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Abstract
Globally, more than 2 billion tonnes of municipal solid waste (MSW) are generated each year, with that amount anticipated 
to reach around 3.5 billion tonnes by 2050. On a worldwide scale, food and green waste contribute the major proportion of 
MSW, which accounts for 44% of global waste, followed by recycling waste (38%), which includes plastic, glass, cardboard, 
and paper, and 18% of other materials. Population growth, urbanization, and industrial expansion are the principal drivers 
of the ever-increasing production of MSW across the world. Among the different practices employed for the management of 
waste, landfill disposal has been the most popular and easiest method across the world. Waste management practices differ 
significantly depending on the income level. In high-income nations, only 2% of waste is dumped, whereas in low-income 
nations, approximately 93% of waste is burned or dumped. However, the unscientific disposal of waste in landfills causes 
the generation of gases, heat, and leachate and results in a variety of ecotoxicological problems, including global warming, 
water pollution, fire hazards, and health effects that are hazardous to both the environment and public health. Therefore, 
sustainable management of MSW and landfill leachate is critical, necessitating the use of more advanced techniques to lessen 
waste production and maximize recycling to assure environmental sustainability. The present review provides an updated 
overview of the global perspective of municipal waste generation, composition, landfill heat and leachate formation, and 
ecotoxicological effects, and also discusses integrated-waste management approaches for the sustainable management of 
municipal waste and landfill leachate.
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Introduction

The worldwide generation of municipal solid waste 
(MSW) is rapidly mounting due to industrial development 
and rising living and economic standards (Peng et al. 
2023; Khan et al. 2022). Every year, nearly 2.1 billion 
tonnes of MSW are produced globally, of which 33 per-
cent is improperly managed (Lino et al. 2023). Recently, it 
has been reported that MSW production is likely to mount 
to 3.4 billion tonnes by the year 2050 (Statista 2023; Kaza 
et al. 2018). The top three producers of MSW are the 
USA, China, and India (Statista 2023; United Nations 
2019). In recent years, rapid urbanization, particularly in 
developing nations, has also drastically amplified MSW 
generation (Peng et al. 2023; Harris-Lovett et al. 2018). 
Around 54 percent of the population of the globe is esti-
mated to reside in cities, with that number likely to climb 
to 68 percent by 2050 (UN DESA 2018). MSW generation 
per capita has also increased dramatically as the lifestyles 
and social/economic status of people living in metropoli-
tan areas have improved (Gour and Singh 2023; Sharholy 
et al. 2007). Augmented use of commodities and services 
also results in the massive production of MSW (Toro and 
Morales 2018). The municipal waste (MW) constituents 
vary depending on income, as people with low and mid-
dle income produce mostly organic trash, while people 
with high income generate more metals, glassware, and 
wastepaper (Kumar and Samadder 2017). Throughout the 
globe, MSW generation has a wide range of environmen-
tal consequences, including GHG emissions, plastic, and 
water pollution (Vinti et al. 2023; Chen et al. 2020).

Management of MSW comprises recycling, incinera-
tion, conversion to energy, landfilling, and composting 
(Waqas et  al. 2023; Khan et  al. 2022; Nandhini et  al. 
2022). However, because of its low cost and minimal 
technical requirements, landfilling is one of the most fre-
quently employed techniques for disposing of MSW (Man-
junatha et al. 2023). For example, in the USA, approxi-
mately 52.6 percent of MSW is discarded in landfills (Sun 
et al. 2019), 59.1 percent in Brazil (Costa et al. 2019), 
85 percent in the kingdom of Saudi Arabia (Ouda et al. 
2016), 94.5 percent in Malaysia (Tan et al. 2014), and 79 
percent in China (Havukainen et al. 2017). However, land-
filling has significant societal, health, and environmental 
issues (Mor and Ravindra 2023; Naddeo et al. 2018). In 
landfills, MSW undergoes physicochemical and biologi-
cal interactions, liberating elements, gases, and nutrients 
(Zornoza et al. 2016; Regadío et al. 2015). The organic 
fraction of waste also attracts different pathogens, espe-
cially bacteria and viruses, which can cause significant or 
long-term diseases in living beings (Han et al. 2022; Van 
Fan et al. 2018). A significant amount of leachate, heat, 

and landfill gases such as CO2 and CH4 are generated dur-
ing the waste decomposition process (Chavan et al. 2019). 
The heat generation may persist even after the dumping 
ground is closed (Chavan and Kumar 2018). In underde-
veloped nations, the risk of landfill fires is great since most 
landfills are non-engineered (Chavan et al. 2019).

Landfill leachate is believed to be one of the serious eco-
logical concerns linked to MSW (Mor and Ravindra 2023). 
The leachate amount and quality are both largely determined 
by the volume, moisture content, and components of solid 
waste (SW), as well as climatic and hydrogeological con-
ditions (Kamaruddin et al. 2017; Adhikari et al. 2014). It 
mainly contains inorganic salts, organic compounds, heavy 
metals (HMs), and other contaminants (Abdel-Shafy et al. 
2023; Shen et al. 2018) and has a strong potential to affect 
the environment and public health (Ambujan and Thalla 
2023). The landfill leachate can also make its way into water 
resources, leading to water pollution (Samadder et al. 2017). 
Landfill leachate is harmful both in the short and long term 
and is considered dangerous as its infiltration into under-
ground water can lead to biological magnification (Mishra 
et al. 2019).

Thus, in order to ensure sustainable waste management 
and safeguard human health, the transition from traditional 
waste dumping methods to advanced technology is a key 
requirement. These advanced thermochemical and biological 
techniques include incineration, pyrolysis, liquefaction, gasi-
fication, anaerobic digestion, and composting, which will not 
only help to reduce waste volume, generate clean energy, and 
produce stable organic fertilizer (Waqas et al. 2023; Singh 
et al. 2020; Shah et al. 2019), but will also provide numerous 
job opportunities to unemployed youth (Sharif et al. 2018). 
Furthermore, global interest in diverting MSW for recycling 
and the production of energy is considerably preferable to 
landfilling owing to fewer environmental implications, 
including lesser emission of greenhouse gases, decreased 
pollution, and high energy recovery potential. This article 
discusses the global perspective of MSW, landfill leachate, 
their related impacts, and sustainable waste management 
approaches that can assist MSW management authorities 
and researchers in developing more effective strategies.

Municipal solid waste generation 
and composition: a global perspective

Waste generation

MSW is a diverse range of waste often generated daily in 
different social sectors such as homes, agriculture, commercial 
units, hospitals, municipal collection, and treatment plants 
(Bhat et al. 2018). Households are the major MSW-generating 
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sources, contributing 44–75% of the entire waste produced 
(Qonitan et al. 2021). Fereja and Chemeda (2022) recently 
reported that an average of 0.475 kg of garbage is produced 
by residential homes per inhabitant per day. However, the rate 
of MSW generation increases during the holidays and summer 
(Rafiee et al. 2018). The global production of MSW per year 
is more than two billion tonnes (Kaza et al. 2018), with the 
USA, China, India, Brazil, and Indonesia being the biggest 
producers of waste globally (Fig. 1) (UN 2019). Worldwide, 
the mean amount of waste generated person−1 day−1 is 0.74 kg 
(Kaza et al. 2018). However, the rate of MSW generation per 
capita per day is higher in developed countries compared to 
developing countries like Brazil, China, and India (Fig. 2) 
(Statista 2022).

Generally, there is a direct relationship between waste 
production and income level (Kumar and Agrawal 2020). 
Despite having only 16% of the world’s population, 
high-income nations produce 34% of the world’s waste. 
Low-income nations have 9% of the global population 

but produce only around 5% of the global waste (Kaza 
et al. 2018). Taking about region-wise waste generation, 
presently, the East Asia and Pacific region produces 
the majority of the world’s waste (23%), Sub-Saharan 
Africa (9%), and the Middle East and North Africa 
region produces the least amount (6%). However, by 
2050, global waste production is projected to hit around 
3.5 billion tonnes per year (Statista 2023; Kaza et  al. 
2018) (Fig.  3), with Sub-Saharan Africa and South 
Asia producing 15% (516 million tonnes) and 19% (661 
million tonnes) of global waste, respectively. While 
North America is anticipated to produce approximately 
12% (396 million tonnes), and the Middle East and North 
Africa will produce the least around 8% (Kaza et al. 2018) 
(Fig. 4). Thus, in the next few decades, regions with a high 
proportion of growing low- and middle-income nations, 
such as South Asia and Sub-Saharan Africa, are likely to 
experience a greater rate of waste generation than regions 
like Europe and North America.

Fig. 1   Top 10 municipal solid 
waste (United Nations 2019)

Fig. 2   Per capita generation of 
solid waste (Statista 2022)
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Municipal solid waste composition

Waste composition is the categorization of the types of mate-
rials in MSW. MSW consists of different physical compo-
nents, including paper, wood, plastic, cans, yard trimmings, 
glass, rubber, metal, fruit waste, batteries, paints, and phar-
maceutical products (Kumar and Samadder 2023; Nandhini 
et al. 2022). On a global scale, food and green waste make up 
the majority of MSW (44% of the global waste), followed by 
recycling waste (38%), which includes plastic, glass, card-
board, metal, and paper, and 18% of miscellaneous materials 
(Fig. 5) (Zhu et al. 2021; Kaza et al. 2018). The composi-
tion of waste varies with income level, indicating different 
consumption habits. High-income nations produce more dry 
waste that can be recycled and comparatively less food and 
green waste, while low-income nations produce more food 
and green waste and less waste that could be recycled (He 
et al. 2022; Kumar and Samadder 2017). Across the globe, 
on average, all regions produce at least 50% or more organic 
waste, with the exception of Europe, Central Asia, and North 

America, which produce more dry waste (Abylkhani et al. 
2021; Kumar and Agrawal 2020). The typical composition 
of MSW generated in different countries around the globe 
is presented in Table 1.

Landfill heat generation: mechanism 
and factors involved

The primary by-product of the landfilling of MSW is heat 
(Akhtar et al. 2023). Long-term high temperatures have been 
documented in MSW dumps across the world under vari-
ous operational settings and climate locations (Yeşiller et al. 
2016). The temperature elevation in MSW landfills is linked 
to a slew of problems, including concerns related to func-
tioning and regulation, in addition to the destruction to land-
fill gas and leachate collecting facilities (Jafari et al. 2017; 
Luettich Scott and Yafrate 2016). During the gas collection 
and control activities, the atmospheric air frequently influxes 
into landfills, which results in the anaerobic decomposition 

Fig. 3   By 2025, around 3.5 bil-
lion tonnes of global waste will 
be generated
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of landfilled trash and generates increased temperatures (Shi 
et al. 2021; Kumar et al. 2020). Organic wastes, on the other 
hand, decompose aerobically, transiently, and anaerobically 
in landfills. The maximum temperature output occurs during 
the beginning of anaerobic degradation; however, all three 
phases contribute to heat creation (Khire et al. 2020). The 
entry of oxygen into landfills initiates exothermic decompo-
sition in landfills through a number of other actions, includ-
ing suboptimal soil cover, rapid settlement, passive venting, 
and sewer systems, all of which enable the supply of oxygen 
to the waste. Several other mechanisms have been reported 
to produce landfill heat, such as hydration of ash (Hao et al. 
2017; Jafari et al. 2014), along with metal corrosion (Calder 
and Stark 2010), pyrolysis (Benson 2017), and spontaneous 
combustion (Gray 2016). The highest temperatures at MSW 
dumps are typically not more than 55 °C, and the heat pro-
duced by biotic reactions is equilibrated by releasing it into 
the surroundings (Hanson et al. 2013, 2010).

Factors affecting heat generation in landfills

Landfills produce heat as a result of the biological break-
down of MSW. Most MSW dumps have average tempera-
tures of ≤ 55 °C; however, a small percentage of landfills 
have seen extreme temperatures of ≥ 93 °C. At tempera-
tures ≥ 93 °C, difficult conditions like excessive settlements, 
differential settlement, and heat softening have caused infra-
structure damage to gas wells and leachate collection sys-
tem pipe-work and variations in leachate and gas quality. 
The potential contributors to the development of elevated 
temperatures (ETs) are (i) daily oxygen influx into the land-
fills due to inadequate construction and operation of LFG 
wells (Martin et al. 2013), (ii) high moisture content of 
organic waste which promotes faster biological reactions 
(Tupsakhare et al. 2020), (iii) reduced convective cooling 
from infiltration as a result of restricted vertical infiltration 

through the waste (Yeşiller et al. 2016), (iv) induction of 
exothermic aerobic reactions due to slumping or slope fail-
ures causing oxygen entry in the landfills (Yeşiller et al. 
2016), (v) pyrolysis and high temperature combustion (Jafari 
et al. 2017), (vi) heat production related to climate change 
in landfills, and (vii) long-term deactivation of gas wells 
in landfills (Joslyn 2019). Some of the important factors 
responsible for heat generation in landfills are the following:

Landfill depth

The bulk of waste placed near the cover is impacted by 
seasonal fluctuations in temperature, followed by an 
escalating lag phase with augmented depth (Xiao et al. 2022). 
Van Elk et al. (2014) discovered that waste temperature rose 
with depth in terms of temperature distribution. According 
to the observations of Zhang et al. (2022) and Reinhart 
et al. (2017), the highest temperature was recorded in the 
center of the landfill. However, Zhang et al. (2019a) reported 
a maximum temperature around the level of leachate in a 
freshly filled waste layer.

The age of waste

Numerous studies have found the influence of waste age on 
heat production (Khire et al. 2020; Hanson et al. 2005). With 
time, the temperature varies, and it has been observed that 
the temperature of the garbage increases rapidly during the 
early phases of landfilling (Nocko et al. 2019). Hanson et al. 
(2013) documented a higher heat production rate in MSW 
landfills in the initial stages that reduces as the waste ages 
in landfills. Similarly, Yoshida and Rowe (2003) reported 
that the temperature of the waste began to drop after around 
10 years. According to Yeşiller et al. (2015), the placement 
of new waste piles on top of older stock usually results in an 
upward movement of the maximum temperature.

Fig. 5   Food and green waste 
account for the highest percent-
age of municipal solid waste, 
followed by materials that can 
be recycled like paper and card-
board, plastic, glass, and metal
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Waste placement conditions

The amount of heat in landfill waste is influenced by waste 
disposal conditions, and waste that is dumped slowly gener-
ates more heat over time (Yeşiller et al. 2005). The initial 
waste temperature and waste placement rates are among 
these conditions, and there is a substantial positive associa-
tion between the original waste temperature and heat con-
tent. It was observed that waste landfilled during warmer 
seasons reached higher maximum temperatures than waste 
landfilled during cooler seasons (Kumar and Reddy 2021). 
Moreau et al. (2019) reported that waste temperature in the 
landfill grew dramatically throughout the period of waste 
disposal while being reduced when the landfill was closed.

Climatic conditions

Climate drastically contributes to landfill heat production 
(Chavan et al. 2022). The climatic conditions significantly 
influence the temperature and amount of heat in the landfills 
located in different regions (Yeşiller et al. 2005). Tempera-
ture variations in landfills are caused by seasonal climatic 
changes that alter microbial dynamics, cause bioprocess 
regression, and decrease waste decomposition efficiency. 
With increased precipitation, the heat content increases 
and reaches its maximum at a specific rate of precipitation. 
Even if the waste is not frozen at the time of placement, 
waste material landfilled during the warmest months of the 
year may attain higher maximum temperatures than waste 
material landfilled during the cooler months (Yeşiller et al. 
2015). This also means that waste dumped in warmer cli-
mates achieves higher temperatures on average than waste 
dumped in cooler climates.

Role of indigenous microbes

The majority of bacteria that cause the degradation of land-
fill waste are mesophilic in nature (Fei et al. 2015), with 
the exception of methanogens, which are thermophilic 
(Hao et al. 2017). Similarly, in temperate climatic condi-
tions, landfills harbor cold-active microbes, which actively 
participate in landfill waste decomposition at the upper cell 
surface. The microbial activities lead to increased temper-
atures and create thermal zones at the deeper and central 
landfill layers. Organic waste decomposition by microbes 
significantly contributes heat to elevated-temperature land-
fills (ETLFs) (Yeşiller et al. 2005). The breakdown of waste 
anaerobically is likewise not likely to produce extreme heat 
in ETLFs since methanogenesis discharges little exergonic 
heat in comparison to anaerobic metal corrosion and ash 
hydration and carbonation (Hao et al. 2017). The process of 
methanogenic decomposition is exothermic, leading to high 
temperatures inside the landfill (Grillo 2014).

Landfill leachate: generation 
and composition

The most common way of disposing MSW is landfilling. 
Leachate is the most toxic by-product of municipal waste 
decomposition (Abdel-Shafy et al. 2023). Generation of 
landfill leachate occurs as a result of rainfall percolation 
or groundwater infiltration into the landfill, which causes 
various biological and chemical reactions within the landfill 
(Podlasek et al. 2023; Wijekoonet al. 2022). Landfill lea-
chate consists of various physicochemical contaminants, 
such as organic compounds, inorganic compounds, ammo-
nia, xenobiotics, HMs, and biological organisms (Abdel-
Shafy et al. 2023; Mojiri et al. 2016). The physicochemical 
characteristics of landfill leachate from different landfills 
are demonstrated in Table 2. The leachate quantification 
method becomes more challenging and complex when these 
elements change over time and space (Grugnaletti et al. 
2016). The leachate constitution differs based on the type, 
composition, generation rate, and moisture of waste, as well 
as landfill age, hydrology, weather conditions, and landfill 
design parameters (Moustafa et al. 2023; Mojiri et al. 2021; 
Costa et al. 2019).

Landfills and ecotoxicological effects

The major concern regarding improper management of 
MSW and landfilling is the generation of gases, heat, and 
leachate that can lead to water pollution, fire explosions, 
global warming, air pollution, and other human health haz-
ards. Some of the important ecotoxicological issues related 
to these are discussed in the following subsections:

Landfills and water pollution

Water pollution has been a worldwide issue, posing con-
stant and significant danger to the surrounding nature 
and wellbeing of human beings (Bhowmick et al. 2018). 
Landfill leachate, containing a broad array of toxic and 
hazardous substances, has emerged as a key anthropogenic 
cause of water pollution (Dhamsaniya et al. 2023; Negi 
et al. 2020). Most landfills, particularly in underdeveloped 
nations, are built without designed liners and suitable lea-
chate collecting systems (Alam et al. 2020), which lead 
to surface and groundwater pollution (Dhamsaniya et al. 
2023; Mangimbulude et al. 2009). Once groundwater gets 
contaminated, pollutants persist, and it becomes challeng-
ing to remediate because of poor access, extended life, and 
huge volume (Wang et al. 2012). Mainly, groundwater pol-
lution occurs within a 1-km radius of a landfill site, with 
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most of the stern pollution of the groundwater occurring 
within a 200-m radius (Han et al. 2016). Water pollution 
is far more common in regions around landfills, owing to 
the existence of leachate as a possible source of pollution.

In recent years, many leachate-based water pollution 
cases have been documented, particularly in poor nations. 
Mishra et  al. (2019) investigated groundwater quality 
near Ramna landfill in Varanasi City (India) and found 
that the groundwater quality was steadily deteriorating 
owing to landfill leachate leaching. They further found 
that the water was unsafe to consume since the major-
ity of the physicochemical characteristics exceeded the 
WHO and BIS permitted limits for drinking water stand-
ards. Nagarajan et al. (2012) also found greater amounts 
of chorine, nitrate, sulfate, and ammonia in groundwater 
samples near landfills, suggesting that leachate percola-
tion is affecting groundwater quality. Ammonia-N is a key 
contaminant in leachate because it may stay in water bod-
ies, posing a menace to humans and aquatic organisms 
(Yenigün and Demirel 2013). Several studies have found 
significant concentrations of ammonia-N in landfill sites 
(Jahan et al. 2016), which, if not handled appropriately, 
may cause major consequences on water quality (Parvin 
and Tareq 2021). Negi et al. (2020) also found greater 
levels of ammoniacal nitrogen in water samples taken at a 
low depth and distance from the landfill.

The occurrence of HMs is one of the gravest contami-
nants in leachate, which causes a serious risk to the well-
being of humans (Parvin and Tareq 2021). In many parts 
of the globe, leachate samples taken from landfill sites 
are enriched in HMs, causing a rise in the concentration 
of HMs in groundwater (Alam et al. 2020; Hossain et al. 
2018). Murtaza and Sabihakhurram (2018) reported that 
HM concentrations in groundwater such as Cd, Cu, As, 
and Pb were greater compared to the allowable limit. In 
a recent study conducted in Ghana, Amano et al. (2021) 
studied various physico-chemical parameters and concen-
trations of HMs in surface waters and underground water 
close to landfill site and reported that the HM pollution 
index (HPI) shows that the water sources were beyond 
the safe drinking water threshold. They further revealed 
that Cd concentrations in surface waters and underground 
water in the vicinity of the landfill site were much higher 
than the WHO standard, deeming them unfit for consump-
tion. The literature findings also evidenced the enhanced 
levels of other HMs, for instance, Pb, Fe, Cr, and Cu, 
which may add to the risk of toxicity at landfill sites (Ola-
gunju et al. 2020; Vongdala et al. 2019). Other pollutants, 
such as chloride, calcium, bromine, phosphate, and nitrate, 
have been found in high amounts in ground and surface 
water sources, perhaps owing to their closeness to landfill 
sites, rendering the water unsafe for human consumption 
(Amano et al. 2021; Negi et al. 2020).

Landfills and human health effects

Health effects by heavy metals and other pollutants

Landfill leachate is a major problem because of its intricate 
blend of contaminants, including HMs, dissoluble inorganic 
and organic chemicals, suspended particulates, and nutrients 
such as nitrates and phosphates (Beinabaj et al. 2023; Negi 
et al. 2020). Some of these contaminants, especially HMs, 
can make their way into the food chains and influence human 
health (Fig. 6) (Iravanian and Ravari 2020). The main HMs 
present in leachate are Cd, Cr, Hg, Cu, Zn, Pb, and As (Chu 
et al. 2019), and the potential contributors of these HMs are 
batteries, plastic, lead-based paints, and electronic wastes 
dumped into landfills (Boateng et al. 2019; Han et al. 2014). 
The primary routes of human exposure to hazardous met-
als have been identified as drinking water and inhaling soil 
particles (Zhu et al. 2011).

Underground water contaminated with leachate causes 
environmental concerns such as water blooms and soil salin-
ization, in addition to inducing a variety of aquagenic ail-
ments if consumed or bathed in. For example, long-term use 
of groundwater contaminated with heavy metals increases 
cancer risk and infant mortality and also causes motor and 
cognitive problems in kids (Parvez et al. 2011; Rahman et al. 
2010). Other HMs, for instance, Cr, Cd, Hg, and Cr, are 
also effective toxins, and their high concentrations can cause 
respiratory issues, skin cancer, and damage liver, renal, neu-
rological, and immunological systems (Mohammadi et al. 
2020; Godwill et al. 2019). Nagarajan et al. (2012) observed 
elevated levels of other pollutants like chlorine, total dis-
solved solids, nitrate, and fluoride in groundwater near the 
Vendipalayam landfill. Phosphate and nitrate provide nutri-
tion to microorganisms, but their high levels degrade the 
quality of drinking water and make it unsafe for consump-
tion (Wang et al. 2018a, 2016a). Excess nitrogen in the blood 
causes methemoglobinemia-like conditions in cells by low-
ering hemoglobin’s oxygen-binding ability (Sadeq et al. 
2008). Furthermore, nitrate is common in MSW landfills, 
and this compound has been linked to unexpected miscar-
riage and an augmented danger of non-Hodgkin’s lymphoma 
(Martínez et al. 2017; Gurdak and Qi 2012).

Health effects by pathogens

Contamination of groundwater with dangerous microbes 
as a result of leachate leakage poses a serious hazard to 
human health and has become a global environmental 
issue (Xiang et al. 2019). Various studies have revealed 
that Escherichia coli concentrations in landfill leachate are 
high (Umar et al. 2011) and contain pathogenic genes (Shi 
et al. 2018). As a result, numerous studies have revealed 
the degree of contamination of underground water with E. 
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coli from leachate and unprocessed wastewater. Moreo-
ver, the presence of coliform bacteria in drinking water 
has been substantially linked with diarrhea (Aziz et al. 
2013). Diarrhea has been linked to around 1.5 million 
infant fatalities annually, according to estimates (Fenwick 
2006). Poor hygienic measures and drinking contaminated 
water are responsible for 90% of global diarrheal disease 
(UNICEF 2012).

Furthermore, microbially polluted groundwater is the 
source of many outbreaks of aquagenic diseases. Xiang 
et al. (2019) observed that different disorders of the human 
digestive tract occur due to pathogenic E. coli owing to the 
presence of particular genes of pathogenicity and factors of 
colonization and virulence. The leachate combined with the 
unrestricted aquifers generates plumes, which may stretch to 
hundreds of meters and influence the aquifer’s hydrogeologi-
cal system (Mor et al. 2016). Maiti et al. (2016) performed 
research at the Dhapa landfill site (Kolkata) to determine 
the influence of the leachate plume on health and reported 
many health-linked problems, including diarrhea, nausea, 
stomach discomfort, and other liver and intestine-related 
health issues, among the populace living close to the men-
tioned landfill site. Negi et al. (2020) recently conducted a 
microbiological examination of water samples and found 
that more than 40 and 52% of the samples were poor and 
unsafe for drinking during the pre- and post-monsoon peri-
ods, respectively. They also revealed that groundwater sam-
ples taken near the Mohali landfill (India) showed substan-
tial organic pollution, owing to open defecation surrounding 

the wet land, open drains, and landfill leachate, which caused 
pathologic contamination to infiltrate into the subsoil.

Landfills and fire hazards

On a global scale, landfill fires are a major environmental 
hazard (Obeid et al. 2020; Morales et al. 2018) that are most 
common during the summer months (Milošević et al. 2021). 
Because of the harmful chemical substances they produce, 
landfill fires present the main menace to environmental 
and human wellbeing (Aderemi and Otitoloju 2012). In 
underdeveloped nations, where landfills are non-engineered 
and frequently located near residential areas, the risk of a 
landfill fire is relatively high (Chavan et al. 2019). In most 
cases, large amounts of municipal garbage containing a 
range of combustible compounds that are placed in landfills 
represent a considerable danger of fire. The existence of 
CH4, which is emitted by waste decomposition, raises the 
risk level since methane is very combustible and explosive 
(Milošević et al. 2021). The biochemical activities occurring 
over-surface and within the landfill create a tremendous 
quantity of heat and gases (Chavan et al. 2019), and this 
buildup of heat causes fire hazards (Annepu 2012). The 
existence of SW, together with heat produced and O2 influx, 
all contribute to the formation of ingredients required for fire 
initiation (Moqbel et al. 2010). The inadequate dissipation 
of the heat produced raises the ignition temperature of SW 
constituents beyond the threshold, which causes fires in 
landfills (Morales et al. 2018).

Fig. 6   Landfill leachate, an 
important source of heavy 
metals, leads to water pollution, 
which in turn causes various 
health hazards in human beings 
upon exposure
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Landfill fires may endanger the surrounding area and 
public health by releasing hazardous chemicals into the 
air (Morales et al. 2018). It also has a larger influence on 
the landfill’s structure (Morales et al. 2018). Landfill fire 
emissions, due to their highly chronic and hazardous nature, 
frequently cause all-encompassing ecological and health 
catastrophes for down-wind residents (Mazzucco et  al. 
2020). Several studies have found that waste fire emissions 
cause persistent health problems, for instance, lung can-
cer (Wiwanitkit 2016), gestational issues (Mazzucco et al. 
2019), and abnormalities of the heart, lungs, and nervous 
system (Adetonaet al. 2020).

Landfills and atmospheric pollution

Nowadays, atmospheric pollution is a major issue in big cit-
ies, owing to the presence of significant levels of organic 
compounds in MW (Talaiekhozani et  al. 2018). Land-
fill gases like CH4, CO2, and volatile organic compounds 
(VOCs) are released by the anaerobic breakdown of organic 
wastes in landfills (Mor and Ravindra 2023; Nair et  al. 
2019b). VOCs are a type of air pollutants that may be unsafe 
to both the environment and human wellbeing (Lakhouit 
and Alsulami 2020). Benzene, toluene, ethyl-benzene, and 
xylene isomers (also known as BTEX) are some of the typi-
cal VOCs observed in landfill biogas (Lakhouit and Alsu-
lami 2020). VOCs are common pollutants that are emitted 
into the atmosphere from landfill sites as a result of the 
breakdown of organic stuff and recent domestic items such 
as cleaning agents, sterilizers, and personal care products 
that are found in dumped MW (Nair et al. 2019b). The high 
moisture and temperature provide an ideal environment for 
microbes to decompose the organic waste, thereby generat-
ing greater VOC quantities (Carriero et al. 2018). A signifi-
cant quantity of VOCs is also emitted into the atmosphere 
during fires in landfills and the burning of waste.

In most metropolitan areas, the negative effects of VOCs 
emitted into the atmosphere from landfill sites are a serious 
issue (Nair et al. 2019b). The biogas generated from landfill 
sites increases the risk of contracting cancer in workers and 
communities that live near dump sites (Lakhouit and Alsu-
lami 2020). VOCs produced from landfills can react photo-
chemically with hydroxyl radicals and nitrogen oxides in the 
troposphere to produce ozone, secondary organic aerosols 
(SOA), and photochemical smog, all of which can harm both 
human fitness and the quality of the air (Nair et al. 2019b; 
Kumar et al. 2017). Ground-level O3 adversely affects the 
health of people, plant development, and material longevity 
(Awang et al. 2016). SOA is made up of a large number of 
distinct fragments that are created from various precursors, 
and as a result, it may have a major impact on the area’s vis-
ibility, air quality, and temperature (Ziemann and Atkinson 
2012). SOA may deflect solar radiation and generate cloud 

condensation nuclei, causing the earth’s overall radiation 
budget to be disrupted (Schneidemesser et al. 2015). Fur-
thermore, many VOCs can trigger allergies and asthma, as 
well as have a deleterious impact on lung function (Cakmak 
et al. 2014; Kim et al. 2013). Some VOCs are thought to 
be carcinogenic to landfill workers and the people who live 
nearby (Majumdar and Srivastava 2012). Residents living 
near landfills, as well as landfill workers, are in danger of 
breathing VOCs, which can cause acute or chronic sick-
ness (Lakhouit and Alsulami 2020). According to various 
studies, BTEX is a carcinogenic chemical renowned for its 
capacity to harm human health (Rafiee et al. 2019; Garg and 
Gupta 2019). Durmusoglu et al. (2010) conducted a cancer 
risk assessment for landfill workers in Italy based on BTEX 
emissions and found that 67.5 people per million are at risk 
of cancer, primarily owing to benzene exposure.

Landfills and global warming

Researchers in several countries have recently found that 
landfills are the most important cause of greenhouse gas 
(GHG) emissions (Ghosh et al. 2023; Zhang et al. 2019b). 
The principal GHGs emitted by landfill sites owing to the 
biodegradation of organic waste are CO2, CH4, and N2O 
(Milovanovic et al. 2021; Gollapalli and Kota 2018). These 
GHGs emitted from municipal organic waste contribute to 
worldwide temperature rise and climatic changes (Tominac 
et al. 2020). Other possible sources of GHG emissions from 
the waste management system include waste collection 
trucks, landfill machinery, and landfill fires (Milovanovic 
et al. 2021). As per the report by Kaza et al. (2018), the 
management of waste contributes roughly 5% of global GHG 
emissions. Singh et al. (2017) reported that landfills produce 
one third of total anthropogenic CH4, which is a significant 
contributor of GHGs to the atmosphere. CH4 is one of the 
most significant GHGs due to its enormous potential for 
global temperature rise, which is 28 times higher than that of 
carbon dioxide (Du et al. 2017). Gupta et al. (2022) recently 
revealed that landfills account for about 11% of the methane 
emitted worldwide. Increased GHG production leads to 
higher ambient temperatures, which leads to more rainfall, 
the melting of glaciers, changes in the hydrological system, 
and ocean acidification (IPCC 2014).

Landfills and odor pollution

Landfills are a source of odorous and hazardous substances 
(Mor and Ravindra 2023; Wu et al. 2018). The odor pollution 
brought on by MSW is a societal issue (Wu et al. 2017) and 
is one of the most important reasons for a growing number 
of complaints by residents living near landfills (Tansel 
and Inanloo 2019; Liu et  al. 2019). Landfill emissions 
may negatively affect people’s standard of living and the 
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environment around them (Naddeo et al. 2018). The released 
gases and odors are mostly caused by the biodegradation of 
organic waste (Abdul-Wahab et al. 2017). MSW generates a 
substantial quantity of odorants in the form of hydrocarbons, 
organic alcohols, sulfur compounds, NH3, and other VOCs 
(Sonibare et al. 2019). Several authors have reported that 
sulfur compounds like H2S, di-methyl disulfide, and ethyl 
sulfide are prominent odor sources in landfills (Yao et al. 
2019; Liu et al. 2018). Despite the fact that these offensive 
gases make up < 1% of overall emissions (Lim et al. 2018), 
the related environmental risk and discomfort for nearby 
inhabitants are major problems in landfill operation and 
development (Njoku et al. 2019; Liu et al. 2015).

The components of malodorous gases are affected by 
different variables, including landfill age and size, as well 
as environmental conditions like temperature, relative 
humidity, and atmospheric conditions (Wang et al. 2019; 
Yun et al. 2018a). High summer temperatures enhance odor 
emissions owing to an increase in the anaerobic activity of 
the microbes. Wu et al. (2018) recently observed that odor 
pollution was severe in the summer but significantly reduced 
in the winter. Tansel and Inanloo (2019) also discovered 
that the odor release potential during the winter months was 
lowered due to reduced biodecomposition rates at colder 
temperatures. Wind speed and direction might also play a 
role in changing odor concentration (Liu et al. 2019).

People living near landfills, especially in the downwind 
areas, are irritated by the foul odors from the landfills, 
lowering their standard of living and overall health (Potdar 
et  al. 2016; Che et  al. 2013). Long-term exposure to 
unpleasant scents might result in undesirable responses 
ranging from psychological to physical problems such as 
uneasiness, nausea, headache, and respiratory problems (Wu 
et al. 2015a; Palmiotto et al. 2014). In most situations, it is 
one of the most prevalent reasons for people to criticize the 
existing landfill sites and has also evolved into one of the 
biggest obstacles to the development of new landfill sites 
(Cai et al. 2015).

Municipal solid waste management: global 
perspective

Waste management is a critical service that necessitates 
planning, administration, and collaboration at all levels of 
government and stakeholders. The typical MSW manage-
ment service involves waste collection from houses and busi-
ness establishments, hauling it to a collection point, and then 
transporting it to a facility for ultimate disposal or treatment 
(Idumah and Nwuzor 2019). Globally, approximately 33% 
of waste is dumped openly, 37% is disposed of in landfills, 
19% undergoes material recovery through recycling and 
composting, and 11% is handled through incineration (Kaza 

et al. 2018) (Fig. 7). Waste management practices differ sig-
nificantly depending on the income level. In low-income 
nations where landfills are not yet available, open dumping 
and burning are common (Ferronato and Torretta 2019). In 
low-income nations, approximately 93% of waste is burned 
or dumped on highways, open fields, or water bodies, and 
only 3% of waste is recycled, whereas only 2% of waste is 
thrown in high-income nations, and around 29% is recycled 
and another 22% is incinerated (World Bank 2022; Kaza 
et al. 2018) (Fig. 8). Waste management becomes more sus-
tainable as countries grow economically, and the first move 
towards eco-friendly treatment of waste is the development 
and use of landfills (He et al. 2022).

Sustainable and integrated municipal solid 
waste management strategies

MSW management requires special attention in order to 
recover resources and reduce environmental impact. MSW 
is a heterogeneous resource with a huge potential for energy, 
nutrients, and material recovery; thus, different management 
techniques can be employed. The different treatment options 
(Fig.  9) available with different capacities for the safe 
handling and recycling of MSW are described below:

Physical and thermal treatment of municipal solid 
waste

Sanitary landfilling

Building safe landfills for waste that is non-reusable and 
non-recyclable is an essential aspect of the sustainable 
management of MW. Sanitary landfills are one of the 
most secure and extensively utilized ways of MW disposal 
(Hereher et al. 2020). In these modern landfills, MW is 
confined by a liner system. Liners and drainage layers provide 
complementary roles in preventing the uncontrolled release 
of pollutants into the environment (Azad et al. 2013; Bhuiyan 
and Molla 2013). The operating procedures implemented 
in sanitary landfills, including landfill lining and capping, 
waste segregation, leachate collection, and treatment, have 
been shown to decrease the release of pollutants into the 
environment. In comparison to open landfills, sanitary 
landfills are thought to be a more environmentally friendly 
way of disposing of final waste. The designs and capacities of 
sanitary landfills make it easy to dispose MSW with respect 
to pre-sorting, leachate treatment, and methane gas recovery 
(Weng and Chang 2001). The greenhouse gas emissions from 
sanitary landfills are considerably lower (8%) compared to 
open land filling (33%) of MSW (Sabour et  al. 2020). 
However, various studies have reported that the leachate 
generated from sanitary landfills contains pollutants like 
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HMs, endocrine disrupting substances, and other inorganic 
pollutants (Seibert et al. 2019; Adhikari and Khanal 2015). 
In addition, the locations of sanitary landfills are vulnerable 
to earthquakes, floods, and releases gases, HMs, and toxic 
leachates (Fernandes et al. 2015).

Pyrolysis

Pyrolysis is a viable and emerging MSW treatment 
technology (El Kourdi et al. 2023; Lu et al. 2020). It is a 
thermochemical process in which waste is broken down 

under anaerobic conditions at temperatures between 300 
and 650 °C (Barry et al. 2019; Kalogo 2012). During the 
process, the products obtained from the conversion of 
organic ingredients include a gaseous product (syngas), 
a liquid (biooil), and a solid product (biochar) (Li and 
Skelly 2023; Ghodke et  al. 2021). When compared to 
other thermochemical techniques, pyrolysis is a more eco-
friendly alternative (Elkhalifa et al. 2019) and has attracted 
more interest owing to improved economic performance, 
increased efficacy, and a higher volume decrease 
(Mphahlele et al. 2021; Ambaye et al. 2021). The product 
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quality and yield depend on waste composition, heating 
rate, residence duration, and pyrolysis temperature (Song 
et al. 2018; Lombardi et al. 2015). Djandja et al. (2020) 
reported that at elevated temperatures (over 600 °C), a 
substantial volume of syngas with higher proportions of 
carbon monoxide, hydrogen, methane, and carbon dioxide 
is produced from municipal sludge pyrolysis. Barry et al. 
(2019) revealed that when the pyrolysis temperature 
increases, the oil and gas yields also increase while the 
char yield decreases. The optimal temperature for rapid 
pyrolysis of MSWs is 510 °C with a maximum oil output 
of 67%, and part of this oil can be combusted back to 
meet the energy requirements of the pyrolysis procedure 
(Czajczyńska et al. 2017).

The key benefit of pyrolysis is that it is a low-cost 
technique that enables the reduction of environmental 
pollution, as both liquid oil and pyrolysis gases can be used 
as fuels based on their physicochemical characteristics 
(Ghodke et al. 2021), and biochar made from pyrolyzed 
waste can be used as organic manure in soils to improve 
water and nutrient retention (Elkhalifa et al. 2019; Ghodke 
et al. 2021). Furthermore, biochar can be treated further to 
produce other higher-value products like activated carbon 
(Elkhalifa et al. 2019). Thus, this technique of pyrolysis 
has received a lot of interest as a means to recover 
sustainable energy from biowastes because of its ability 
to transform waste into useful by-products (Gerasimov 
et al. 2019).

Incineration

Incineration is a valuable technique for managing the vast 
amount of MW and can be a potential alternative to land-
filling, considering that landfilling MW is both costly and 
harmful (Alderete et al. 2021). It is a method of converting 
combustible fractions of waste into oxide forms like H2O, 
CO2, SOx, and NOx while recovering thermal energy (Havu-
kainen et al. 2017). Incineration is capable of the overall 
destruction of a wide range of hazardous waste streams and 
is widely acknowledged as a technology for the direct recov-
ery of energy and converting wastes into a stabilized form. It 
is one of the most frequent waste-treatment methods, reduc-
ing the weight and quantity of waste by 70 and 90 percent, 
respectively (Clavier et al. 2020; Lombardi et al. 2015); 
concurrently, it generates heat and electricity as well (Singh 
et al. 2011). Energy recovery during incineration is com-
monly used as a whole or as a partial replacement for fossil 
fuels in cement and power plants (Lu et al. 2017). However, 
by increasing the percentage of O2 moles in the combustion 
air, oxy-combustion conditions are created, allowing for the 
recirculation of flue gas during incineration, resulting in a 
3% gain in energy efficiency across the board (Vilardi and 
Verdone 2022). An important and reasonable argument for 
the promotion of incineration is that it is a preferable treat-
ment to landfilling in densely populated areas. One of the 
primary benefits of the incineration of MSW is the eradi-
cation of all biological organisms and the mineralization 

Fig. 9   Different integrated 
techniques for the sustainable 
management of municipal solid 
waste
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of organic materials into safe by-products (Brunner and 
Rechberger 2015). For every tonne of MSW burned, a typi-
cal incinerator produces 544 kWh of energy and 180 kg of 
solid residue (Zaman 2010). In addition to volume reduction 
and power generation, incineration by-products (bottom and 
fly ash) can be utilized in constructing roads, manufactur-
ing cement, and the production of other materials as they 
are rich in elements like silicon, aluminum, and calcium 
(Marieta et al. 2021). This offers the dual benefit of lowering 
landfill waste while also lowering the cement percentage in 
cementitious products (Alderete et al. 2021).

Thermal‑plasma treatment

Plasma technology offers a viable alternative in MSW man-
agement. Plasma is the fourth important state of matter 
after solid, liquid, and gas and is mostly made up of ions, 
electrons, and neutral particles (Lane et al. 2020). For the 
management of SWs, plasma is considered the most feasible 
solution because of its capacity to provide a high tempera-
ture. Thermal plasma treatment is believed to be the most 
feasible solution to the escalating waste management cri-
sis (Lombardi et al. 2015). Thermal plasma generates high 
temperatures, leading to high energy densities by plasma 
to treat MSW using the huge throughput generated in a 
small-scale reactor (Ruj and Ghosh 2014). The high energy 
flux densities at the boundaries of reactors rely on plasma 
as an energy source rather than conventional combustion 
fuels; as a result, little volume of gas is produced, making 
the process inexpensive and environment friendly (Li et al. 
2016; Psaltis and Komilis 2019). Thermal plasma for waste 
treatment works either through plasma pyrolysis or plasma 
gasification. Pyrolysis through plasma gasification has the 
potential to transform MSWs into a valuable input in the 
circular economy, and its commercialization can be achieved 
by the value of gas or fuel from MSW (Munir et al. 2019). 
The treatment efficiency of plasma treatment is very high, 
with a reduction of 95% in the input of MSW.

Biological treatment of municipal solid waste

Composting

Composting is a technique that turns complex organic mate-
rials into a stable product (Awasthi et al. 2020). It is a low-
cost and eco-friendly technology to deflect organic waste 
from landfills (Agapios et al. 2020). Composting can be 
done at any scale, from small-scale backyard composting to 
large MW treatment plants (Sayara et al. 2020). While com-
posting is among the green alternatives for MW treatment 
(Lin et al. 2018), it has some drawbacks that have limited its 
use and efficacy. The drawbacks include low nutrient levels, 
odor pollution, nitrogen loss, pathogen detection, and GHG 

emissions (Ayilara et al. 2020; Soudejani et al. 2019). To 
overcome these shortcomings and produce a high-quality 
end product, critical parameters like pH, temperature, C/N 
ratio, and moisture must be maintained (Sánchez 2006; 
Tiquia et al. 2002). The rate of the entire process and the 
quality of the end product can also be improved by the inclu-
sion of microbial inoculants, which directly affect the break-
down of biowastes (Onwosi et al. 2017). Several studies at 
waste management facilities and landfills have revealed that 
around 50–70% of MW is organic and may be recycled as 
compost (Kanat and Ergüven 2020; Chatterjee et al. 2013), 
thereby reducing the amount of pollution caused by inap-
propriate waste management significantly. Composting also 
produces less GHGs and leachate as compared to landfilling 
or open dumping (Kibler et al. 2018). Other advantages of 
composting comprise value-added product generation and 
a reduction in environmental pollution (Wang et al. 2018b). 
Furthermore, the use of compost in agriculture can help to 
maintain long-term soil productivity (Kamyab et al. 2015). 
Compost also has wide applications in bioremediation (Ven-
torino et al. 2019), weed suppression (Coelho et al. 2019), 
crop disease management (Sayara et al. 2020), enhancement 
of soil biota, and reduction of the environmental effects 
connected with inorganic fertilizers (Chelinho et al. 2019). 
Moreover, composting is a critical component of the circular 
economy since it helps to close the waste management cycle 
(Vaverková et al. 2020).

Anaerobic digestion

Anaerobic digestion (AD) has attracted increased sci-
entific attention and is a promising treatment option for 
the management of MSW (Wang et al. 2023; Fan et al. 
2018). AD is a regulated microbial decomposition pro-
cess in which a microbial consortium converts organic 
refuse from MSW into CH4, CO2, inorganic nutrients, and 
humus (Macias-Corral et al. 2008). Some of the world’s 
most technologically and agriculturally advanced coun-
tries have demonstrated AD as a viable option for waste 
management (Mu et al. 2018). The biodegradable part of 
MSW is pre-treated by sorting, separation, and steriliza-
tion, which is considered an important move in the yield 
output (Li et al. 2017). Recently, separation of the organic 
fraction of MSW through extrusion treatment appears to 
be an emerging technology to separate the organic fraction 
by using a high-pressure machine equipped with gates to 
spate the organic fraction effectively (Novarino and Zan-
etti 2012). AD not only recovers energy from MSW but 
also produces nutrient-rich soil amendment by reducing 
GHG emissions (Rogelj et al. 2016). The digestion efficacy 
of AD depends on the mode of operation. Thermophilic 
digestion is found to be suitable with biogas production 
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between 13.92 and 83.25% (Mu et al. 2018) and is energy 
efficient if conducted in a thermophilic condition rather 
than a mesophilic condition (Wu et al. 2015b). 

Management of landfill leachate

Landfill leachates from MSWs are the most significant 
source of environmental pollution (Teng and Chen 2023) 
because they percolate through soil and reach the surface 
and groundwater (Popovych et al. 2020). Long-term risk 
assessment of different sanitary landfills to the surrounding 
hydrological ecosystem is an extremely difficult task. To 
reduce the environmental impact of landfill leachates, a 
variety of cost-effective solutions have been investigated 
over time suitable for a variety of contaminants (Fig. S1). 
In the realm of landfill leachate treatment, a single method 
may not be able to meet all the requirements until new 
materials and combinations of technologies are involved 
based on feasibility (Bandala et al. 2021). The following 
sections provide critically recent insights into the physico-
chemical and biological techniques utilized to remediate 
the pollutants contained in landfill leachates:

Physico‑chemical treatment of landfill leachates

Coagulation‑flocculation

Coagulation and flocculation methods are effectively utilized 
for removing suspended particulates from wastewater. The 
process works by destabilizing suspended particles with 
a negative charge into large flocs (Cheng et  al. 2021). 
Nowadays, electro-coagulation (EC) and electro-oxidation 
(EO) have been considered versatile processes for landfill 
leachate treatment (Bahrodin et al. 2021; Ghanbari et al. 
2020). Integration of EC and EO is a novel approach 
used for the successful removal of 60% organic loads and 
80% discoloration in leachates, followed by degradation 
of organic compounds and successful abatement of 50% 
ammonium to minimize the organic load (Bandala et al. 
2021; Adesida 2020). Although the EC-EO process is 
pH-independent (natural-alkaline pH), consequently, pH cost 
adjustment might be lessened for commercial applications; 
however, it is highly composition-dependent (Babaei et al. 
2021). The pollutant elimination efficacy is determined by 
the current density of the electrodes and the catalytic load in 
the leachates. Pt and PbO2 electrodes for the EC process and 
Al and Fe electrodes for the EO process are highly effective 
electrodes with COD removal efficiencies of 60% and 50%, 
respectively, at a current dosage of 50 mA/cm2 (Ghanbari 
et al. 2020).

Adsorption treatments

Adsorption is an extensively employed treatment to eradicate 
ionic and molecular toxins suspended or dissolved in 
landfill leachates through interaction between electrically 
and chemically active surface-charged functional groups 
(Hedayati et al. 2021). Adsorbents’ surface characteristics 
have a key role in determining the choice of adsorbent 
(Kaveeshwar et  al. 2018). The most extensively used 
adsorbent for the treatment of landfill leachates is activated 
carbon, both in powdered and granulated form (Deng et al. 
2018). Recently, various other substances, such as zeolites, 
clay, and magnetic adsorbents, have been reported as 
potentially effective for landfill leachate treatment compared 
to anaerobic composting (Augusto et al. 2019). Zeolites are 
made up of hydrated aluminosilicate crystals with a physical 
configuration comprised water-filled pores (Montalvo et al. 
2020). The physical structure of zeolite, comprised cations 
(Ca2+, K+, and Mg2+), is easily transferable by NH4

+, 
and this capability of zeolites is one of its most versatile 
characteristics, with demands for future investigation (Aziz 
et al. 2020). Previous research demonstrated that a 10-g raw 
zeolite dosage can reduce NH3-N, color, and COD by up to 
53.1%, 46.0%, and 22.5%, respectively (Aziz et al. 2020). 
This indicates that a small quantity of zeolite can achieve 
optimal removal of toxins at a lower cost, making it suitable 
for leachate treatment on a broader scale. Clay minerals are 
regarded as superadsorbents and play an important role as 
pollutant purifiers because of their desirable features such 
as mechanical and chemical stability, high specific surface 
area, laminar structure, and high ionic exchange capacity. 
Bentonite clay (modified by L-glutamine) with a surface 
area of 28.98 m2 g−1 reduces both COD and pH turbidity 
in leachates, which is attributed to more adsorption sites 
(Akl et al. 2013). The exterior surface of bentonite clay has 
weaker siloxane groups (Si–O), which later get transformed 
to Si–O bands and to Si–OH with a rise in pH to alkalinity, 
leading to a reduction in COD through precipitation 
(Hajjizadeh et al. 2020). 

Advanced oxidation processes

Recently, a few advanced oxidation processes (AOPs) have 
been developed to efficiently treat landfill leachates. Photo-
Fenton, electro-Fenton, and Fenton are successful AOPs 
and have been effectively used to treat landfill leachates 
by removing refractory organics (Gautam et al. 2019). The 
catalytic activity of Fe2SO4 during the Fenton reaction adds 
H2O2 to landfill leachates (Hilles et al. 2015). This tech-
nology, because of its eco-environmental advantages, has 
extensively been encouraged for landfill leachate treat-
ment. Another effective and promising AOP generates in-
situ coagulants and makes complex organic pollutants into 
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simpler and nobler compounds like CO2 and H2O (Bashir 
et al. 2013). It is considered one of the greener technolo-
gies for the treatment of landfill leachates, and with further 
optimization, it may cause a COD reduction of up to 60% 
with a significant decline of metallic substances from 70 
to 90% (Dhorabe et al. 2020). Sruthi et al. (2018) found 
that electro-Fenton produces the highest mineralization rate 
during 8 h of electrolysis, with a 96% removal of dissolved 
organic carbon from landfill leachates. The Fenton and ultra-
sonic flow cell method of AOP has a maximum synergetic 
effect and biodegradability index and has been recognized 
as a viable method of leachate treatment (Joshi and Gogate 
2019). AOPs offer several benefits for the prevention and 
remediation of landfill leachates, including treating large 
volumes, automation, high energy efficiency, amicability, 
and easy and safe handling (Ribeiro et al. 2015). However, 
a few main drawbacks of AOP technologies are associated 
with costs involved in electricity, low conductance, fouling 
that causes loss of electrode lifetime, and loss of activity by 
high sludge formation (Sirés et al. 2014).

Biological treatment

Phyto‑remediation of heavy metals from leachate

Phyto-remediation is a natural biochemical process in which 
plants use their root systems and rhizosphere microbes to 
mineralize, degrade, decrease, stabilize, and volatilize 
contaminants (Wibowo et al. 2023; Kristanti et al. 2023). 
It is an ecologically sound technique with long-term use 
for the elimination of contaminants (Ali et al. 2020). Some 
plant species frequently utilized for phyto-remediation have 

reduced many kinds of leachate pollutants. For example, 
water hyacinth has removed 24–80 percent of total HMs, 
including Cd, Cr, Cu, and Pb (El-Gendy 2008). Abbas et al. 
(2019) explored the potential of Eichhornia crassipes and 
Pistia stratiotes for landfill remediation and revealed the 
highest HM removal rates for Zn (80 to 90 percent), Pb (76 
to 84 percent), and Fe (83 to 87 percent). They also observed 
that both plants considerably lower the other physicochemi-
cal characteristics found in landfill leachate, such as pH, 
TDS, COD, and BOD. Plants in the leachate deplete dis-
solved CO2 during the photosynthetic phase, favoring aero-
bic microbes to decrease BOD and COD (Mahmood et al. 
2005). Mokhtar et al. (2011) also reported a 97% decline in 
copper via a phyto-remediation study employing E. cras-
sipes. Jerez Ch and Romero (2016) assessed the viabil-
ity of Cajanus cajan to eliminate Cr and Pb from landfill 
leachates and found the removal of Cr and Pb by 49% and 
36%, respectively. They also reported nitrogen removal 
from landfill leachate, which resulted in the eradication of 
ammonia and mixed nitrite/nitrate species by 85% and 70%, 
respectively.

The plant system is a viable mechanism to remove 
organic and inorganic pollutants using diverse mecha-
nistic approaches, including phyto-degradation, phyto-
volatilization, phyto-extraction, phyto-stabilization, and 
rhizo-filtration (Fig. 10). Recently, Moktar and Tajuddin 
(2019) revealed that over a 30-day experimental period, 
cogon grass was able to extract HMs, including Pb, Cd, 
and Zn, from landfill leachate. Plants take up most of 
these HMs and other nutrients because they are neces-
sary for enzyme activation for photosynthesis and plant 
growth (Chibuike and Obiora 2014). As a result, it is 

Fig. 10   Bioaccumulation of 
heavy metals and other pollut-
ants from contaminated sites 
by plants through different 
mechanisms
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strongly advised that the use of plants in the vicinity 
of leachate collection ponds be promoted in order to 
avoid the seeping of HMs and other leachate toxins into 
aquifers, which can pollute water bodies during over-
flow or discharge (Moktar and Tajuddin 2019; Ugya and 
Priatamby 2016).

Nano‑remediation of landfill leachate

Nano-filtration (NF) is a membrane technology first 
used in the 1980s and is commonly applied for treating 
wastewaters (Reis et al. 2020) with characteristics that 
appear between ultrafiltration and reverse osmosis 
(Shahmansouri and Bellona 2015). Due to low energy 
requirements and greater f lux rates, NF has largely 
been employed in place of reverse osmosis in numerous 
applications (Shon et  al. 2013). The majority of NF 
membranes are fine film composites composed of 
synthetic polymers with functional groups, allowing 
them to effectively separate charged ions from wastewater 
(Siddique et  al. 2020). The NF process efficiently 
separates the multivalent metal ions through sieving 
size and Donnan exclusion, which makes it a highly 
suitable low-cost separation technology (Pal 2015). The 
mechanism of filtration is based on screening and charge 
action in wastewater (Agboola et al. 2015). The NF device 
controls the filtration process through the NF membrane 
by regulating the backward surge of concentrated water. 
With an initial inlet waste water flow of 5 m3/h, backward 
water flow of 4.5 m3/h, and a membrane flux of 10 L/
m2/h, with a transmembrane pressure of 0.222 MPa, it 
could yield a water output of 7500–8500 gallons per 
day (Wang et al. 2020). The elimination rates of overall 
alkalinity, entire hardiness, and total soluble solids were 
86%, 98%, and 91%, with a desalinization efficiency 
of 95% (Wang et  al. 2020). Regular cleaning of NF 
membranes may well prolong their filtrating efficacy 
and serviceability. Deionized water containing HCl and 
NaOH, each with a concentration of 1 mol/L, can be used 
to clean and eliminate toxins from the NF membranes 
(Gao et al. 2011). Recently, carbon-based nano-treatments 
and nano-vermiculite mineral (NMV) have exhibited 
great adsorption capacity for the exclusion of numerous 
organic pollutants from landfill leachates owing to their 
extraordinarily precise surface area, excellent electric 
chemistry, and sorption sites (Duan et al. 2020). NMV 
is a novel material recently developed with excellent 
absorption capacity for ammonium from landfill leachates. 
In pilot-scale experiments, the size of the NVM particle 
(0.075–0.125  mm) used on ammonium-contaminated 

leachates decreased the ammonium concentration by 88% 
relative to the initial concentration (Rama et al. 2019).

Limitations and future perspectives

Municipal solid waste management (MSWM) is a complex 
and multidimensional challenge that involves technical, 
environmental, social, economic, and institutional aspects. 
MSWM aims to reduce the negative impacts of waste 
generation and disposal on human health and the environment 
while maximizing the recovery of valuable resources (Pal and 
Bhatia 2022). However, MSWM faces several limitations and 
future perspectives that need to be addressed. Some of these 
are the following:

–	 The lack of adequate data and information on waste 
generation, composition, collection, treatment, and 
disposal, which hinders the planning, monitoring, and 
evaluation of MSWM systems (Cayumil et al. 2021).

–	 The low level of public awareness and participation in 
waste reduction, reuse, and recycling, which limits the 
potential of waste prevention and resource recovery 
(Sewak et al. 2021; Almulhim and Abubakar 2021).

–	 The insufficient financial resources and institutional 
capacity to implement and sustain effective MSWM 
systems, especially in developing countries and low-income 
areas (Ferronato et al. 2020; Schübeler et al. 1996).

–	 The rapid urbanization and population growth, which 
increase the pressure on existing MSWM infrastructure and 
services, and pose new challenges for waste management 
in peri-urban and rural areas.

–	 The emergence of new types of waste, such as electronic 
waste, medical waste, and hazardous waste, which require 
specific management practices and technologies to ensure 
their safe handling and disposal (Shahabuddin et al. 2023; 
Andeobu 2023).

–	 Lack of adequate infrastructure, equipment, and 
facilities for waste collection, transportation, treatment, 
and disposal (Nepal et al. 2023).

–	 Limited integration and coordination among different 
stakeholders and sectors involved in waste management 
(Song et al. 2021).

–	 The high variability and uncertainty of the composition 
and characteristics of MSW and landfill leachate, 
which makes it difficult to apply standardized or 
universal solutions for their management and treatment 
(Lindamulla et al. 2022).

To overcome these limitations and explore future 
perspectives, MSWM requires a holistic and integrated 
approach that considers the entire life cycle of waste, from 
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generation to final disposal. Such an approach should 
involve the following:

–	 Developing and implementing integrated and holistic 
waste management plans and strategies that consider the 
local context, needs, and priorities (Batista et al. 2021).

–	 Mobilizing adequate financial resources and creating eco-
nomic incentives for waste prevention, reduction, reuse, 
recycling, and recovery.

–	 Promoting public awareness and education on the ben-
efits of waste management and the responsibilities of 
waste generators and handlers (Debrah et al. 2021).

–	 Improving the data collection, monitoring, and reporting 
systems for waste management using modern technologies 
such as geographic information systems (GIS), remote 
sensing, and smart sensors (Singh et al. 2023; Fang et al. 
2023).

–	 Fostering the collaboration and cooperation among dif-
ferent stakeholders and sectors involved in waste man-
agement, such as government agencies, private sector, 
civil society, academia, and international organizations 
(Vasconcelos et al. 2022).

–	 The adoption of the waste hierarchy principle, which 
prioritizes waste prevention, minimization, reuse, and 
recycling over energy recovery and disposal.

–	 The implementation of the circular economy concept, 
which aims to close the loop of material flows and reduce 
the dependence on virgin resources.

–	 The development of innovative technologies and prac-
tices, which enhance the efficiency and effectiveness of 
MSWM systems, such as smart waste collection systems, 
biodegradable packaging materials, waste-to-energy 
plants, and landfill gas recovery systems (Olalo et al. 
2022; Kurniawan et al. 2022).

By addressing these limitations and future perspectives 
related to MSWM, it is possible to achieve a sustainable 
development goal that ensures a clean and healthy 
environment for all.

Conclusion

MSW is a global problem. Inappropriate waste collection 
and its management system contribute to major urban pol-
lution with long-standing ecological impacts and effects on 
the wellbeing of humans, especially the poor. Traditional 
techniques, including burning, landfilling, and unscien-
tific dumping of waste, cause various ecological concerns, 
including water contamination, global warming, and other 
effects on human wellbeing. Thus, to achieve sustainable 
development, MSW needs to be dealt with proper planning 
and execution. This can be accomplished by implementing 

integrated waste management policies that cover all aspects 
of waste generation, segregation, transport, treatment, 
resource recovery, and safe disposal through an engineered 
landfill, as well as emphasizing effective resource alloca-
tion. In addition, waste-to-energy technologies, for instance, 
incineration, anaerobic digestion, gasification, and pyrolysis, 
have steadily gained recognition across the world as crucial 
aspects of MWM. This review suggested that if waste-to-
energy advanced techniques are adopted, MSW might be a 
key promising renewable energy source, not only reducing 
reliance on traditional fuels to meet the ever-mounting need 
for energy but also managing the waste management issue. 
Taken together, the review concluded that integrated waste 
management, together with energy and material recovery, 
could be the best alternative for the sustainable management 
of MSW, assisting in minimizing the negative consequences 
associated with MSW and fulfilling the aims of achieving 
sustainable development.
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