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Abstract
In southeastern Brazil, the city of Ipatinga is inserted in the Steel Valley Metropolitan Region, which hosts the largest 
industrial complex for flat-steel production in Latin America, while also having one of the largest vehicle fleets in the 
entire country. Since potentially toxic elements (PTEs) are not emitted solely by industries, yet also by vehicular activity, 
the predominant emission source can be determined by evaluating the ratio between different elements, which are called 
technogenic tracers. We performed a biomonitoring assay using two tropical legumes, Paubrasilia echinata and Libidibia 
ferrea var. leiostachya, aiming to assess chemical markers for the origin of emissions in the region, distinguishing between 
different anthropogenic sources. Plants were exposed for 90 days in four urban sites and in a neighboring park which 
served as reference. After the experimental period, plants were evaluated for trace-metal accumulation. L. ferrea var. 
leiostachya retained lower amounts of metals associated with vehicular and industrial emission. The opposite was found 
with P. echinata, a species which should be recommended for biomonitoring of air pollution as a bioaccumulator. Plants 
of P. echinata were enriched with Fe, Al, Ni, Cr, and Ba, whereas plants of L. ferrea var. leiostachya were enriched with 
Fe, Cu, and Co. In both species, Fe was the element with which plants were enriched the most. Plants showed highest 
iron enrichment at Bom Retiro, the site downwind to the steel industry, which has shown to be the main particle emission 
source in the region.
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Introduction

Particulate matter (PM) is one of the major byproducts 
of industrial and vehicular activity. Approximately 1% of 
PM is formed by metals (USEPA 1996). In addition, PM, 
especially PM2.5, may carry potentially toxic elements 
(PTEs) adsorbed to its surface (Liu et al. 2018a; Ali et al. 

2019), in amounts that may reach up to 30–35 µg m−3 
(Schroeder et al. 1987). Fine particles with associated 
PTEs may lead to the development of cancer and respira-
tory and cardiovascular diseases, among other infirmities 
in humans (Kampa and Castanas 2008; Chen and Lipp-
mann 2009; Cakmak et al. 2014; Ali et al. 2019; Karzai 
et al. 2021).

PTEs are emitted not only by industries but also by 
vehicular activity (Kassomenos et al. 2014; May et al. 2014; 
Kończak et al. 2021). As a result, PTE presence in urban 
atmosphere may owe to a mixture of compounds originated 
from those two sources. The predominant emission source 
can be determined by evaluating the ratio between differ-
ent elements, which are called technogenic tracers (Calvo 
et  al. 2013; Titos et  al. 2014). The proportion between 
trace-metals such as Cu, Zn, Pb, and Cr, for instance, is a 
strong chemical marker for the origin of emissions, ena-
bling segregation either between natural and anthropogenic 
sources (Weiping et al. 2014) or among different types of 
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anthropogenic sources (Migliavacca et al. 2012; Khillare 
et al. 2014; Mohiuddin et al. 2014).

Fine particle deposition may cause contamination of soil 
and plant species (Schreck et al. 2011; Liu et al. 2019). Due 
to the large contact area of tree canopies and to foliar traits 
such as leaf morphology and surface roughness (Beckett 
et al. 2000; Sharma et al. 2020; Andrade et al. 2022), leaves 
can capture PM from the local atmosphere and thus be effi-
ciently used to track air pollution. Several studies have sug-
gested that PTE accumulation in tree leaves can be used 
as a reliable biomonitor to assess air quality. For instance, 
Monaci et al. (2022) determined the pattern of airborne PTE 
contamination across five different towns from central Italy 
using leaves of Quercus ilex. The contamination profile was 
mainly characterized based on the accumulation of Al, Ba, 
Hg, and Sb, which on the one hand reflected the geolitho-
logical settings of the area and on the other revealed the 
local anthropogenic disturbances (Monaci et al. 2022). In 
urban areas of Bojnourd, Iran, Fraxinus excelsior and Pinus 
eldarica were described as suitable tools for biomonitoring 
Pb and Zn, respectively (Solgi et al. 2020). Analogously, the 
high concentration of Ni, Pb, V, and Co in leaves of Nerium 
oleander and Conocarpus erectus reflected the influence of 
industrial activity on the metal content of plants from areas 
surrounding the industrial zone of Asaloyeh, Iran (Safari 
et al. 2018).

Located in southeastern Brazil, in a region called Steel 
Valley, Ipatinga city grew around its steel-industry park 
(Neves and Camisasca 2013). The city hosts within its 
urban area the largest industrial complex of flat-steel pro-
duction in Latin America (Neves and Camisasca 2013), 
while also having one of the largest vehicle fleets in the 
country, with just over 160 thousand vehicles (Denatran 
2021). Both these urban activities, i.e., industrial and 
vehicular, are known to emit large amounts of PM, which 
itself characteristically has particular metals adsorbed to 
its surface. Monitoring atmospheric conditions in the city 
is important to evaluate its air quality and to ultimately 
promote preventive actions concerning public health and 
environmental impacts. Plants of Joannesia princeps 
exposed in the city, especially on sites downwind to the 
steel mill, showed severe morphological and anatomi-
cal alterations in leaves and extrafloral nectaries, which 
has been speculated to have ecological consequences to 
plant–insect interactions (Silva et al. 2023). Daily annual 
mean of inhalable particles (PM10) in Ipatinga city sur-
passes the limit established by the World Health Organi-
zation, of 20  µg.m−3 (Programa Cidades Sustentáveis 
2017). Thus, developing new strategies and approaches 
to constantly and more broadly assess air quality in the 
city should be encouraged.

Biomonitoring methods using plant material have some 
remarkable advantages, like the technological simplicity 

with which they enable the determination of sites with 
higher levels of PTE pollution (Arndt and Schweizer 
1991). Seeking to determine the predominant PTE emis-
sion sources at Ipatinga, in the Brazilian Steel Valley, 
based on an evaluation of PM-associated PTEs, we aimed 
to perform a biomonitoring assay using two tropical leg-
umes, Paubrasilia echinata and Libidibia ferrea var. 
leiostachya, in order to assess chemical markers for the 
origin of emissions in the region, distinguishing between 
different anthropogenic sources.

Material and methods

Plant species and cultivation conditions

The studied species were Paubrasilia echinata (Lam.) 
Gagnon, H.C.Lima & G.P.Lewis and Libidibia ferrea 
(Mart. ex Tul.) L.P.Queiroz var. leiostachya (Benth.) 
L.P.Queiroz (Leguminosae–Caesalpinioideae). We 
selected these two species due to their both being native to 
the Atlantic forest and, most importantly, having distinct 
leaf morphologies and different epicuticular wax micro-
morphologies (Andrade and Silva 2017), both of which 
are leaf attributes that determine differential degrees of 
particle adsorption (Räsänen et al. 2013; Huang et al. 
2015; Wang et al. 2015). Saplings were obtained from a 
nursery, transplanted, and acclimatized in a greenhouse, 
the procedure for which is described in detail in Andrade 
et al. (2022).

Study site

After acclimation, plants proceeded to the biomonitoring 
assay in four urban sites subjected to PM deposition in Ipat-
inga city and in one reference site at a neighboring park. 
One plant lot of each species remained in the greenhouse 
for analysis of leaf surface traits by cryoprocessing (see 
subsection “Cryoprocessing” below). In Ipatinga, plants 
were exposed at Bom Retiro (19° 30′ 42.2″ S, 42° 33′ 25.5″ 
W), Cariru (19° 29′ 28.8″ S, 42° 31′ 43.5″ W), Veneza (19° 
28′ 20.1″ S, 42° 31′ 35.9″ W), and Cidade Nobre (19° 27′ 
41.0″ S, 42° 33′ 37.2″ W) neighborhoods (Fig. 1). These 
four sites were selected for being those whose atmosphere 
is constantly monitored through analytical methods by auto-
matic stations.

As reference station, an exposure rack was installed at 
the Rio Doce State Park plant nursery (19° 45′ 45.5″ S 42° 
37′ 50.6″ W). The park was chosen as reference for being 
a well-preserved fragment of Atlantic rainforest that was 
near Ipatinga and presumably free, in its interior, of urban 
and industrial emissions from the Steel Valley Metropolitan 
Region (Andrade et al. 2022).
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Experimental design and field exposure

Five potted individuals (n = 5 plants) of each species (n = 2 
species) were exposed at each site (n = 5 sites) after ran-
dom selection. The exposure procedures summarized here 
are detailed in Andrade et al. (2022). In the experimental 
period, plants were irrigated with deionized water to avoid 
interference by trace metals. Field exposure took place 
in the wet season, from October 2014 through January 
2015, totalizing 90 days of exposure, the minimum period 
considered by some authors for carrying out an analytical 
monitoring in the context of environmental impact studies 
(Frondizi 2008).

Meteorological data and airborne particle 
concentration

Particle concentration (TSP: total suspended particles; 
PM10: inhalable particles with aerodynamic diame-
ter < 10 µm; PM2.5: inhalable particles with aerodynamic 
diameter < 2.5 µm) in the Ipatinga atmosphere during the 
exposure period was obtained by beta particle attenuation, 
from the analytical monitoring performed by the city Air 
Quality Continuous Monitoring Automatic Network. The 
meteorological parameters wind direction, wind speed, 
air temperature, rainfall, atmospheric pressure, relative air 
humidity, and global solar radiation are also evaluated by 

Fig. 1   Study area and sampled sites in Ipatinga city, southeast-
ern Brazil, located in a metropolitan region called Steel Valley. The 
sampling sites were four neighborhoods around a steel factory: Bom 

Retiro, Cariru, and Veneza and a more distant one, Cidade Nobre. A 
site in the Rio Doce State Park, adjacent to the municipality, served 
as reference (adapted with permission from Andrade et al. 2022)
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the stations. All the above-mentioned variables (particle 
concentration and meteorological parameters) are assessed 
on an hourly basis by the stations. The biomonitoring racks 
were placed 2 to 3 m away from each of the four monitor-
ing stations.

Metal contents in plant dry matter

Inorganic chemical elements that are usually associated with 
several emission sources were evaluated in plants from the 
four urban sites and from the reference site. The amounts of 
Cu, Fe, Zn, Mn, Ni, Pb, Cr, Ba, Al, Co, and V were assessed 
since they are technogenic tracers of steel industry and sev-
eral types of vehicular emission, among others (Calvo et al. 
2013), and the amounts of Ca and Mg were assessed since 
they are important components of slag (Shen et al. 2009) 
and could therefore be also used as tracers. Three out of the 
five replicates (plant individuals) were sampled for metal 
quantification, being chosen by simple random sampling.

In order to determine the concentrations of Cu, Fe, Zn, 
Mn, Ni, Pb, Cr, Ca, and Mg in the plant biomass, at the 
end of the exposure period, all leaves except those from 
the youngest and from the two oldest nodes (in the latter 
case, aiming to prevent soil contamination) were collected, 
oven-dried at 75 °C until constant weight and ground in 
a stainless steel willye-type knife mill (model Star FT 50, 
American Lab, Charqueada, Brazil). Then, 0.5 g of each 
sample was digested in 10 mL nitric-perchloric solution 
(nitric acid + perchloric acid, 4:1) (Sarruge and Haag 1974), 
heated until 200 °C, and the volume of the solution was then 
adjusted to 25 mL with deionized water. The elements were 
quantified by atomic absorption spectrometry (spectrometer 
model 240FS, Agilent Technologies, Santa Clara, USA).

For Ba, Al, Co, and V quantification, samples were also 
subjected to nitric-perchloric digestion, but analyzed by 
inductively coupled plasma optical emission spectrometry 
(spectrometer model Optima 8300, PerkinElmer, Waltham, 
USA). The blank sample used was the nitric-perchloric 
solution itself, with no addition of plant dry matter.

Enrichment factors

The enrichment factor (EF) represents the relative abun-
dance of a given element in leaves of plants exposed at a 
certain presumably contaminated site compared against 
leaves of plants from a reference site. In order to determine 
to what degree were plant leaves enriched with metals, we 
calculated the EF of plants exposed at the urban sites by 
comparing metal concentration in plants from these sites 
against that of plants from RDSP, the reference site. The 
degree of enrichment of plant samples with each of the 
quantified metals was assessed using Eq. 1:

where EF = enrichment factor; Csite = metal concentration in 
plants from the urban sites; and Cbackground = metal concentra-
tion in plants from the reference site.

The threshold for considering plant samples enriched was 
EF > 2, following Mingorance et al. (2007).

Cryoprocessing

Samples from unexposed plants (i.e., individuals that 
remained in the greenhouse after cultivation and were 
not exposed to any environmental conditions outside it; 
see subsection “Plant species and cultivation conditions”) 
were analyzed through fracturing in liquid nitrogen for 
observation under scanning electron microscopy (SEM), 
aiming to characterize the leaf epidermal surface in cross-
section at the high resolution provided by SEM. Fully 
expanded third-node leaf samples were collected from 
three randomly chosen individuals of the two species at 
sapling stage. Leaf fragments ca. 16 mm2 were cut with 
a razor blade from the mid portion of pinnulae, which 
were taken from the mid-portion of pinnae, which in turn 
were obtained from the mid portion of the leaf. Samples 
were fixed in a solution of glutaraldehyde (2.5%) and 
paraformaldehyde (10%) (Karnovsky 1965) in a 0.1 M 
sodium cacodylate buffer (pH 7.2) for a minimum period 
of 24 h, washed in that same buffer, and immersed for 
1 h in 30% glycerol, which acts a cryoprotector. Then, 
samples were washed in deionized water, enveloped in 
silk paper, immersed in liquid nitrogen, placed onto a 
metal support, and cut into smaller fragments (ca. 8 mm2) 
with a scalpel (F.A.O. Tanaka, personal communication, 
after F.C. Miguens; modified). Leaf fragments were once 
again washed in deionized water, dehydrated in acetone, 
critical-point dried with liquid CO2 (critical point drier 
model CPD 030, Bal-Tec, Balzers, Liechtenstein), 
sputter-coated with gold (sputter coater model FDU 
010, Bal-Tec), and then, visualized and photographically 
documented in a scanning electron microscope (model 
LEO 1430 VP, Carl Zeiss, Jena, Germany) through 
detection of secondary electron signals at 15 kV.

Statistical analysis

Data on metal accumulation were subjected to two-way anal-
ysis of variance (ANOVA) followed by Tukey’s test at 5% 
probability, multivariate analysis of variance (MANOVA), 
and principal component analysis (PCA). The analyses were 
performed using R-software version. 4.0.4 (R Development 
Core Team 2021).

(1)EF =

Csite

Cbackground
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Results

Meteorological data and airborne particle 
concentration

During the experimental period, the heaviest weekly rain-
fall was registered at Bom Retiro (96.0 mm). High tem-
peratures characterized the entire period, with maximum 

temperature ranging between 30 and 40 °C. Average val-
ues of mean temperature were 24.74 °C at Bom Retiro, 
27.11 °C at Cariru, 26.67 °C at Veneza, and 26.44 °C at 
Cidade Nobre (Fig. 2).

Considering all monitoring stations in Ipatinga city, the 
predominant wind was the northeast one. Much occasion-
ally were there discordant patterns. For example, there 
were weak, infrequent southeast winds at Bom Retiro and 

Fig. 2   Meteorological charac-
terization of the studied sites. 
Climatograms (left column) 
showing weekly accumulated 
precipitation (mm) and mean 
temperature (°C), and windrose 
charts (right column) showing 
predominant wind speed and 
direction in the central region of 
Ipatinga city along the 13-week 
exposure period. Values not 
shown correspond to readings 
not registered by the auto-
matic stations. a Bom Retiro. 
b Cariru. c Veneza. d Cidade 
Nobre
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analogously low, infrequent northwest ones at Cidade Nobre 
(Fig. 2).

Airborne PM, to which the evaluated metals mostly 
were adsorbed, had their emission dynamics in the 
region evaluated by Andrade et al. (2022). According to 
the authors, the pattern of emissions for total suspended 
particles (TSP) was Cariru (40.98  µm  m−3) > Veneza 
(37.83 µm m−3) > Bom Retiro (35.36 µm m−3) > Cidade 
Nobre (32.17 µm  m−3), whereas for inhalable particles 
(PM10), the pattern was Cariru (25.52 µm m−3) > Cidade 
Nobre (22.74 µm m−3) > Bom Retiro (22.21 µm m−3) > Ven-
eza (17.46 µm m−3).

Metal contents in plant dry matter

Among the investigated tracers, vanadium was not detected 
in any samples and, therefore, is not shown in the data sum-
marized in Table 1.

There were significant interactions in the accumulation of 
Ca, Cu, Fe, Mn, Ni, Pb, and Co between the factors species 
and exposure site. Libidibia ferrea var. leiostachya showed 
higher Ca contents in plants at the reference station in com-
parison with plants exposed at Cariru. This species accu-
mulated higher Cu contents than P. echinata. Increased Cu 
amounts were detected at Bom Retiro, Cariru, and Cidade 
Nobre. The opposite was observed with Fe, Ni, and Pb accu-
mulation. P. echinata accumulated higher contents of these 
three metals than L. ferrea var. leiostachya at Bom Retiro 
and higher contents at this neighborhood than at the other 
sites (with the exception of Pb at Veneza). L. ferrea var. 
leiostachya showed higher Mn contents in plants at RDSP 
than in plants exposed at Cariru and higher contents than P. 
echinata at the former site. Ni contents followed the inverse 
pattern, being higher in plants at Cariru than in plants at 
RDSP. As for Co, L. ferrea var. leiostachya accumulated 
higher amounts than P. echinata at Cariru and Cidade Nobre. 
The sites Cariru, Veneza and Cidade Nobre provided higher 
Co accumulation  to plants of L. ferrea var. leiostachya than 
did Bom Retiro and RDSP (Table 1).

Overall, besides Fe, increasing concentrations along the 
wind direction were found with elements Zn, Mn, Ni, Pb, 
and Cr, as well as particularly higher amounts of Al. Plants 
of both species exposed at Bom Retiro showed the highest 
contents of these elements (Table 1).

Aiming to explore the variation between species and 
among exposure sites, principal component analysis was 
performed with data on elemental quantification in order 
to obtain a small number of linear combinations of the 12 
metals which accounted for most of the variability in the 
data. Three components were extracted, with eigenvalues 
higher than one. Together, they accounted for 80.24% of the 
variability in the data.

Considering the two principal components plotted, com-
ponent 1 was composed by Cr, Al, Ni, Pb, Fe, and Ba, and 
component 2 by Zn, Mg, Mn, Cu, Co, and Ca (Fig. 3).

The two species were clearly separated by PCA, forming 
two well-defined clusters. Associations between the varia-
tion of certain metals could also be noticed. Fe and Pb varied 
together, and so did Al and Ni; Co, Cu, and Mg; and Ca, 
Mn, and Zn. Barium varied singly toward P. echinata data, 
and Cr varied singly in the verge between species (Fig. 3).

Exposure sites were also clearly separated. The reference 
station, for instance, formed a well-defined cluster that was 
well segregated by component 1, showing the lowest com-
ponent weights (Fig. 3).

Most elements varied toward the urban exposure stations. 
The element that varied more closely toward the reference 
station was Mg (Fig. 3).

Both components influenced the result. Component 1, 
however, separated species among sites, according to pollu-
tion level, while component 2 did such separation to a lesser 
degree. Component 1 seems, therefore, to be a revealer of 
pollution, whereas component 2 seems to discriminate 
between species (Fig. 3).

Enrichment factors

Samples were considered enriched when having EF > 2, fol-
lowing Mingorance et al. (2007). In that sense, of all ele-
ments quantified, Fig. 4 shows only those that were enriched 
in plants from at least one studied site. Of the analyzed ele-
ments, EF was > 2 for Fe, Al, Ni, Cr, and Ba in P. echi-
nata and Fe, Cu and Co in L. ferrea var. leiostachya (Fig. 4; 
Table 2).

All elements showed highest enrichment at Bom Retiro 
(with the exceptions of Ba in P. echinata and Co in L. ferrea 
var. leiostachya). In both species, Fe was the element with 
which plants were enriched the most. Fe was also the only 
enriched element that the two species had in common. In P. 
echinata, the Fe enrichment factor was more than double 
the one in L. ferrea var. leiostachya. In both species, plants 
were least enriched with Fe at Cidade Nobre. Fe, the main 
technogenic tracer for the industrial activity taking place in 
the region (steelmaking), showed the following patterns of 
enrichment: Bom Retiro > Veneza > Cariru > Cidade Nobre, 
in P. echinata, and Bom Retiro > Cariru > Veneza > Cidade 
Nobre, in L. ferrea var. leiostachya (Fig. 4).

Foliar structure (cryoprocessing)

Foliar epidermal relief has highly contrasting traits between 
the two species, which enables a differential rate of particle 
retention by each of them. While P. echinata has a smooth 
layer of waxes covering the leaf surface and no conspicu-
ous grooves, L. ferrea var. leiostachya has a rough surface 
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Fig. 3   Principal component 
analysis biplot of trace-metal 
accumulation in Paubrasilia 
echinata and Libidibia fer-
rea var. leiostachya leaves 
after 3 months of exposure to 
urban pollution from a steel 
pole in southeastern Brazil

Fig. 4   Mean enrichment factor (EF) of plant leaves of Paubrasilia 
echinata (a) and Libidibia ferrea var. leiostachya (b) after 3 months 
of exposure to urban pollution from a steel pole in southeastern Brazil, 

for elements having EF > 2 in relation to plants from the reference site. 
The horizontal line represents the threshold of EF = 2, above which 
plants were considered enriched (following Mingorance et al., 2007)

with waxes deposited in the form of vertical platelets, and 
pronounced grooves at the anticlinal-wall region (Fig. 5). 
Roughness values for the leaf surface of these two species 
can be found in the study performed by Andrade et al. (2022).

Discussion

The predominance of northeast winds in the region initially 
suggested that Cidade Nobre would be the least impacted 
urban site and that Bom Retiro would be the most impacted 

one, particularly by gaseous pollutants and, among particu-
late matter, by the ones with lowest aerodynamic diameter 
(Marris et al. 2012; Almeida et al. 2015). As PM10 and PM2.5 
are particles with lower deposition rates, they tend to remain 
in the atmosphere for a longer period of time and be trans-
ported to further distant regions (Riffault et al. 2015; Garg 
and Sinha 2017; Jain et al. 2021). These predictions, how-
ever, were only partially met.

As shown by the atmospheric characterization through 
analytical monitoring and confirmed through the biomoni-
toring (Andrade et al. 2022), the site with highest amounts 
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of PM10 was Cariru. As for large particles (PM100), their 
accumulation by plants in the biomonitoring assay was 
quite homogenous among the evaluated sites (F4,167 = 6.98; 
P > 0.001), with the exception of Cariru, where more par-
ticles were adsorbed by the plants (Andrade et al. 2022). 
Cariru is the closest site to the coke-making, carbochemical, 
and coke-yard plants, being located south of them, along 
the northeast windstream. Yet, the second highest amounts 
were detected at Veneza, only then followed by Bom Retiro 
and Cidade Nobre. Veneza is also close to the coke-making, 
carbochemical, and coke-yard plants, as well as to the sin-
tering plant and to the ore and feed-stock yard, but unlike 
Cariru, it is situated against the windstream. Thus, other 
possible sources of contamination at Veneza, including from 
the neighboring municipality, where there is a dumping 
ground nearby, should be investigated. In addition, Cidade 
Nobre was the most affected site by inhalable particles, after 
Cariru, followed by Bom Retiro and Veneza. Wind direction 
renders it little probable that Cidade Nobre is affected by 

steel industry activity. Instead, vehicular emissions seem to 
be the predominant factor in this neighborhood. The source 
of PM2.5 emissions is known to be mostly anthropogenic 
(Ottelé et al. 2010; Liu et al. 2020).

P. echinata showed higher accumulation of Al, Ni, Pb, Fe, 
and Ba, while L. ferrea var. leiostachya accumulated higher 
amounts of Mg, Cu, Co, Zn, Mn, and Ca. Only Cr could not 
be segregated by neither principal component. It would seem 
like L. ferrea var. leiostachya leaves tend to retain Cu and Co 
particles, whereas P. echinata leaves tend to retain Fe, Ni, 
Pb, Al, and Ba particles. Elemental enrichment results also 
support this hypothesis, as the two species were enriched 
with different elements. These differences between species 
could have presumably arisen either from soil or from the 
leaf surface structure through some mechanism of adhesion 
of specific types of particles.

Andrade et al. (2022) reported that L. ferrea var. leio-
stachya retained lower amounts of particles due to surface 
traits of its leaves that confer them higher self-cleaning 

Table 2   Enriched elements and probable sources of enrichment in 
the leaf dry matter of Paubrasilia echinata and Libidibia ferrea var. 
leiostachya plants, after 3 months of exposure to urban pollution from 
a steel pole in southeastern Brazil, for elements having enrichment 

factor (EF) > 2 in relation to plants from the reference site. Enriched 
elements are listed in inverse order of magnitude, at each site, from 
highest to lowest EF

References: Lim et al. 2007; Almeida et al. 2009; Canha et al. 2012; Malizia et al. 2012; Calvo et al. 2013; Norouzi et al. 2015; Wang et al. 
2017; Jia et al. 2018; Ali et al. 2019; Karmakar and Padhy 2019; Liang et al. 2023

Paubrasilia echinata Libidibia ferrea var. leiostachya

Site EF > 2 Probable sources EF > 2 Probable sources

Bom Retiro Fe > Al > Ni > Cr Vehicular and industrial Fe > Cu Vehicular and industrial
Cariru Fe Vehicular and industrial Co Industrial
Veneza Fe > Ba > Al Vehicular and industrial - -
Cidade Nobre - - Co Industrial

Fig. 5   Surface and cross-section of leaves of Paubrasilia echinata 
(a) and Libidia ferrea var. leiostachya (b), the species used in the 
biomonitoring of airborne particulate matter pollution in Ipatinga 
city, southeastern Brazil. Note the epicuticular waxes deposited in 

the form of a smooth layer in P. echinata and in the form of densely 
aggregated rosettes of vertical platelets in L. ferrea var. leiostachya. 
Bars = 10 µm
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effect, like the higher roughness given both by the convex 
outer periclinal wall of epidermal cells and by its wax-layer 
microsculpturing. It is intriguing that only essential micro-
nutrients (Fe, Cu, and Co) were enriched in L. ferrea var. 
leiostachya. Liu et al. (2019) reported that newly deposited 
metals from the atmosphere may be preferentially retained 
in topsoil and be highly bioavailable for plant absorption 
(Liu et al. 2019). This would suggest that the Fe, Cu, and 
Co enrichment in L. ferrea var. leiostachya took place from 
the atmosphere-soil-root transfer pathway, thus leading us to 
discard direct foliar deposition of PM and associated PTEs 
as the main route. On the other hand, the opposite was found 
in P. echinata, and, for that reason, along with its higher 
potential for accumulating PM on its leaves (Andrade et al. 
2022), this species is better recommended for biomonitoring 
air pollution as a bioaccumulator.

Despite the fact that Cariru was the site with highest 
amount of PM, as shown by both analytical monitoring 
and biomonitoring (Andrade et al. 2022), Bom Retiro was 
the most impacted neighborhood by iron-containing parti-
cles, as plants from this site were the ones that were most 
enriched with Fe. Plants exposed at Bom Retiro showed 
mean iron contents in the plant dry matter of P. echi-
nata (1475 ± 598 mg kg−1) and L. ferrea var. leiostachya 
(634 ± 74 mg kg−1) higher than the maximum iron con-
tents found in plants of Eugenia uniflora (895 mg kg−1) and 
Clusia hilariana (596 mg kg−1) exposed in a seven-month 
active biomonitoring assay at the vicinities of an iron ore 
pelletizing factory from the Brazilian southeastern coast 
(Silva et al. 2015). These values, especially of P. echinata, 
were also higher than the maximum iron contents found in 
the bromeliad Tillandsia usneoides after 45 days of expo-
sure in an active biomonitoring in the surroundings of the 
collapsed tailings dam in Brumadinho, southeastern Bra-
zil (758 mg kg−1 at Córrego do Feijão and 641 mg kg−1 at 
Parque da Cachoeira) (Parente et al. 2023). The analysis of 
PTEs in PM is a safe method for assessing source-related 
emissions (Almeida et al. 2015; Riffault et al. 2015; Liu 
et al. 2018b). Fe is a technogenic tracer of emissions from 
iron and steel industries (Calvo et al. 2013), as iron par-
ticles are usually a product of basic oxygen steel-making 
and sintering (Almeida et al. 2009; Canha et al. 2012; Jia 
et al. 2018). Although the steelworks and sintering plants 
are nearer Cariru, the highest iron accumulation in plants 
exposed at Bom Retiro was probably related to the predomi-
nant wind direction (northeast) in the region, which trans-
ports airborne particles to the southwest, where Bom Retiro 
is located. In a study on the effects of urban and industrial 
pollution form Ipatinga on leaves and extrafloral nectaries 
of Joannesia princeps, plants exposed at Cariru and Bom 
Retiro were the most affected (Silva et al. 2023). Joannesia 
princeps has also been suggested to be a biosensor of the 
impact by acid precipitation, a phenomenon which has been 

detected in some urban Brazilian areas within the Atlantic 
forest domain (Andrade et al. 2020).

The degree of enrichment by elements into the magnetic 
particles that are deposited and accumulated on plant leaves 
and other biological receptors can indicate the main emis-
sion sources of air pollutants, such as vehicular and indus-
trial activities (Winkler et al. 2019; Rohra et al. 2023). The 
high EFs of Fe and the other elements (Ni, Al, Cr, Ba, Co, 
and Cu) suggest a dominance not only of industrial activity 
but also of vehicular traffic as the sources of air pollution in 
the studied region. The major contributors to vehicular emis-
sions of these elements are road surface abrasion, resuspen-
sion of road dust, wear of vehicular components, tire clutch, 
and brake wear, while industrial emissions contribute mainly 
through fuel combustion (coal, oil, and coke), furnace, and 
gas turbines (Ali et al. 2019). Some PTEs, like Ba, Cr, Fe, 
Ni, and Cu, are present in fuels and lubricating oils as addi-
tives and are also originated from industrial metallurgical 
processes (Lim et al. 2007; Malizia et al. 2012; Calvo et al. 
2013; Norouzi et al. 2015; Wang et al. 2017; Karmakar and 
Padhy 2019; Liang et al. 2023).

An important following step to the present research would 
be to perform a passive biomonitoring using the adult indi-
viduals already planted throughout the city. Particularly 
P. echinata showed to be promising for this purpose and, 
thereby, evaluating the trees already in the city which are 
constantly exposed to local pollution would raise comple-
mentary information to the results herein. In addition, P. 
echinata is extensively used as ornamental not only in Ipat-
inga city but also in several other Brazilian cities (Rocha and 
Barbedo 2008; Moro and Castro 2015; Oliveira et al. 2019), 
due mainly to its historical significance, as it is the national 
symbol-tree of the country (von Muralt 2006). Standardiza-
tion remains one of the main issues with comparability of 
passive biomonitoring studies (Tarricone et al. 2015; Corada 
et al. 2021). Thus, elaborating standardized approaches with 
this species, in alignment with international studies, and 
investigating its potential for passive biomonitoring might 
allow for future establishment of a monitoring network that 
could sample several cities across the country and give good, 
comparable results, following high international standards.

Conclusions

In Ipatinga, Cariru is the neighborhood subjected to highest 
loads of total suspended particles and inhalable particles, 
due mostly to its proximity to the coke-making, carbochemi-
cal, and coke-yard plants nearby. However, Bom Retiro is 
the neighborhood where the exposed individuals of Paubra-
silia echinata and Libidibia ferrea var. leiostachya accumu-
lated highest amounts of Fe. This may be due mainly to the 
predominant wind direction in the region, northeast, which 
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places Bom Retiro downwind to the local steel industry. At 
Veneza, other possible sources of contamination, including 
a nearby dumping ground from the neighboring municipal-
ity, should be further investigated. Plants were enriched the 
least with Fe at Cidade Nobre, which however was the site 
most affected by inhalable particles, mainly due to vehicular 
emissions. While Fe was the main technogenic tracer for the 
industrial activity taking place locally (steelmaking), other 
elements like Ni, Al, Cr, Ba, and Cu indicate the dominance 
not only of industrial activity but also of vehicular traffic 
as the sources of air pollution in the region, which origi-
nated chiefly from road surface abrasion, resuspension of 
road dust, wear of vehicular components, tire clutch, and 
brake wear.
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