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Abstract
Perfluorinated compounds (PFCs) are persistent organic contaminants that are highly toxic to the environment and bioaccu-
mulate, but their ecotoxic effects on aquatic plants remain unclear. In this study, the submerged plant Vallisneria natans was 
treated with short-term (7 days) and long-term (21 days) exposures to perfluorooctanoic acid (PFOA) and perfluorooctane 
sulfonate (PFOS) at concentrations of 0, 0.01, 0.1, 1.0, 5.0, and 10 mg/L, respectively. The results showed that both high 
concentrations of PFOA and PFOS inhibited the growth of V. natans and triggered the increase in photosynthetic pigment 
content in leaves. The oxidative damage occurred mainly in leaves, but both leaves and roots gradually built up tolerance 
during the stress process without serious membrane damage. Both leaves and roots replied to short-term stress by activating 
superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO), while peroxidase (POD) was involved under 
high concentration stress with increasing exposure time. Leaves showed a dose–effect relationship in integrated biomarker 
response (IBR) values under short-term exposure, and the sensitivity of roots and leaves to PFOS was higher than that of 
PFOA. Our findings help to increase knowledge of the toxic effects of PFCs and have important reference value for risk 
assessment and environmental remediation of PFCs in the aquatic ecosystem.
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Introduction

Perfluorinated compounds (PFCs) are a class of synthetic 
organic composites in which the hydrogen atoms attached 
to the carbon in the molecule are replaced by fluorine atoms, 
they are known for their persistent and hard-to-degrade 
nature, causing environmental and human health concerns 
worldwide (Pérez et al. 2014; Chen et al. 2022). Due to the 
long carbon chains of some PFCs, they produce more types 
of pollutants through their manufacture, transportation, use, 
and replacement in the environment uncontrollably, caus-
ing further pollution (Eriksson et al. 2017). Many coun-
tries and regions have reported the concentrations and rates 

of detection of PFCs in diverse environments such as the 
atmosphere (Rodríguez-Varela et al. 2021), soil (Lu et al. 
2020) and water (Zhang et al. 2013). The bioaccumulation 
and biomagnification capacity of PFCs allows their enrich-
ment into humans along the food chain through multiple 
exposure pathways (Islam et al. 2018). Meanwhile, PFCs 
have been shown to be strongly carcinogenic (Zhang et al. 
2011), immunotoxic (Grandjean and Budtz-Jørgensen 2013), 
and developmentally toxic (Lau et al. 2004) in numerous ani-
mal toxicology experiments. Perfluorooctanoic acid (PFOA) 
and perfluorooctane sulfonate (PFOS) are two typical PFCs 
and have gained significant attention. Research shows that 
there has been more than 700 tons of PFOA released into 
the environment so far. Similarly, the total direct and indirect 
emissions of PFOS have exceeded 4930 tons in 1958–2015 
(Wang et al. 2017).

There are two main sources of PFOA and PFOS in the 
aquatic ecosystem, one is the direct discharge of PFOA and 
PFOS containing effluents, and the other is generated by 
the decomposition or transformation of precursors origi-
nally present in the natural environment, such as the deg-
radation of long-chain fluoroalkanes (Eriksson et al. 2017), 
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and the former accounts for a greater proportion (Filipovic 
et al. 2013). Currently, PFOA and PFOS have been detected 
worldwide in various water sources such as surface water, 
wastewater, and groundwater (Dreyer et al. 2010). In China, 
the detection rate and concentration of PFOA and PFOS in 
water maintain high, the study of Lu (2018) showed that the 
detected concentration of PFOA near the fluorine Industrial 
Park had reached 613 μg/L, causing pollution to the water 
environment. Similarly, the PFOS in wastewater intake from 
a per- and polyfluoroalkyl substances (PFASs) manufactur-
ing facility had reached as high as 1021 mg/L (Wang et al. 
2010). Previous studies have shown that PFOA and PFOS 
concentrations were essentially 1 μg/L to 100 mg/L (Jeong 
et al. 2016; Li et al. 2017). Since the environmental detection 
concentration characterizes their most direct toxic effects on 
the subjects, and both PFOA and PFOS can remain stable in 
the environment for a long time, it is important to conduct 
studies on the toxicological effects of PFOA and PFOS at 
higher concentrations and long-term contact to accurately 
assess their ecotoxicological effects.

Exposure to PFOA or PFOS causes oxidative damage in 
aquatic plants, inducing the production and accumulation 
of ROS such as superoxide anion (O2−), hydrogen perox-
ide (H2O2), hydroxyl radical (-OH). The accumulation of 
ROS triggers the activation of antioxidant defense systems, 
including enzymatic and non-enzymatic antioxidant systems. 
The enzymatic antioxidants play a crucial role in the plant’s 
antioxidant defense system. Multiple antioxidant enzymes in 
the cell, such as catalase (CAT), peroxidase (POD), polyphe-
nol oxidase (PPO), and superoxide dismutase (SOD), work 
together to protect the plant body from damage by resisting 
cellular peroxidation. The response of enzymatic antioxi-
dants to PFOA and PFOS in plants reported in the literature 
varies widely and has not been harmonized.

Biomarkers are signal indicators of abnormalities at 
different biological levels (molecular, cellular, individual, 
etc.) caused by environmental pollutants before they cause 
serious damage to organisms. The value can directly reflect 
the damage caused by exogenous pollutants, such as heavy 
metals, microplastics, nano-pollutants, and organic pollut-
ants, to biological life activities in the environment (Wang 
et al. 2008). Changes in the structure and function of cellu-
lar molecules, abnormalities in biochemical metabolism and 
physiologically active substances, and abnormal changes in 
individual behavior and populations or communities can be 
used as biomarkers (Kosaka et al. 2010). Macromolecular 
biomarkers such as antioxidant enzymes and lipid peroxi-
dation products have both inhibitory and inducible effects 
in response to exogenous compound stress, and there are 
spatial and temporal differences in the response of various 
enzymatic activities, making them one of the most com-
monly used markers. Therefore, macromolecular markers 
are often analyzed in combination with other markers to 

assess pollution more effectively (Faverney et al. 2001). The 
integrated biomarker response (IBR) has recently become 
an effective tool for evaluating ecological risk in aquatic 
environments as an indicator of environmental stress. None-
theless, IBR assessments are less frequently conducted on 
aquatic plants, which may be a potential option for assessing 
the potential ecological risk of PFCs and their remediation 
(Zhao et al. 2022).

Submerged plants, such as Vallisneria natans, have a 
higher uptake capacity for absorbing various PFCs than 
other aquatic plants due to their well-developed root systems 
and leaf-water exchange (Pi et al. 2017). They are widely 
recognized as an environmentally friendly and sustainable 
solution for ecological remediation due to their simplic-
ity, low cost, and effectiveness in removing pollutants (Bai 
et al. 2020). Therefore, V. natans was chosen as the test spe-
cies in this experiment. We investigated the physiological 
and biochemical responses as well as their differences of 
leaves and roots to single exposures of PFOA and PFOS in 
V. natans, respectively, and evaluated their ecotoxic effects 
comprehensively with the help of IBR. The results help to 
systematically explore the ecotoxicity of PFCs on submerged 
plants to make a complement and provide a reference basis 
for subsequent assessment of the phytoremediation potential 
of submerged plants and the risk to aquatic ecosystems.

Materials and methods

Plant material and experimental design

The aquatic plant V. natans was collected from the eco-
logical station of Liangzi Island, Wuhan, Hubei Province 
(30°33.41′N, 114°22.59′E). PFOA (96% purity) was pur-
chased from Shanghai Macklin Biochemical Co., Ltd. 
(Shanghai, China), while PFOS (98% purity) from Maya 
Reagent Co., Ltd. (Zhejiang, China).

Healthy plants were selected and soaked in 2% citric acid 
solution for 10 min to sterilize them. They were then trans-
planted into a light incubator at 27 ± 5 °C with a 12/12 light/
dark cycle and a light intensity of 2160 lx for 15 days to 
acclimatize. After 7 days of incubation, V. natans plants with 
good growth and similar morphology were selected, and dis-
tilled water was used to remove the impurities attached to 
them. The same procedures were repeated after 15 days to 
minimize differences. The PFOA and PFOS were dissolved 
in pure water heated to about 50 °C to prepare the solution. 
The concentrations of PFOA and PFOS were set according 
to environmental concentration, river pollution concentra-
tion, fluoride site effluent concentration, spill concentration, 
and laboratory test concentration. In addition to the control 
group, the other 10 treatment groups were exposed to low 
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(0.01 mg/L), middle (0.1 and 1.0 mg/L), and high (5.0 and 
10.0 mg/L) concentrations of PFOA and PFOS.

The plants were exposed to 2-L 10% Hoagland’s solu-
tion environment for short-term (7 days) and long-term 
(21 days) periods. Toxicant solutions were changed every 
48 h to maintain the consistency of toxicants and nutrients. 
Fresh weight and morphological parameters were measured 
before the first addition of toxicants, and again after 7 days 
and 21 days. The parameters of every group were selected 
randomly to measure the parameters below: biomass and 
morphological parameters (fresh weight, number of leaf 
blades, maximum leaf length, maximum root length, num-
ber of tillers, number of flowers), physiological parameters 
(photosynthetic pigment content, malondialdehyde content, 
soluble protein content, soluble sugar content, and H2O2 
content), and biochemical parameters (SOD, CAT, POD, 
and PPO activity).

Measurement of plant growth

The fresh weights (FW) of the plants under test were meas-
ured on the 7th and 21st day after the addition of the toxicant 
by the method of Wang (2004). Plant biomass was calculated 
as fresh weight (g). The effect on plant growth was assessed 
by the relative growth rate (RGR) of the plants. The RGR 
was calculated as:

where FW
1
 and FW

2
 represent the initial and final fresh 

weights, and Δt indicates the corresponding time intervals.

Measurement of photosynthetic pigment content

Photosynthesis provides energy for the growth, develop-
ment and reproduction of aquatic plants, where photosyn-
thetic pigments are important basic substances for this pro-
cess. The photosynthetic pigment contents were measured 
by using the method of Jampeetong and Brix (2009). The 
absorbance values were measured at 470 nm, 649 nm, and 
665 nm. All spectrophotometric analyses in this experiment 
were conducted by MAPADA UV-1200 spectrophotometer 
(Shanghai Meipuda Instrument Co. Ltd., Shanghai, China).

Measurement of MDA and soluble sugar content

Soluble sugars and soluble proteins are important nutri-
ents in the plant and help maintain cellular osmotic pres-
sure balance under stress conditions to resist damage, and 
are commonly used as indicators of resistance. Weigh 
0.1 g of plant leaves and add 5 mL of 10% trichloroacetic 
acid (TCA) to grind into a homogenate, then centrifuge at 
12,000 r/min for 10 min. The supernatant was mixed with 

RGR(%) =
[

ln
(

FW
2

)

− ln
(

FW
1

)]

∕Δt
(

g−1day−1
)

0.6% 2-thiobarbituric acid (TBA), boiled on a water bath 
at 100 °C for 30 min, cooled to room temperature and then 
centrifuged again. Take the supernatant and determined the 
absorbance values at 450 nm, 532 nm, and 600 nm, the solu-
ble sugar content and malondialdehyde content were calcu-
lated according to the method of Liu (2019).

Antioxidant activities and H2O2

Plants initiate antioxidant mechanisms to scavenge stress-
induced excess reactive oxygen radicals (Bhaduri and 
Fulekar 2012). The antioxidant activities of this study 
were measured by the methods of Gao (2006) and Cang 
and Zhao (2013). 0.1 g of fresh leaves or roots were ground 
the homogenate with pre-cooled phosphate buffer (50 mM, 
pH 7.8, containing 1% PVP), centrifuge the grind at 4 °C, 
12,000 r/min for 10 min. The samples were stored at 4 °C 
and used for the determination of H2O2, soluble protein con-
tent as well as the activities of SOD, CAT, POD, and PPO.

The SOD activity was measured by nitrogen blue tetrazo-
lium (NBT) reduction method, which the amount of enzyme 
required to inhibit 50% photochemical reduction of NBT was 
taken as one unit (U). The CAT activity was determined by 
UV spectrophotometry, and one enzyme activity unit cor-
responded to a 0.1 decrease in absorbance at 240 nm within 
1 min. The POD activity was measured by the guaiacol 
method, using an absorbance change of 0.01 per minute at 
470 nm as a unit of enzyme activity. The PPO activity was 
estimated by the catechol method, and an increase of 0.01 
in OD398 within 1 min was used as a unit. The H2O2 content 
was determined by the method of Satterfield (1955), meas-
ured OD410, and then calculated from the standard curve.

Soluble protein content

The absorbance was measured at 595 nm after 0.1 mL of the 
sample extract and 5 mL of Kaumas Brilliant Blue G-250 
protein reagent was added, shaken and mixed thoroughly 
for 2 min (Bradford 1976). The protein content was then 
calculated based on the standard curve.

Integrated biomarker response

To comprehensively assess the effects of exposure treat-
ments on leaves and roots of V. natans and plant response, 
IBR was introduced to characterize the plant response at 
different concentrations and treatment times. The area cov-
ered by the star chart indicates the IBR value. The H2O2 
content, soluble protein content, antioxidant enzymes 
(SOD, CAT, POD, and PPO) activity, and MDA content 
were selected as the biomarkers to calculate IBR. The 
total chlorophyll content was additionally included in the 
IBR calculation for leaves. The IBR method was carried 
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out with reference to Kim (2016). Each biomarker index 
should first be standardized and then scored. The magni-
tude of the value for each biomarker at different concentra-
tions of different exposure time is expressed as the length 
of the radial line in the star chart. The IBR value for a 
certain exposure condition was obtained by calculating 
the area of the star chart.

Since the order of several biomarkers in the star chart 
affects the results of IBR calculation, the full ranking of 
several biomarkers was considered in this study and the 
mean of IBR values was calculated as the final value.

Statistical analysis

Data analysis was performed using SPSS 22 (IBM Inc., 
Chicago, IL, USA) software. After performing Levene’s 
test to analyze homogeneity of variance then Duncan’s 
multiple comparison method in one-way ANOVA was 
used to analyze the significance of multiple samples in the 
control and treatment groups. The experimental data were 
expressed as mean ± standard deviation and were speci-
fied to be considered significantly different when p < 0.05. 
Graphs were made with SigmaPlot 12.5 (Systat Software, 
Inc., USA) and significant differences were denoted on 
error bars using distinct lowercase letters, and when there 
were no differences in the whole group, they were not 
labeled. Similar statistical analysis were reported by sev-
eral authors (Wilcox et al. 2015; León-Mejía et al. 2016, 
2018; Gredilla et al. 2017; Nordin et al. 2018; Gasparotto 
et al. 2018, 2019; Ramírez et al. 2019; Rojas et al. 2019).

Results

Growth of V. natans

As shown in Fig. 1A, both treatment of PFOA and PFOS 
for 7 days reduced the RGR of V. natans but not signifi-
cantly. Nevertheless, the RGR was reduced and significantly 
decreased by 33.77% and 34.72% under 10.0 mg/L of PFOA 
and PFOS after 21 days (Fig. 1B). These results indicated 
that the overall RGR of V. natans gradually decreased with 
increasing treatment concentration, but did not reduce the 
fresh weight of plants. Furthermore, the inhibitory effect of 
V. natans under long-term PFOA treatment increased with 
increasing concentration.

The results indicated that there was no significant differ-
ence in all morphological indicators of V. natans after 7 and 
21 days, as showed in Table 1 and 2. Further analysis of each 
index showed that the increase of maximum leaf length was 
lower in both high-concentration PFOA- and PFOS-treated 
groups than the control after 21 days, as compared to 7 days. 
50.78% increase was observed in the control after 21 days, 
while only 29.25% and 27.08% increase were observed sepa-
rately under 10.0 mg/L PFOA and PFOS treatment.

Photosynthetic pigment content of V. natans

Table 3 showed that the photosynthetic pigments of V. 
natans generally increased at lower concentrations, then 
decreased with increasing concentration after 7-day expo-
sure. Specifically, the contents of chlorophyll in high con-
centration PFOA treatment were lower than those in the 

Fig. 1   RGR for treatments of PFOA and PFOS to V. natans after exposure for 7 (a) and 21 days (b). 7D and 21D represent 7- and 21-day treat-
ments, respectively, the same as below
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control group, while PFOS eventually returned to the con-
trol level. The photosynthetic pigment content was signifi-
cantly higher under single treatment with low and medium 
PFOS concentrations compared to the control. Chlorophyll 
b content was significantly increased by 52.68% under low 
concentration treatment of 0.01 mg/L PFOS, while chloro-
phyll a and carotenoid content showed significant increases 
of 32.63% and 40.90%, respectively.

As shown in Table 4, after 21-day exposure, the pho-
tosynthetic pigment content of V. natans showed a similar 
trend as the 7-day treatment of PFOS. It showed a maximum 
value at medium concentration of 0.1 mg/L PFOA and then 
reached a minimum value at high concentration of 5.0 mg/L. 
The content of chlorophyll a and total chlorophyll showed an 

overall increasing trend after exposing to PFOS for 21 days 
compared to the control group, with significant increases of 
26.70% and 25.73% in 10.0-mg/L treatment group. There 
was no significant difference in chlorophyll b and carotenoid 
content.

Soluble sugar content in V. natans

Figure 2 indicated that leaves and roots of V. natans can 
respond to high concentrations of PFOA and PFOS stress 
by accumulating soluble sugars under short-term exposure 
but no longer respond under long-term exposure. The results 
showed that after 7 days, the soluble sugar content in leaves 
increased under both PFOA and PFOS treatments at medium 

Table 1   Effects of PFOA and PFOS on morphological parameters of V. natans after 7 days

Pcs is pieces, a unit for the number of leaves, tillers and flowers

PFOA concentration 
(mg/L)

Number of leaf blades 
(pcs)

Maximum leaf length 
(cm)

Maximum root length 
(cm)

Number of tillers (pcs) Number of flowers 
(pcs)

0 10.33 ± 1.53 8.53 ± 0.38 5.33 ± 0.58 0.67 ± 0.58 0.67 ± 0.58
0.01 10.00 ± 1.00 8.83 ± 0.91 5.20 ± 0.27 0.67 ± 0.58 0.67 ± 0.58
0.1 10.33 ± 0.58 8.43 ± 0.98 5.10 ± 0.17 1.00 ± 0.00 0.67 ± 0.58
1.0 10.67 ± 0.58 8.70 ± 1.04 5.17 ± 0.15 1.00 ± 0.00 1.00 ± 0.00
5.0 11.33 ± 0.58 9.07 ± 0.31 5.50 ± 0.50 1.00 ± 0.00 0.67 ± 0.58
10.0 11.67 ± 0.58 9.80 ± 0.44 5.67 ± 0.29 1.00 ± 0.00 1.00 ± 0.00
PFOS concentration 

(mg/L)
Number of leaf blades 

(pcs)
Maximum leaf length 

(cm)
Maximum root length 

(cm)
Number of tillers (pcs) Number of flowers 

(pcs)
0 10.33 ± 1.53 8.53 ± 0.38 5.33 ± 0.58 0.67 ± 0.58 0.67 ± 0.58
0.01 11.00 ± 0.00 9.20 ± 0.76 5.33 ± 0.58 1.00 ± 0.00 0.67 ± 0.58
0.1 10.33 ± 0.58 8.90 ± 0.27 5.43 ± 0.93 0.67 ± 0.58 0.67 ± 0.58
1.0 11.00 ± 0.00 9.20 ± 0.44 5.53 ± 0.55 0.67 ± 0.58 0.67 ± 0.58
5.0 11.00 ± 0.00 8.90 ± 0.10 4.67 ± 0.58 0.67 ± 0.58 1.00 ± 0.00
10.0 10.33 ± 0.58 9.60 ± 0.95 4.80 ± 0.52 1.00 ± 0.00 1.00 ± 0.00

Table 2   Effects of PFOA and PFOS on morphological parameters of V. natans after 21 days

PFOA concentration 
(mg/L)

Number of leaf blades 
(pcs)

Maximum leaf length 
(cm)

Maximum root length 
(cm)

Number of tillers (pcs) Number of flowers 
(pcs)

0 12.33 ± 0.58 12.87 ± 0.23 6.50 ± 0.87 2.67 ± 0.58 1.00 ± 0.00
0.01 12.33 ± 0.58 12.03 ± 0.55 5.60 ± 0.36 2.67 ± 0.58 0.00 ± 0.00
0.1 12.67 ± 0.58 12.60 ± 0.53 5.87 ± 0.32 2.00 ± 1.00 1.00 ± 0.58
1.0 13.00 ± 0.00 12.75 ± 0.35 5.93 ± 0.40 2.33 ± 1.53 0.66 ± 0.58
5.0 12.67 ± 0.58 12.60 ± 0.31 6.33 ± 0.58 2.33 ± 0.58 0.00 ± 0.00
10.0 12.00 ± 0.00 12.67 ± 0.21 6.20 ± 0.52 2.67 ± 0.58 0.67 ± 0.58
PFOS concentration 

(mg/L)
Number of leaf blades 

(pcs)
Maximum leaf length 

(cm)
Maximum root length 

(cm)
Number of tillers (pcs) Number of flowers 

(pcs)
0 12.33 ± 0.58 12.87 ± 0.23 6.50 ± 0.87 2.67 ± 0.58 0.00 ± 0.00
0.01 12.67 ± 0.58 12.67 ± 0.36 6.17 ± 1.04 2.67 ± 0.58 0.00 ± 0.00
0.1 12.33 ± 0.58 12.67 ± 0.45 5.83 ± 0.29 2.33 ± 0.58 0.33 ± 0.58
1.0 12.33 ± 0.58 12.00 ± 1.04 5.87 ± 0.32 1.67 ± 0.58 0.67 ± 0.58
5.0 12.00 ± 0.00 12.20 ± 0.82 5.50 ± 0.50 2.67 ± 0.58 0.67 ± 0.58
10.0 12.33 ± 0.58 12.20 ± 0.32 6.00 ± 0.50 2.33 ± 0.58 0.33 ± 0.58
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and high concentrations (Fig. 2A). The soluble sugar content 
in leaves decreased in all groups after 21 days compared to 
7 days and there was no significantly difference, as shown 
in Fig. 2B. After 7 days, the soluble sugar content of roots 
increased significantly in the high concentration treatment, 
with a significant increase of 42.35% in 10.0 mg/L PFOA 
treatment group (Fig. 2C). After 21 days, there was no 
significant difference in different concentration treatment 
groups (Fig. 2D).

Soluble protein content in V. natans

Under the treatments of PFOA and PFOS, the soluble pro-
tein content in leaves of V. natans increased at medium 
concentration after 7 days and then returned to the control 

level at high concentration. In 1.0-mg/L PFOA and PFOS 
treatments, there was a significant increase of 21.80% and 
11.85% compared to the control (Fig. 3A). Alternatively, 
the contents in high concentration PFOA- and PFOS-treated 
groups decreased after 21 days. The treatment groups with 
a high concentration of 10.0 mg/L PFOA and PFOS were 
reduced significantly by 10.02% and 11.89%, respectively 
(Fig. 3B). There were no significant differences in PFOA 
and PFOS in roots (Fig. 3C, D).

MDA in V. natans

The results showed that MDA content in leaves of V. 
natans increased under high concentrations of both PFOA 
and PFOS treatment after 7 days (Fig. 4A, B). After 7 

Table 3   Effect of PFOA and PFOS on photosynthetic pigment contents in leaves of V. natans after 7 days

PFOA concentration 
(mg/L)

Chlorophyll a content 
(mg/g FW)

Chlorophyll b content 
(mg/g FW)

Total chlorophyll content 
(mg/g FW)

Carotenoid content (mg/g 
FW)

0 1.09 ± 0.32ab 0.41 ± 0.17ab 1.50 ± 0.48ab 0.39 ± 0.12
0.01 1.09 ± 0.12ab 0.45 ± 0.08ab 1.54 ± 0.20ab 0.45 ± 0.05
0.1 1.20 ± 0.06a 0.53 ± 0.00a 1.73 ± 0.10a 0.40 ± 0.11
1.0 1.14 ± 0.02a 0.53 ± 0.01a 1.67 ± 0.03a 0.45 ± 0.05
5.0 0.79 ± 0.08b 0.33 ± 0.06b 1.13 ± 0.12b 0.47 ± 0.02
10.0 0.80 ± 0.06b 0.33 ± 0.06b 1.13 ± 0.11b 0.45 ± 0.03
PFOS concentration (mg/L) Chlorophyll a content 

(mg/g FW)
Chlorophyll b content 

(mg/g FW)
Total chlorophyll content 

(mg/g FW)
Carotenoid content (mg/g 

FW)
0 1.09 ± 0.32b 0.41 ± 0.17b 1.50 ± 0.48b 0.39 ± 0.06b

0.01 1.33 ± 0.07ab 0.63 ± 0.06a 1.95 ± 0.13a 0.48 ± 0.02ab

0.1 1.45 ± 0.26a 0.47 ± 0.17ab 1.92 ± 0.43a 0.51 ± 0.10a

1.0 1.32 ± 0.04ab 0.55 ± 0.05a 1.88 ± 0.09a 0.48 ± 0.00ab

5.0 1.19 ± 0.06ab 0.53 ± 0.04ab 1.72 ± 0.09ab 0.47 ± 0.02ab

10.0 1.03 ± 0.10b 0.44 ± 0.07b 1.56 ± 0.07ab 0.39 ± 0.01b

Table 4   Effect of PFOA and PFOS on photosynthetic pigment contents in leaves of V. natans after 21 days

PFOA concentration 
(mg/L)

Chlorophyll a content 
(mg/g FW)

Chlorophyll b content 
(mg/g FW)

Total chlorophyll content 
(mg/g FW)

Carotenoid content (mg/g 
FW)

0 1.09 ± 0.03ab 0.52 ± 0.04ab 1.61 ± 0.06b 0.42 ± 0.01ab

0.01 1.14 ± 0.08ab 0.51 ± 0.06ab 1.65 ± 0.14b 0.43 ± 0.02ab

0.1 1.30 ± 0.04a 0.58 ± 0.05a 1.98 ± 0.10a 0.48 ± 0.01a

1.0 1.17 ± 0.09ab 0.48 ± 0.08ab 1.65 ± 0.17b 0.43 ± 0.05ab

5.0 1.06 ± 0.09b 0.47 ± 0.02b 1.53 ± 0.06b 0.40 ± 0.02b

10.0 1.12 ± 0.24ab 0.50 ± 0.11ab 1.61 ± 0.34b 0.43 ± 0.07ab

PFOS concentration (mg/L) Chlorophyll a content 
(mg/g FW)

Chlorophyll b content 
(mg/g FW)

Total chlorophyll content 
(mg/g FW)

Carotenoid content (mg/g 
FW)

0 1.09 ± 0.03c 0.52 ± 0.04 1.61 ± 0.06b 0.46 ± 0.03
0.01 1.22 ± 0.02bc 0.53 ± 0.05 1.75 ± 0.07b 0.44 ± 0.03
0.1 1.21 ± 0.05bc 0.51 ± 0.03 1.76 ± 0.07b 0.44 ± 0.02
1.0 1.22 ± 0.17bc 0.52 ± 0.10 1.73 ± 0.26b 0.43 ± 0.04
5.0 1.27 ± 0.06ab 0.57 ± 0.04 1.83 ± 0.09ab 0.44 ± 0.01
10.0 1.38 ± 0.01a 0.55 ± 0.04 2.02 ± 0.05a 0.45 ± 0.02
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days, there was a significant increase of 69.45% and 
49.13% in PFOA treatment group at concentrations of 
5.0 and 10.0 mg/L, respectively. Additionally, the PFOS 
treated group showed and a significant increase of 37.04% 
and 75.70% at concentrations of 5.0 and 10.0 mg/L 
(Fig. 4A). There were no significant differences in both 
leaves and roots after 21 days, but there was an increase in 
MDA under prolonged high PFOS exposure (Fig. 4B, D). 
These results indicate that MDA accumulation in leaves 
of V. natans was only observed under short-term PFOA 
and PFOS mono-exposure, but increased in both leaves 
and roots with long-term PFOS exposure.

H2O2 in V. natans

Figure 5A showed that the H2O2 content in leaves of V. 
natans increased after 7 days of exposure to high concen-
tration, in accordance with the results of MDA. At 5.0 and 
10.0 mg/L, significant increase of 24.36% and 30.54% were 
observed in the PFOA treatment group compared to the 
control group, respectively. Similarly, the PFOS treatment 
demonstrated a significant increase of 35.47% and 27.20%. 
The overall H2O2 content in 21-day treated groups was lower 
than 7-day treatments, but not significantly different from the 
control (Fig. 5B). The H2O2 content in roots increased under 

Fig. 2   Soluble sugar content for treatments of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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high concentration of PFOA treatment, while no significant 
differences were observed in roots under both 7 and 21 days 
PFOS treatment (Fig. 5C, D).

Antioxidant defense in V. natans

The results indicated that both short- and long-term PFOA 
or PFOS exposure can increase SOD activity in leaves of 
V. natans. The results showed a noteworthy 48.22% rise in 
SOD activity after 7 days of 0.01 mg/L PFOS treatment, 
indicating that PFOS would activate SOD activity earlier, 
as depicted in Fig. 6A, B. The roots activate SOD activ-
ity at high PFOA concentrations in brief exposure, while 
SOD activity is promoted and then inhibited under long-
term PFOS exposure. The SOD activity of roots increased 

significantly after 7 days under high PFOA concentration, 
while there was no significant difference in PFOS treatments 
(Fig. 6C). After 21 days, the SOD activity in roots showed 
a significant increase at medium concentration treatments, 
followed by a significant decrease at high concentration 
treatment (Fig. 6D).

Short-term high PFOA or PFOS stress increased CAT 
activity in leaves of V. natans, consistent with the H2O2 
results, while long-term high stress inhibited it (Figs. 5A and 
7A). CAT activity in leaves increased and then decreased 
significantly under high concentrations of PFOA and PFOS 
after 21 days (Fig. 7B). CAT activity in roots was inhib-
ited by short-term high PFOA or PFOS treatment, while 
long-term PFOA exposure promoted an increase in activity. 
After 7 days, CAT activity in roots increased significantly in 

Fig. 3   Soluble protein content for treatments of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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medium concentrations of PFOA treatments while decreased 
under high concentrations of PFOA and PFOS treatments 
(Fig. 7C).

POD activity in leaves of V. natans is inhibited by short-
term high concentrations of PFOA treatment, but increased 
significantly under medium concentrations of PFOS treat-
ment. It decreased significantly after 7 days of high-con-
centration PFOA treatment while increased significantly 
after 21 days, with increases of 45.46% and 47.61% at 5.0 
and 10.0 mg/L, respectively (Fig. 8A, B). Under long-term 
treatment, medium concentrations of PFOS activate POD 
activity in roots while high concentrations of PFOA inhibit 
it. After 7 days, there was no significant difference in POD 
activity in roots compared to the control (Fig. 8C). After 21 
days, POD activity was significantly higher both in low and 

medium PFOS treatments and decreased under high PFOS 
and PFOA treatments (Fig. 8D).

Short-term high PFOS exposure increased PPO activity 
in leaves and roots of V. natans, while long-term inhibited 
it. PPO activity in leaves increased significantly after 7 days 
at high PFOS concentrations, while there was no significant 
difference under PFOA treatments (Fig. 9A). After 21 days, 
the group treated with high PFOS concentrations exhibited 
significant reductions of 20.88% and 24.56% separately at 
5.0 mg/L and 10.0 mg/L (Fig. 9B). Additionally, long-term 
high PFOA treatment contributed to increasing PPO activ-
ity in roots. PPO activity in roots increased significantly 
under both medium and high PFOS treatment after 7 days 
(Fig. 9C). After 21 days, it increased significantly under both 
medium and high PFOS treatments (Fig. 9D).

Fig. 4   MDA content for treatments of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)



26655Environmental Science and Pollution Research (2024) 31:26646–26664	

IBR of V. natans

After 7 days, there were higher response levels of antioxi-
dant enzymes and MDA in leaves of V. natans (Fig. 10A, B), 
while H2O2 and antioxidant enzymes in roots showed high 
levels of response at high concentrations (Fig. 10D, E). After 
21 days, roots had more pointing prominence compared to 
leaves, indicating that more biomarkers were elicited in 
response, while CAT in leaves showed higher response lev-
els (Fig. 11A, B). H2O2, MDA, and antioxidant enzymes in 
roots showed higher response levels at high concentrations 
(Fig. 11D, E).

It showed that antioxidant enzymes in both leaves and 
roots of V. natans were strongly affected in the 10.0mg/L 
group under short and long term, with maximum IBR 
values (Figs.  10C, F and 11C, F). Compared to the 

low-concentration group and the control group, the high-
concentration group had higher IBR values under PFOS 
treatment. While under PFOA treatment, excitation was 
also induced at 0.01 mg/L in both short-term treatment of 
roots and long-term treatment of leaves, resulting in higher 
response levels. Meanwhile, the area in leaves was larger 
compared to the roots, which indicated higher IBR values, 
with the short-term being more obvious (Fig. 10C, F).

Discussion

Growth and morphology are the most direct responses of 
aquatic plants to the external environment. The overall 
RGR of V. natans under short- and long-term PFOA and 
PFOS treatments showed a gradual decrease but without any 

Fig. 5   H2O2 content for treatments of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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negative growth. The inhibitory effect of PFOA on V. natans 
showed a dose effect, it becoming stronger with increasing 
concentration. This phenomenon was also present in Triti-
cum aestivum, where PFOA inhibited its seed germination in 
a dose-dependent manner (Zhou et al. 2016). It has also been 
found that PFOS induced phytotoxic responses in Lemna 
gibba proceed in a dose-dependent manner (Boudreau et al. 
2003). As exposure time increased, maximum leaf length 
became shorter under high concentrations of PFOA and 
PFOS treatments, while root length did not, indicating that 
leaf growth may be impaired in V. natans. As treatment 
time became longer, the number of tillers was higher under 
high concentrations of PFOA and PFOS compared to the 
number of flowers, indicating that the high concentration 
would prompt V. natans to prefer asexual reproduction. V. 
natans selects for energy allocation and reproductive valence 

between sexual and nutritional reproduction. Under adverse 
circumstances, some species will actively choose a repro-
ductively valued, less energy-intensive form of nutritional 
reproduction (Shen and Hu 2006).

The photosynthetic pigment content can reflect the degree 
of pollutant stress on aquatic plants (Deng et al. 2014). 
No significant appearance of yellow-green chlorosis was 
observed under exposure in this experiment. Further results 
of photosynthetic pigments of V. natans under short-term 
and long-term PFOA and PFOS treatments indicated that 
leaves could respond to stress by increasing photosynthetic 
pigment content, thus promoting photosynthesis to avoid 
negative biomass growth of V. natans. While, short-term 
exposure to high concentrations of PFOA may inhibit the 
synthesis of photosynthetic pigments, resulting in lower 
levels than the control group. In general agreement with the 

Fig. 6   SOD for single treatment of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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findings in Arabidopsis thaliana, the inhibition of photo-
synthesis by PFOA was greater than that by PFOS (Zhang 
et al. 2022). Fan et al. (2020) found that down-regulation 
of HEMA1, an early chlorophyll synthase gene, and FD2, 
a gene involved in chlorophyll biosynthesis and photosyn-
thesis, may lead to a decrease in chlorophyll synthesis and 
ultimately affect photosynthesis. As for PFOS, an ecotoxic-
ity study on the submerged plant Ceratophyllum demersum 
showed its photosynthetic pigment content was significantly 
higher at 10-mg/L PFOS treatment after 6 days, which is 
consistent with the present results. While the pigment con-
tent in Ceratophyllum demersum remained at a minimum 
when the concentration was reaching 100 mg/L, indicating 
that PFOS may also have an inhibitory effect on pigment 
synthesis in aquatic plants.

When aquatic plants are subjected to PFOA and PFOS 
stress, reactive oxygen species are continuously produced 
and accumulated in the body, triggering the antioxidant 
enzyme system and osmoregulatory system of the plant 
to regulate the stress damage caused by reactive oxygen 
radicals, thus alleviating the effects and damage (Fan et al. 
2022). It was found that aquatic plants showed similar or 
even higher enrichment levels of PFOA and PFOS than ani-
mals in the same area (Shi et al. 2012; Du et al. 2021). As 
the time of exposure increased, the H2O2 content in the cell 
of both Acorus calamus and Phragmites communis increased 
significantly at high concentrations of 10- and 50-mg/L 
PFOS (Qian et al. 2019).

H2O2 is one of the main reactive oxygen species in 
aquatic plant bodies in response to external abiotic stresses 

Fig. 7   CAT for single treatment of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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and can permeate across membranes in cells thereby causing 
oxidative damage. The membrane lipid peroxidation product 
MDA is commonly used to reflect the degree of oxidation 
following cell damage and is an important indicator of plant 
stress and damage (Lee et al. 2020). In previous studies, 
PFOA and PFOS were found to induce H2O2 production 
(Yang et al. 2015; Li et al. 2021), and in this experiment, V. 
natans caused different H2O2 accumulation at different treat-
ment times and different biomarkers responded differently 
to same toxicant. Short-term high concentrations of PFOA 
and PFOS caused an accumulation of H2O2 in the leaves of 
V. natans, which led to an increase in MDA content due to 
lipid peroxidation. After prolonged exposure, the leaves no 
longer accumulated H2O2 and the MDA content decreased, 
but there was still an increase of MDA content under high 
PFOS treatment. Only high concentrations of PFOA caused 
the accumulation of H2O2 in V. natans roots, but did not 

result in an increase in MDA content. The results above 
indicate that leaves are more sensitive to high short-term 
PFOS concentrations, while roots are more sensitive to high 
PFOA concentrations. Oxidative damage caused by PFOA 
and PFOS stress occurred mainly in leaves, and both leaves 
and roots gradually built up tolerance with increasing expo-
sure time. No serious membrane damage was caused to V. 
natans under both short-term and long-term toxic exposures.

SOD, CAT, POD, and PPO are considered as key 
enzymes in the antioxidant enzyme system to resist per-
oxidation reactions, and their activities directly affect the 
production and elimination of reactive oxygen species. 
Highly active antioxidant enzymes are beneficial to improve 
the tolerance of aquatic plants to various PFOA and PFOS 
stresses (Kong et al. 2015; Hua et al. 2022). Under short-
term exposure, SOD, CAT, and PPO together resisted stress 
induced by reactive oxygen species in roots and leaves, with 

Fig. 8   POD for single treatment of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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a common trend for CAT and SOD in leaves. In contrast, the 
induction of SOD activity and the inhibition of CAT activity 
usually occurred together under long-term exposure, indicat-
ing that CAT and SOD are the main protective enzymes of 
V. natans. POD act as a detoxification enzyme in the second 
phase of antioxidant defense system and was also involved 
in the elimination of H2O2 (Hua et al. 2022). As exposure 
time increased, POD joined in response to high stress con-
centrations. Changes in enzyme activity are influenced by a 
combination of toxic excitatory effects, antioxidant defense, 
and destruction of enzyme proteins at high concentrations. 
In order to adapt to the stress of PFOA and PFOS, V. natans 
integrally regulates multiple protective enzymes to form the 
defense function of the whole antioxidant enzyme system, 
maintaining the dynamic balance in the body to cope with 
the adverse environment and achieve the protective effect, 

while, the rate and duration of response of different protec-
tive enzymes to different stresses varies.

V. natans can also maintain its osmotic potential in 
response to adverse environment and achieve protective 
effects by accumulating solutes to form a long-lasting pro-
tective function of the osmoregulatory system. Similarly, the 
rate and duration of response of osmoregulatory substance 
accumulation to different concentrations of PFOA and PFOS 
differed. Leaves of V. natans mainly relying on the accu-
mulation of soluble sugars and soluble proteins in response 
to short-term medium and high concentrations of PFOA 
and PFOS, and roots mainly relying on the accumulation 
of soluble sugars in response to long-term and short-term 
high concentrations of PFOA stress. In previous studies, the 
soluble protein content of V. natans leaves increased signifi-
cantly under eutrophic water and 0.2-μg/L chloramphenicol 

Fig. 9   PPO for single treatment of PFOA and PFOS to V. natans after exposure for 7 (a, c) and 21 days (b, d)
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Fig. 10   IBR of single treatments of PFOA and PFOS to leaves (a, c, e) and roots (b, d, f) of V. natans after exposure for 7 days
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Fig. 11   IBR of single treatments of PFOA and PFOS to leaves (a, c, e) and roots (b, d, f) of V. natans after exposure for 21 days
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stress (Hu et al. 2015), while the soluble sugar content of 
V. natans roots increased significantly under 1-mg/L BPA 
stress (Han et al. 2023). This is an adaptation strategy for V. 
natans to activate its osmoregulatory system to cope with 
external water pollution and maintain its survival.

Biomarkers such as soluble protein, SOD, CAT, POD, 
PPO, and MDA in leaves and roots of V. natans did not 
respond consistently to PFOA and PFOS exposure, and the 
ecotoxic effects could not be evaluated comprehensively 
using single indicator. IBR can visualize the ecotoxicologi-
cal effects of V. natans at different exposure concentrations 
at different treatment times through quantitative values, thus 
effectively comparing their differences (Qian et al. 2019). 
The results indicated that the trend of IBR values for the 
short-term treatment of V. natans leaves showed a significant 
dose effect as well as tissue specificity: the response level 
of leaves increased with increasing treatment concentration 
and the IBR values of PFOS were greater than PFOA, and 
the IBR values of leaves were higher than roots at the same 
experimental concentrations. IBR values of roots showed 
no serious ecotoxic effects in short term, probably due to 
the large variation in the sensitivity of different biomarkers 
in roots to environmental stress, resulting in no correlation 
between IBR values and stress concentrations. It can also be 
further speculated that a compensatory mechanism exists 
between V. natans organism tissues, with transpiration pro-
viding some protection to root cells from greater oxidative 
damage, while the larger leaf-water exposure surface area 
allows for a higher response to PFOA and PFOS exposure. 
In contrast, as exposure time increased, the IBR values of 
both leaves and roots increased at medium and high concen-
trations after 21 days, reflecting the sensitivity of V. natans 
to external stimuli producing defense stress within a certain 
concentration range. Both leaves and roots showed maxi-
mum values of IBR at 10.0 mg/L PFOA and PFOS, indicat-
ing that long-term high concentrations of PFOA and PFOS 
treatment caused significant ecotoxic effects.

This result not only validates the difference in response of 
V. natans to PFOA and PFOS, but also quantifies the differ-
ence between leaves and roots, indicating that IBR can be a 
useful tool for quantitatively evaluating the ecotoxic effects 
of PFOA and PFOS.

Conclusions

This study comprehensively assessed the growth and physi-
ological response of V. natans under short-term (7 days) and 
long-term (21 days) exposure to different concentrations of 
PFOA and PFOS, and the main findings are as follows: (1) 
both short-term and long-term high concentrations of PFOA 
and PFOS inhibit the relative growth rate of V. natans, with 
long-term inhibition becoming stronger but not causing 

negative biomass growth. (2) Most treatments can cause an 
increase in photosynthetic pigment content in leaves of V. 
natans. (3) In terms of oxidation, leaves were more sensi-
tive to short-term high PFOS concentrations, while roots 
were more sensitive to high PFOA concentrations. Oxidative 
damage caused by PFOA and PFOS stress occurred mainly 
in leaves, both leaves and roots gradually built up tolerance 
with increasing exposure time during long-term oxidative 
stress, and no serious membrane damage was caused to V. 
natans under both short-term and long-term toxic exposures. 
(4) Leaves and roots mainly activate SOD, CAT and PPO 
in response to the accumulation of reactive oxygen spe-
cies from short-term stress, while increasing exposure time 
activates POD in response to long-term high stress. With 
increasing exposure time, CAT and PPO activities were 
inhibited in leaves under both medium and high concentra-
tion treatments, while SOD activity was inhibited in roots. 
(5) The IBR values showed that under short-term exposure, 
leaves of V. natans were more sensitive than roots and more 
sensitive to PFOS than PFOA, while under long-term expo-
sure at low and medium concentrations (< 5.0 mg/L), the 
IBR values indicated that the antioxidant system of V. natans 
was in balance and only displayed a significant ecotoxic 
effect at high concentrations of 10.0 mg/L. The IBR values 
of leaves under both short-term PFOA and PFOS exposures 
were dose-effective and suitable as indicators for short-term 
water pollution by PFCs.
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