performing necessary 
preprocessing. Next, data decomposition algorithms, such 
as EMD, EEMD, and VMD, are employed to decompose 
the original time series data into different components such 
as trend, periodicity, and seasonality. Subsequently, deep 
learning models such as RNN or CNN are utilized to train 
and learn from the decomposed data. Finally, the trained 
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model is employed for timing prediction, and the results are 
adjusted and optimized as required.

The commonly used data decomposition methods are 
empirical mode decomposition (EMD), ensemble empiri-
cal mode decomposition (EEMD), and variational mode 
decomposition (VMD). These methods have distinct 
advantages, such as identifying vibration modes, sup-
pressing modal aliasing, and reducing data smoothness. 
Researchers have applied these decomposition methods 
to process original data in order to reduce noise. These 
denoised data are subsequently fed into a deep learn-
ing model to enhance prediction accuracy (He et  al. 
2022; Wang et al. 2023c; Zhang et al. 2021, 2023). For 
instance, Zhang et al. (2021) proposed an EEMD-LSTM 
model, which combines EEMD and LSTM networks. By 
establishing an LSTM sub-model for each sub-sequence 
and aggregating the prediction results, better prediction 
accuracy was achieved compared with CNN, LSTM, 
and EEMD-CNN. Another example is the VMD-LSTM 
model proposed by He et al. (2022) for water quality data 
denoising and prediction. VMD was utilized to denoise 
water quality data, while LSTM/GRU was employed for 
prediction, resulting in improved prediction performance. 
Additionally, the secondary decomposition method, which 
employs two data decomposition methods, can further 
enhance the deep learning model (Dong and Zhang 2021). 
Furthermore, combining the data decomposition method 
with other technologies, such as the two-level attention 
mechanism or optimization algorithm, can also improve 
the model’s prediction capability (Li and Li 2023, Song 
et al. 2021).

Therefore, choosing an appropriate data decomposition 
method is crucial for enhancing the water quality predic-
tion accuracy attained using deep learning models. How-
ever, it is necessary to fully consider the needs of practical 

applications and data characteristics and select the appro-
priate data decomposition method.

Fusion of deep learning and optimization algorithms 
to predict water quality

Optimization algorithms are a practical method for improv-
ing prediction model performance. They effectively enhance 
the efficiency and accuracy of deep learning models when 
dealing with complex data. By utilizing optimization algo-
rithms, we can efficiently search for the model’s optimal 
parameter set, optimize the feature engineering process, and 
enhance the stability and accuracy of the learning algorithm. 
These technologies are extensively applied in deep learning, 
enabling models to better adapt to and learn complex data 
relationships.

The integration of deep learning and optimization algo-
rithms for prediction involves several steps, as shown in 
Fig. 4. First, time series data need to be prepared, includ-
ing collection, collation, and preprocessing. Then, relevant 
features are extracted from time series data to enable the 
deep learning model to comprehend the patterns and rela-
tionships in these data. Subsequently, the deep learning 
model is designed and trained, with careful selection of the 
appropriate network structure and optimization algorithm to 
maximize the time series prediction accuracy. Additionally, 
the model parameters are further optimized using optimiza-
tion algorithms such as the chaotic sparrow search algorithm 
(CSSA) to enhance the prediction performance. Finally, the 
trained model is utilized for timing prediction, with the 
option to adjust and optimize the results as necessary.

He et al. (2022) utilized the CSSA to determine the opti-
mal hyperparameters for an LSTM model. Yang and Liu 
(2022) employed the VMD and wavelet threshold joint 
denoising methods to eliminate mixed noise in water quality 

Fig. 3   General steps of deep learning and data decomposition to predict water quality

Fig. 4   General steps of deep 
learning and optimization 
algorithms for predicting water 
quality
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time series and enhanced the whale optimization algorithm 
to identify the optimal hyperparameters for GRU. Wang 
et al. (2023c) developed an optimized LSTM prediction 
model using VMD and an improved grasshopper optimi-
zation algorithm. Furthermore, PSO (Zhang et al. 2023), 
adaptive hybrid mutation particle swarm optimization (Liu 
et al. 2021), pathfinder optimization algorithm (Guo et al. 
2022), and GA (Niu et al. 2020) have also been utilized to 
optimize deep learning model performance, with success-
ful applications in water quality monitoring and wastewater 
treatment. Other optimization algorithms, such as the gray 
wolf optimizer algorithm (Yang et al. 2020) and modified 
teaching–learning-based optimization algorithm (Larijani 
and Dehghani 2023), could be considered for enhancing 
water quality prediction models in future research. These 
optimization techniques enable us to enhance prediction 
models’ accuracy and reliability, resulting in more precise 
data predictions. In some cases, optimization algorithms can 
not only improve the prediction accuracy but also reduce the 
model’s run time (Farsi et al. 2020).

In recent years, researchers have focused on studying 
hybrid models to enhance water quality prediction accu-
racy. These models typically combine multiple deep learning 
models or integrate deep learning with traditional machine 
learning, data decomposition algorithms, and optimization 
algorithms. The fusion of multiple deep learning models or 
deep learning with traditional machine learning leverages 
the strengths of different methods to address complex time 
series challenges arising from spatial and temporal dataset 
changes. This approach is adaptable to diverse data struc-
tures and can efficiently handle large quantities of time series 
data. Integrating deep learning with data decomposition 
algorithms involves utilizing these algorithms to reduce or 
break down original data using various techniques, extract-
ing the most relevant features to enhance prediction accu-
racy. Similarly, integrating deep learning with optimization 
algorithms focuses on leveraging optimization algorithms 
to effectively search for optimal model hyperparameters, 
optimize feature engineering, and enhance the stability and 
accuracy of learning algorithms. Some researchers have also 
explored Transformer-based methods, improved models 
(Yao et al. 2022), and satellite remote sensing data (Wang 
et al. 2023b) for water quality prediction, although this 
research area requires further exploration and improvement.

There are alternative methods for water quality predic-
tion aside from deep learning. Given the need to acquire 
substantial data to ensure accurate predictions, researchers 
have explored virtual sample generation to enhance prediction 
accuracy (El Bilali et al. 2022). This involves creating virtual 
samples to expand datasets and improve the model’s gener-
alization ability. Transfer learning is another approach where 
researchers pre-train the model in a source domain and then 
optimize it for the target domain to boost prediction accuracy 

(Cao et al. 2022; Chen et al. 2023). To address the interpret-
ability issue of deep learning, some researchers combine 
physical models with deep learning models to achieve a bal-
ance between physical and data-driven approaches to enhance 
prediction accuracy and interpretability (Dong et al. 2023).

Comparison of different deep learning methods

In summary, different deep learning methods usually have 
different roles in water quality prediction, and their charac-
teristics and disadvantages also differ, as shown in Table 1.

The advantage of hybrid models is that their prediction 
accuracy is usually higher than that of single models. How-
ever, this improvement comes at the expense of increasing 
the number of model parameters, which makes hyperparam-
eter tuning more difficult and increases the computational 
cost.

There are various types of deep learning models, each 
with its own set of advantages and disadvantages. It is essen-
tial to choose the model that best fits the characteristics of 
the original data and the model itself. Once a deep learning 
model is selected, determining the appropriate number of 
layers in the neural network and other parameters, such as 
the size of the convolution kernel, is crucial, often conducted 
using empirical methods. Conducting multiple experiments, 
comparing prediction results, and fine-tuning parameters or 
utilizing meta-heuristic algorithms to determine optimal val-
ues is common practice. Moreover, before making predic-
tions, data preprocessing techniques such as handling miss-
ing values and standardizing data are employed to minimize 
the impact of raw data on prediction accuracy.

Data sources for predicting water quality can encompass 
national water quality platforms, sensor networks, and col-
laborations with relevant companies to gather water quality 
data detected by these entities. Preprocessing data is crucial 
and involves outlier detection, missing value interpolation, 
and standardization. Outlier detection assists in removing 
the influence of anomalous data on the model while miss-
ing value interpolation maintains data integrity. Standardiza-
tion harmonizes features of varying scales into a consistent 
standard scale, mitigating unit constraints and differences in 
initial data magnitudes. This process aims to enhance model 
training and prediction outcomes.

Model performance evaluation indicators 
and factors affecting deep learning 
technologies for water quality prediction

Model performance evaluation indicators

Performance metrics are statistical measures that assist 
developers in assessing and fine-tuning prediction 
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performance on various platforms. Moreover, performance 
accuracy and effectiveness are translated into comprehensi-
ble and quantifiable formats. In the literature pertaining to 
water quality prediction, the primary model evaluation indi-
cators are mean absolute error (MAE), mean square error 
(MSE), root mean square error (RMSE), and the coefficient 
of determination (R2) (Irwan et al. 2023).

MAE

An objective quantitative evaluation of the model’s predic-
tion error. It measures the gap between the model’s predicted 
and true values. A smaller MAE indicates a closer predic-
tion result to the true value and a better prediction effect. 
MAE primarily focuses on the error size rather than the error 
distribution.

MSE

An objective quantitative measure used to evaluate the 
model’s prediction error. It calculates the square sum of the 
difference between the true and predicted values. A smaller 
MSE indicates that the predicted result is closer to the true 
result, indicating better model performance. However, MSE 
only focuses on quantifying the error and does not consider 
the error distribution.

RMSE

RMSE has the same effect and significance as MSE. The 
main difference is that RMSE places a higher penalty on 
samples with large errors, making it more sensitive to 
outliers.

R.2

R2 is an objective quantitative measure that evaluates the 
degree of model fitting. It indicates how well a model fits 

MAE =

1

n

n∑

i=1

|
||
ypred − ytrue

|
||

MSE =

1

n

n∑

i=1

(
ypred − ytrue

)2

RMSE =

√√√
√1

n

n∑

i=1

(
ypred − ytrue

)2

data, with values ranging from 0 to 1. A value closer to 1 
implies a better degree of fitting.

In the above four formulas, ytrue is the true value, ypred 
is the predicted value, ytrue is the average value of the true 
value, and n is the number of samples.

Factors affecting deep learning technologies 
in water quality prediction

Water quality indicators are categorized into biological, 
chemical, and physical indicators (Tchobanoglous and 
Schroeder 1985). Biological indicators encompass fecal coli-
forms and algae, while chemical indicators include dissolved 
oxygen, chemical oxygen demand, and ammonia nitrogen. 
Physical indicators consist of pH, temperature, and turbidity 
(Wu et al. 2014).

Various factors, such as climate change, geological ter-
rain, soil type, hydrological characteristics, land use, and 
management, influence water quality (Lintern et al. 2018, 
Liu et al. 2017, Shi et al. 2017, Wilhm and Dorris 1968). 
These factors interact in intricate ways, resulting in multiple 
forms of pollution that significantly impact water quality. 
Therefore, when utilizing deep learning methods to predict 
water quality and construct water quality datasets, it is essen-
tial to collect different data types. The reasons for the diverse 
factors affecting water quality are as follows.

Water area

The impact of various water types on water quality varies, 
and each type exhibits spatial non-stationarity. Different 
water types exhibit different relationship models with water 
quality, attributable to variations in purification processes in 
rivers and lakes (Deng 2020).

Land use/cover change

River water quality is influenced by land use, with the extent 
of this effect depending on the specific river area and the 
spatial scale used to measure land use (Wang et al. 2023a). 
City and cultivated land showed a negative correlation with 
water quality, while forest land and water bodies exhibited a 
positive correlation with water quality (Zhang et al. 2019a).

Natural factors

Natural factors include rainfall, topography, and hydroge-
ology and can significantly influence water flow, oxygen 

R2
= 1 −

∑n

i=1

�
ytrue,i − ypred,i

�2

∑n

i=1

�
ytrue,i − ytrue

�2
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content, and pollutant concentration, consequently impact-
ing water quality. For instance, rainfall can alter water flow 
and velocity. At the same time, the terrain’s fluctuation and 
slope direction can affect water flow velocity and direction, 
ultimately influencing water mixing and circulation.

Internal factors for water bodies

Water temperature, pH value, conductivity, turbidity, color, 
and redox potential play a significant role in determining 
water quality. For instance, a low water temperature can slow 
or impede certain chemical reactions, while a high water 
temperature can accelerate reaction rates. The pH value 
influences element dissolution in water, while the redox 
potential reflects the water’s redox properties, which in turn 
affect the presence and exchange of oxygen and oxygen com-
pounds as well as biological and chemical reactions. These 
indicators collectively contribute to overall water quality.

Human activities

Large-scale industrial, agricultural, and urban activities 
can significantly contribute to poor water quality. These 
activities involve the discharge of wastewater, pollutants, 
and other substances into water bodies, which disrupt the 
ecological balance and impair the regulation and self-puri-
fication capabilities of water.

Biological factors

Algae, bacteria, and plankton also play a role in influenc-
ing water quality. Algae, through photosynthesis, impact gas 
concentrations and proportions in water. Bacteria, through 
decomposing organic matter, affect chemical indicators and 
overall water quality. Excessive bacterial proliferation can 
lead to water body eutrophication. Plankton influences the 
nutritional status, color, turbidity, and oxygen concentration 
in water.

The limitations of current deep learning 
techniques in water quality prediction

Constraints of raw data availability

Deep learning models require a large quantity of data to 
achieve accurate prediction results. However, data collec-
tion constraints often restrict many studies to small-scale 
datasets. In the water quality prediction field, current deep 
learning techniques primarily utilize single-dimension raw 
data for modeling and prediction without fully considering 
other factors that may impact water quality, such as land use, 
forest coverage, and population. However, these additional 

factors play a significant role in water quality prediction. To 
obtain more precise and comprehensive prediction results, 
it is crucial to expand the dataset size and incorporate these 
influential factors. This approach can enhance the accuracy 
and practicality of water quality models to better support 
decision-making in water environment management.

Failure of data processing

Data processing methods, including wavelet transform, can 
be susceptible to errors resulting from data preprocessing 
and processing (Du et al. 2017, Quilty and Adamowski 
2018). As the utilization of deep learning techniques for 
water quality management and prediction becomes more 
extensive, it becomes crucial to comprehend the errors and 
limitations of these models, particularly in relation to data 
selection and processing.

Challenges of long‑term prediction

In the water quality prediction field, long-term predic-
tion poses a significant challenge. Unlike short-term and 
medium-term forecasts, long-term forecasts involve intri-
cate and adaptable spatiotemporal correlations, as well as 
increased uncertainties, resulting in reduced prediction 
accuracy. This is due to the diminishing impact of histori-
cal data on future predictions and the presence of multiple 
ambiguous features. Additionally, long-term prediction is 
influenced by uncertain factors such as the difficulty in accu-
rately predicting weather changes, water mobility, human 
activities, and a lack of sufficient historical data to establish 
precise models.

Poor interpretability of models

Deep learning models have faced challenges due to the black 
box problem since their inception. These models’ intricate 
structures and multiple parameters obscure the understand-
ing of their operational mechanisms. While deep learning 
models produce more accurate prediction results compared 
with traditional models, the rationale and methodology 
behind parameter selection remain unclear.

Directions for future research

Model selection for optimal prediction

In order to achieve the best prediction results, it is crucial 
to select the appropriate model based on the characteristics 
and requirements of the task. However, the process of choos-
ing the most suitable model still requires further research 
and exploration. Additionally, when dealing with prediction 
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problems involving noise, it is important to consider whether 
data noise can impact the model’s performance and quality. 
Therefore, it is necessary to conduct further studies on data 
processing methods that can effectively reduce noise in data 
and enhance prediction robustness.

Construction of high‑dimensional datasets

In order to enhance the accuracy of water quality predic-
tion, researchers should compile a comprehensive dataset 
that includes various indicators such as water quality vari-
ables, meteorological variables, population data, and forest 
coverage. By constructing datasets that incorporate these 
indicators, researchers can employ different analysis meth-
ods to investigate correlations between these indicators. This 
approach will facilitate a deeper understanding of water 
quality issues and their influencing factors and provide a 
scientific foundation for relevant departments and decision-
makers to develop more effective water quality manage-
ment strategies. By improving the accuracy and efficiency 
of water quality prediction, we can take prompt and precise 
measures to address water quality problems and ensure the 
sustainable development of human life and the ecological 
environment.

Enhancing long‑term prediction accuracy

Current studies largely concentrate on short-term water qual-
ity predictions, which perform inadequately for long-term 
forecasting. Only a few studies have successfully achieved 
long-term predictions based on water quality principles. 
Analyzing the importance of features in long-term pre-
diction and improving prediction accuracy are important 
issues. Factors such as optimizing feature selection, fea-
ture engineering, data processing, and considering model 
complexity play crucial roles in improving the accuracy of 
long-term water quality prediction. These improvements will 
provide a more reliable basis for decision-making in water 
quality monitoring and management, ultimately leading to 
more accurate and sustainable water quality protection and 
management.

Advancements in large model prediction

The complexity and multidimensionality of water quality 
prediction have prompted researchers to focus on large-scale 
models. These models can better capture the complex rela-
tionship among water quality indicators, thereby enhanc-
ing prediction accuracy. Additionally, increasing the depth 
and breadth of the network in these large models enhances 
their expressive power. Leveraging distributed computing 
and parallelization technology accelerates the training pro-
cess, further improving efficiency. Although research on 

large-scale models in water quality prediction remains in 
the early stages, advancements in computing resources and 
algorithms are expected to drive further research in this area. 
This will yield enhanced accuracy and reliability of water 
quality prediction, providing crucial support for macro-level 
water quality control.

Bridging academic research and practical 
application

The majority of the literature focuses on assessing the viabil-
ity of deep learning techniques in predicting water quality, 
with the goal of enhancing the accuracy and accessibility 
of such predictions. However, these studies often fail to 
provide explicit guidelines on effectively connecting aca-
demic research with industry and government management. 
Consequently, it is pivotal for scholars to actively engage in 
the practical application of deep learning technologies to 
facilitate precise water quality assessment and management.

Conclusion

In recent years, deep learning technology has been widely 
used in water quality prediction, yielding positive results. 
Its effectiveness lies in handling high-dimensional feature 
representation and nonlinear relationships within water qual-
ity data. Through multi-layer nonlinear processing units, 
more intricate structures can be constructed to better model 
data. Deep learning excels in processing large-scale data 
efficiently, utilizing batch processing and parallel computing 
to handle massive and high-dimensional water quality data 
to support effective water quality prediction. Furthermore, 
deep learning models can autonomously learn and be itera-
tively optimized to enhance prediction accuracy over time. 
However, the success of deep learning technology hinges 
on high-quality datasets. Original water quality data often 
includes missing values, outliers, and noise, which impact 
prediction accuracy. Despite outperforming physical and sta-
tistical models in prediction accuracy, deep learning models 
are criticized for their lack of interpretability, often referred 
to as a ‘black box.’ Moreover, training deep learning models 
demands significant computing resources, necessitating high 
hardware and computing power requirements.

To further advancements in water quality prediction 
research and application, it is crucial to integrate various 
technologies including machine learning, data mining, cloud 
computing, multi-source data fusion, and deep reinforcement 
learning. Data mining plays a key role in uncovering under-
lying rules and relationships, offering valuable insights for 
water quality prediction. Cloud computing and distributed 
platforms provide the necessary computational power for 
handling large-scale water quality data, while multi-source 
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data fusion enhances monitoring accuracy and temporal 
resolution. Deep reinforcement learning optimizes deci-
sion-making processes for water quality treatment, thereby 
enhancing overall efficacy. Furthermore, exploring the inter-
pretability of deep learning models in water quality predic-
tion enhances model credibility and practicality. Simplify-
ing algorithms and computational requirements, along with 
promoting understanding of deep learning methods through 
educational resources, can greatly support the widespread 
application of deep learning in water quality prediction.

Interdisciplinary collaboration is essential for advancing 
water quality prediction research. Environmental scientists 
can utilize sensor networks and remote monitoring technol-
ogy developed by embedded engineers to access up-to-date 
water quality data in real time. By leveraging their domain 
knowledge, environmental scientists can identify key water 
quality characteristics and factors, creating datasets for 
water quality prediction. Artificial intelligence researchers 
can then use these datasets to develop feature importance 
analysis methods and prediction models. Subsequently, envi-
ronmental scientists can analyze the prediction results using 
their expertise in water systems and provide feedback to AI 
researchers. This collaborative effort leads to the innova-
tion and optimization of water quality prediction models, 
ultimately enabling real-time monitoring and efficient water 
quality prediction.

The application of deep learning technology in water 
quality prediction can enhance prediction accuracy and 
monitoring quality to provide strong support for water envi-
ronment protection and management. Further research and 
exploration of deep learning technology in water environ-
ment protection can contribute to promoting water environ-
ment improvement and sustainable development.
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