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Abstract
The objective of this study was to model a new drought index called the Fusion-based Hydrological Meteorological Drought 
Index (FHMDI) to simultaneously monitor hydrological and meteorological drought. Aiming to estimate drought more accu-
rately, local measurements were classified into various clusters using the AGNES clustering algorithm. Four single artificial 
intelligence (SAI) models—namely, Gaussian Process Regression (GPR), Ensemble, Feedforward Neural Networks (FNN), 
and Support Vector Regression (SVR)—were developed for each cluster. To promote the results of single of products and 
models, four fusion-based approaches, namely, Wavelet-Based (WB), Weighted Majority Voting (WMV), Extended Kalman 
Filter (EKF), and Entropy Weight (EW) methods, were used to estimate FHMDI in different time scales, precipitation, and 
runoff. The performance of single and combined products and models was assessed through statistical error metrics, such 
as Kling–Gupta efficiency (KGE), Mean Bias Error (MBE), and Normalized Root Mean Square Error (NRMSE). The per-
formance of the proposed methodology was tested over 24 main river basins in Iran. The validation results of the FHMDI 
(the compliance of the index with the pre-existing drought index) revealed that it accurately identified drought conditions. 
The results indicated that individual products performed well in some river basins, while fusion-based models improved 
dataset accuracy more compared to local measurements. The WMV with the highest accuracy (lowest NRMSE) had a good 
performance in 60% of the cases compared to all other products and fusion-based models. WMV also showed higher effi-
ciency in 100% of the cases than all other fusion-based and SAI models for simultaneous hydrological and meteorological 
drought estimation. In light of these findings, we recommend the use of fusion-based approach to improve drought modeling.

Keywords Remotely sensed datasets · Fusion-based Hydrological Meteorological Drought Index · Extended Kalman 
Filter · Weighted Majority Voting · Single artificial intelligence · Fusion models

Introduction

Drought is a periodic natural hazard that negatively influ-
ences water resources (Nemati et al. 2019; Scanlon et al. 
2017). This phenomenon is typically divided into different 
categories in terms of water deficit type, including hydro-
logical that occurs when surface and subsurface water levels 
are significantly below normal (Barker et al. 2016), agricul-
tural which considers soil moisture deficiency (Yan et al. 
2017), socio-economical that accounts for water resources 
system deficit resulting from other types of drought (Huang 
et al. 2016), and meteorological droughts which account 
for precipitation shortage (Hameed et al. 2018). Hydrologi-
cal drought is generally caused by an uninterrupted mete-
orological drought (Wu et al. 2017) with various effects on 
the economy, agriculture, and ecology, including reduced 
hydraulic power production and irrigation water supply 
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(Mishra and Singh 2010). In other words, various types of 
droughts can occur at the same time, making it difficult to 
distinguish between them. As a result, univariate drought 
indices (rely on single variable) are insufficient for charac-
terizing the complicated effects and conditions of droughts, 
and composite indices have been suggested to overcome this 
difficulty (Yang et al. 2018). Therefore, it is necessary to 
have efficient indices to simultaneously monitor hydrologi-
cal and meteorological droughts.

In recent years, researchers have tried to introduce new 
multivariate indices by combining drought indices using 
various methods to gain more information on the features 
and situation of this climatic phenomenon (Fahimirad and 
Shahkarami 2021; Li et al. 2014; Motevali Bashi Naeini 
et al. 2021; Nazeri Tahroudi et al. 2020; Hosseini et al. 
2023).

Numerous current research efforts have monitored and 
analyzed the types of droughts using interpolated grids or 
observational data (Henriques and Santos 1999; Santos et al. 
2010; Shen and Tabios 1995). Meteorological hydrometric 
stations can monitor variabilities in precipitation and run-
off and accurately estimate precipitation and hydrological 
fluxes across basins (Fekete et al. 2002). But, there are few 
or no stations in specific locations worldwide due to the 
high cost of gauge installation and maintenance, and the 
existing records may be lacking or related to smaller time 
frames (Salio et al. 2015; Sun et al. 2018). To overcome 
the data scarcity in developing regions, alternative sources 
of global gridded datasets have been developed by differ-
ent institutions—such as Modern-Era Retrospective Analy-
sis for Research and Applications (Rienecker et al. 2011) 
and Global Land Data Assimilation System (Rodell et al. 
2004)—that benefit the monitoring of water resources in 
regions with no or poor gauge systems. Each dataset offers 
certain advantages concerning the provided variables, tem-
poral and spatial resolution, geographic extent, and time 
period. The gridded datasets were divided into three cat-
egories: namely, reanalysis, satellite-based, and gauge-based 
products (Hosseini-Moghari et  al. 2018; Saemian et al. 
2022). The reanalysis products assimilate remote sensing 
and in situ observations as numerical models of the global 
atmosphere and land surface (Dee et al. 2011; Saha et al. 
2010). Estimations provided by these datasets are used for 
many research and applied cases, such as trend analysis 
(Balling et al. 2016; Toride et al. 2018), drought monitor-
ing (Ahmadebrahimpour et al. 2019; Golian et al. 2019; Liu 
et al. 2020), flood modeling (Dis et al. 2016; Nhi et al. 2018; 
Yuan et al. 2019), and stream-flow simulation (Try et al. 
2020; Yuan et al. 2017).

Droughts can be predicted using various models, for 
example, data-driven models (Dikshit and Pradhan 2021; 
Park et al. 2017; Zhang et al. 2019; Nejatian et al. 2023), 
autoregressive integrated moving average (Mishra and Desai 

2006, 2005), Markov Chain (Alam et al. 2014; Rahmat et al. 
2017), and hydrological (e.g., (Trambauer et al. 2013; Xing 
et al. 2020). However, as is the case with the rest of the sta-
tistical and linear models, complex drought conditions can-
not be predicted by single data-driven models. Multi-model 
combination/fusion-based method, as a new approach, 
improves the credibility of data-driven models and resolves 
their shortcomings. Drought can be assessed through fusion 
more accurately than models based on single data sources. 
This approach was proposed by Dasarathy (1997), and it 
allows for gaining greater insight than single data sources. 
This method has been employed for streamflow forecasting 
(Modaresi et al. 2018), river-level forecasting (See and Abra-
hart 2001), and flood frequency analysis (ensemble model) 
(Shu and Burn 2004). This approach can predict drought by 
merging single forecasts. It has been suggested that combin-
ing remotely sensed datasets provides better forecasts than 
in-situ observations ( Feng et al. 2019; Fooladi et al. 2021; 
Jiao et al. 2019; Park et al. 2017). A review of the previous 
research showed that various single artificial intelligence 
(SAI) models have been employed for drought modeling 
(Jalalkamali et al. 2015; Naderi et al. 2022). Meanwhile, 
fusion-based methods have outperformed single-modal 
methods in drought modeling.

Previous studies mostly focused on the evaluation and 
validation of various precipitation products worldwide (Rah-
mati Ziveh et al. 2022; Raziei and Sotoudeh 2017), whereas 
runoff products were validated in very limited regions (Qi 
et al. 2020). Meanwhile, few studies have directly inves-
tigated the application of fusion-based methods in fusing 
multiple datasets to improve runoff and precipitation trend 
assessment compared to in-situ measurements (Fooladi et al. 
2023) and to promote accuracy, reliability, and stability of 
SAIs (Alizadeh and Nikoo 2018).

Therefore, the overall aim of this study is to fill this gap 
by assessing and inter‐comparing various precipitation 
and runoff gridded products through gauge observation 
and fusion-based methodologies to model meteorological 
and hydrological drought in 24 large river basins in Iran. 
Different gridded precipitation and runoff products were 
employed to estimate Non-Parametric Standardized Pre-
cipitation Index (NSPI) and Non-Parametric Standardized 
Runoff Index (NSRI) as meteorological and hydrological 
drought indices, respectively, against local observations. 
The new composite drought index namely the Fusion-based 
Hydro-Meteorological Drought Index (FHMDI) was devel-
oped which is composed of the mentioned indices. In this 
case, four SAI models—including Support Vector Regres-
sion (SVR), Ensemble, Gaussian Process Regression (GPR), 
and Feedforward Neural Networks (FNN)—were used to 
estimate FHMDI in different time scales. Considering the 
different accuracy of SAI models, four fusion-based meth-
ods—namely, Wavelet-Based (WB), Weighted Majority 
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Voting (WMV), Extended Kalman Filter (EKF), and Entropy 
Weight (EW)—were applied to improve the results of SAIs. 
Overall, the research objectives are to:

 (i) Assessing multiple remotely sensed monthly runoff 
and precipitation datasets individually, as well as 
employing a fusion-based approach including WB, 
EKF, WMV, and EW to evaluate multi-source runoff 
and precipitation remote sensing datasets, in order to 
enhance estimation accuracy

 (ii) Calculate the FHMDI compound drought index 
in simultaneous hydrological and meteorological 
drought estimations at different time scales using 
various gridded products and compare the results 
with ground-based FHMDI

 (iii) Compare four SAI models including Ensemble, GPR, 
FNN, and SVR in estimating FHMDI with remote 
sensing datasets under six scenarios (model input 
selection) and employing a fusion-based approach 
including WB, EKF, WMV, and EW to improve the 
accuracy combined drought estimation

The rest of the paper is organized as follows: “Material 
and methods” briefly describes the study area datasets and 

the methodology used for the study, “Results” discusses the 
results, “Discussion” provides discussion, and “Conclusion” 
presents conclusions.

Material and methods

Study area

Iran is located in the southwest of Asia with an area of 
about 1.7 million  km2 (Fig. 1). About 60% of the country is 
covered by two mountain ranges: the Zagros range extends 
southward from the northwest to the shores of the Persian 
Gulf, while the Alborz chain extends from the northwest to 
the northeast along the southern edge of the Caspian Sea. 
The elevation of Iran ranges from less than − 297 m at the 
Caspian sea to 5597 m in the Damavand peak of Alborz 
Mountain chain. Precipitation values in Iran are also very 
diverse so that the average annual precipitation during the 
study varied from 52.6 mm at Zabol station to 1694.7 mm 
at Anzali station. Also, mean annual runoff is on aver-
age among the basins about 39 mm, but is much lower, 
0–25 mm, in 18 of the 30 basins (Moshir Panahi et al. 2020). 
Iran has six main water basins and 30 river basins. Table 1 

Fig. 1  Location of river basins 
and their synoptic and hydro-
metric stations across Iran
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shows the specification of the basins and their hydrometric 
and synoptic stations (Fig. 1).

Datasets

This study used the following datasets:

-Observational gauge data

The validation of the data was done using monthly pre-
cipitation and runoff datasets sourced from the Iran Mete-
orological Organization and Iran’s Ministry of Energy 
from 24 selected synoptic and hydrometric stations (for 
each river basin). The research data were obtained over 
the 1987–2019 period, which was determined based on the 
availability of consistent data records with suitable quality 
and range (Table 1). Observational data were not available 
for six political basins (red areas in Fig. 1, including Aras, 

Attak, West-border, Hamun Hirmand, Hamun Mashkel, and 
Khaf river basins). Therefore, they were excluded from the 
research.

-Remotely sensed datasets

Five different datasets on precipitation and runoff from 
1987 to 2019 were used here, including:

1) GLDAS-2.1

GLDAS was produced with the cooperation of several 
institutions. This dataset accurately estimates the weather 
data by mixing ground-based and satellite measurements of 
precipitation, humidity, temperature, radiation, wind speed, 
etc. Moreover, Mosaic, Noah, CLM (Community Land 
Model), and VIC (Variable Infiltration Capacity) models 
were used to simulate land-surface states and fluxes (GES 

Table 1  General information on main river basins, their area, and selected synoptic and hydrometric stations

Code River basins Area 
 (103 km^2)

Synoptic station Hydrometric station

Name X Y Name X Y

28 Bandar Abbas 41 Minab 57.08 27.1 Minab 51.19 37.38
45 Hamun-Jazmurian 64 Iranshahr 60.7 27.2 Daman 60.78 30.18
49 Daranjir-Saghand 48 Kerman 56.96 30.25 Daranji 51.17 29.56
27 Kol-Mehran 58 Bandarlenge 54.83 26.53 Dezhgan 55.27 38.03
29 South Baluchestan 44 Chabahar 60.61 25.28 Kahir 60.13 36.86
48 Siahkooh 47 Kashan 51.45 33.98 Polhanjen 51.76 33.61
46 Lut Desert 195 Bam 58.35 29.1 Mar Sorakh 57.46 29.34
26 Mand 44 Shiraz 52.6 29.53 Bandbahman 52.56 27.75
25 Helle 20 Bushehr and Dogon-

badan
50.83 and 50.81 28.98 and 30.34 Chitiborki 51.3 27.5

24 Jarahi and Zohreh 38 Omidieh and Ahwaz 49.66 and 48.66 30.76 and 31.33 Gargar 48.95 29
47 Central Desert 224 Torbat Heydarieh 59.21 35.26 Hoseinabadjangal 58.38 35.04
41 Lake Namak 91 Ghom and Hamedan 

and Arak
50.85 and 48.71 and 

49.76
34.7 and 35.2 and 

34.1
Jalayer 50.04 34.89

44 Abarghoo-Sirjan 54 Sirjan 55.68 29.46 Sirjan 56.13 30.7
60 Ghareghoom 44 Mashhad and Ghol-

makan
59.63 and 59.28 36.26 and 36.48 Moshang 59.03 36.51

43 Tashk Bakhtegan 29 Abadeh 52.66 31.18 Tangbolagh 53.15 31.63
42 Gavkhuni 40 Koohrang 50.11 32.43 Ghale shahrokh 50.46 29.82
16 Gharesou Gorgan 15 Gorgan 54.26 36.85 Gorgan 55.50 37.48
30 Lake Urmia 53 Takab 47.11 36.38 Safakhane 46.70 36.45
23 Karun 64 Aligodarz 49.7 33.4 Talezang 48.76 32.82
22 Karkheh 50 Kermanshah and 

Ravansar
47.15 and 46.65 34.35 and 34.71 Tangsareban 46.84 33.55

13 Sefidrood 60 Meyaneh 47.7 37.45 Meyaneh 47.66 37.48
14 Haraz-Sefidrood 11 Ramsar and 

Nowshahr
50.66 and 51.5 36.9 and 36.65 Haratbar 50.83 36.75

15 Haraz-Ghareso 15 Gharakhil 52.76 36.45 Ghaem Shahr 52.88 36.29
12 Talesh-Mordab 

anzali
7 Anzali and Rasht 49.46 and 49.6 37.46 and 37.25 Nokhale 49.45 37.33
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DISC Dataset: GLDAS Catchment Land Surface Model L4 
monthly 1.0 × 1.0 degree V2.1 (GLDAS_CLSM10_M 2.1).

2) ERA5

ERA5 is the 5th generation European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanaly-
sis and has greatly surpassed ECMWF Reanalysis Interim 
(ERA-Interim) in terms of horizontal resolution, spati-
otemporal resolution, design simulation, numerical mod-
eling, observational absorption, output frequency, and bet-
ter model-level display of details (https:// cds. clima te. coper 
nicus. eu/# !/ search? text= ERA5).

3) G-RUN ENSEMBLE (GRUN)

GRUN is a runoff reconstruction based on observa-
tion. It employs machine learning algorithms to estimate 
global runoff (Ghiggi et al. 2019). One of its shortcomings 
is that it is based on a single atmospheric forcing dataset 
(GSWP3; (Kim 2017)). Later on, Global RUNoff ENSEM-
BLE (G-RUN ENSEMBLE), as a new publicly-available 
global runoff reconstruction, was produced with up to 525 
ensemble members through 21 atmospheric forcing datasets 
(https:// figsh are. com/ artic les/ datas et/ GRUN_ Global_ Run-
off_ Recon struc tion/ 92281 76).

4) TerraClimate (TERRA)

TerraClimate is a high-spatial-resolution dataset 
(1/24°, ~ 4 km) of monthly climate and climatic water bal-
ance for global terrestrial surfaces. It uses climatically aided 
interpolation to combine the high-spatial-resolution clima-
tological normal (using the WorldClim dataset) with other 
coarser resolution and time-varying (i.e., monthly) datasets. 
This is to generate a monthly dataset of wind speed, pre-
cipitation, vapor pressure, solar radiation, and max/min tem-
perature. TerraClimate also creates monthly surface water 
balance datasets using a water balance model incorporating 
precipitation, reference evapotranspiration, temperature, and 
interpolated plant-extractable soil water capacity (https:// 
clima te. north westk nowle dge. net/ TERRA CLIMA TE).

5) MERRA2

The Modern-Era Retrospective Analysis for Research and 
Applications, version 2, is a global atmospheric reanalysis 
generated by the NASA Global Modeling and Assimilation 
Office. It provides a regularly-gridded (0.5-degree latitude 
by 5.8-degree longitude) and homogenous record spanning 
the satellite observing era from 1980 to the present. Com-
pared to MERRA, MERRA2 allows for assimilating modern 
hyperspectral radiance and microwave observations, along 
with GPS-Radio Occultation and NASA ozone datasets. It 
is accessible at https:// disc. gsfc. nasa. gov/ datas ets? proje ct= 
MERRA-2.

The overall specifications of these products are listed in 
Table 2. All gridded datasets were re-sampled to 0.5° × 0.5° 
through the nearest-neighbor interpolation method to match 
the gridded data from ground observations.

Methodology

The following is an overview of the research methodology 
(Fig. 2).

As shown in Fig.  2, the research data were sourced 
from the ERA5, GLDAS, TERRA, MERRA2, and GRUN 
products. The precipitation and runoff data of mentioned 
products were validated against observational gauge data. 
Moreover, fusion-based precipitation and runoff data were 
assessed to enhance the accuracy of runoff and precipita-
tion evaluations at all river basins. Single and composite 
indices were calculated using observational data at different 
time scales for each river basin. For better drought modeling, 
the AGNES clustering technique as a classification algo-
rithm was employed to cluster ground river basins based on 
FHMDI into different groups with similar features. Then, 
for each cluster, four SAI models, namely, GPR, FNN, SVR, 
and Ensemble were developed under six scenarios to esti-
mate and predict drought using a remotely sensed dataset, 
and their error indices were determined. In the following, 
four fusion methods including WB, WMV, EKF, and EW 
are used for fusing estimations from the four SAI estimator 
models.

Table 2  Remotely sensed precipitation and runoff products (P, precipitation; R, runoff)

Class Dataset Variable Resolution Coverage Ref

Spatial Temporal Spatial Temporal

Gauge-based products GRUN R 0.5*0.5 1 m Global 1901–2019 (Ghiggi et al. 2021)
Reanalysis products ERA5 P&R 0.25*0.25 6 h/1 m Global 1979–2022 (Hersbach et al. 2020)

TERRA P&R 0.04*0.04 1 m Global 1958–2022 (Abatzoglou et al. 2018)
GLDAS P&R 0.25*0.25 3 h/1 m Global 1948–2022 (Rodell et al. 2004)
MERRA2 P 0.625*0.5 1 m Global 1980–2022 (Rienecker et al. 2011)

https://cds.climate.copernicus.eu/#!/search?text=ERA5
https://cds.climate.copernicus.eu/#!/search?text=ERA5
https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176
https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176
https://climate.northwestknowledge.net/TERRACLIMATE
https://climate.northwestknowledge.net/TERRACLIMATE
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
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Calculation of runoff based on remotely sensed products

The sum of overland flow, interflow, and groundwater 
equals runoff in a grid (q grid):

where qsur is the overland flow  (m3/s) and qg+inter is the sum 
of interflow and groundwater  (m3/s). The monthly runoff of 
various products at gauge sites is the sum of the upstream 
monthly runoff:

where qgauge is the calculated monthly runoff at gauge sites. 
This is a popular routing method (Crooks et al. 2014; Wang 

(1)qgrid = qsur + qg+i

(2)qgauge =
∑

qgrid

et al. 2016) as it is nonparametric (Eq. 2) with no parameter 
uncertainty.

Three evaluation criteria were used here, namely, modified 
Kling–Gupta efficiency (KGE), normalized root mean square 
error (NRMSE), and mean bias error (MBE) because they are 
commonly utilized in uncertainty evaluations as follows (Kno-
ben et al. 2019):

(3)KGE = 1 −
2

√
(r − 1)2 + (� − 1)2 + (� − 1)2

(4)
NRMSE = 100 ×

�
∑N

i=1
(Cpi−Cei)

2

N

Cemax − Cemin

Fig. 2  The research flowchart
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where N is the sample size,Ce is the observed values, Cp 
is the calculated value, r is Pearson’s linear correlation 
(measuring the temporal dynamics), � is the variability ratio 
(measuring the relative dispersion between simulations and 
observations), and � is the bias ratio (measuring the total 
volume) (a value greater than 1 represents an overestima-
tion of the simulations while a value less than 1 represents 
an underestimation).

Calculation of NSPI, NSRI, and FHMDI indices using 
ground‑based and remotely sensed products

In this research, three drought indices, NSPI, NSRI, and 
FHMDI, were used for drought analysis. The Standardized 
Precipitation Index (SPI) is a popular index for assessing 
meteorological drought. It owes its popularity to its stand-
ardized nature, simplicity, and flexibility (Hayes et al. 1999; 
Sahoo et al. 2015). The Standardized Runoff Index (SRI) 
was introduced to investigate hydrological drought through 
the same method used by Mckee et al. (1993), to define SPI, 
which is the unit standard normal deviation associated with 
the percentile of hydrologic runoff accumulated over a time-
scale (Shukla and Wood 2008). Deriving SPI and SRI neces-
sitates fitting a suitable parametric probability distribution 
function to precipitation data, which may not always be the 
best distribution function (Angelidis et al. 2012; Guttman 
1999). This issue can be resolved using a nonparametric 
framework to derive NSPI and NSRI and better describe 
drought.

Regarding the necessity of nonparametric methods in 
deriving SPIs and SRIs, different statistical tests were used 
to determine the best probability distribution function for 
precipitation and runoff data in each ground station. The 
nonparametric method was employed here considering that 
different parametric probability distribution functions were 
fitted to precipitation and runoff data (Alizadeh and Nikoo 
(2018); Fooladi et al. 2021). Therefore, the probabilities of 
these data were calculated through the empirical Gringorten 
plotting position (Farahmand and AghaKouchak 2015):

where p(xi) is the empirical probability, i is the rank of non-
zero precipitation data, and n represents the sample size. 
Here, the Standardized Index can be obtained using Eq. 7:

where φ is the standard normal distribution function and p 
is computed empirical probability.

(5)MBE =

∑N

1
(Cpi − Cei)

N

(6)p
(
xi
)
=

i − (44∕100)

n + 12

(7)SI = �∧(−1)(p).

Then, the FHMDI is developed using NSPI, NSRI, and 
WB fusion-based method s(that will explain at “Fusion-
based models”) to monitor compound hydrological and 
meteorological drought for different timescales (6, 9, and 
12 months). It should be noted that this new index was cal-
culated on the basis of reanalysis data.

AGglomerative NESting (AGNES) clustering algorithm

Drought can be analyzed and estimated more accurately by 
using AGNES to classify ground-based observation data 
into different groups based on similar features. FHMDI 
(calculated based on observational data) was considered as 
a clustering criterion to classify the data into various groups 
based on their feature resemblance. Agglomerative cluster-
ing, as a hierarchical clustering algorithm, is an unsuper-
vised machine learning technique dividing the population 
into clusters with data points being more similar in the same 
cluster and vice versa (Li et al. 2022).

Single artificial intelligence (SAI) models

Four SAI models, namely, FNN, GPR, Ensemble, and SVR, 
were employed as estimator models for drought modeling 
using remotely sensed precipitation and runoff data under six 
scenarios (as model input) through FHMDI based on river 
basin’s observational data (as output model) that will explain 
them separately at “Scenarios of simulation.” According 
to AGNES results, the corresponding data for each river 
basin in different clusters were used to develop SAI models. 
These SAI models were trained (calibration) and verified 
(validation) using 80% and 20% of the dataset, respectively. 
The data were split through shuffled sampling. In addition, 
different percentage ratios—such as 70:30, 75:25, 80:20, 
and 85:15—were tested, and the model performance was 
analyzed in the training and validation stages. Finally, the 
best output (estimated FHMDI) with the least estimation 
error was determined for each SAI model based on different 
statistical error indices. The method for drought estimation 
and prediction through SAI models is presented in Fig. 3. To 
enhance accuracy, reliability, and stability of SAIs, different 
fusion-based models are used to combine them which are 
presented in the following.

Fusion‑based models

Data fusion means aggregation and combination of multi-
source data (the individual outputs of different estimation 
models) to obtain more accurate and reliable solutions as 
opposed to using single-source data (Dasarathy 1997). Here, 
four different fusing methods, namely, WB, WMV, EKF, 
and EW, were used to estimate 6, 9, and 12-month FHMDI 
using remotely sensed data. Accordingly, the best outputs 
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(FHMDI) of the four SAI estimator models (Ensemble, 
GPR, SVR, and FNN) were fused. A summary of the four 
methods is given as follows.

a) Wavelet-Based (WB)

Wavelet transform is an important mathematical lin-
ear transformation that is used in various fields of science 
(Xu et al. 2004). The main contribution of this method 
is to resolve the shortcomings of the Fourier transform. 
Wavelet transform has a high resolution in both the time 
domain and the frequency domain. This transformation 
not only determines the frequency number in the signal 
but also determines when those frequencies occur in the 
signal. The wavelet transform enables this by functioning 
at different scales. In wavelet transform, the signal is first 
considered with a large scale/window, and its large fea-
tures are analyzed. In the next step, the signal is examined 
with small windows, and the small features of the signal 
are obtained. Suppose there are sensors in a multi-sensor 
system for observing unknown quantities. Then, the output 
of the sensor j is:

where nj(t) represents the white noise added to the original 
signal Y(t) in the output Yj(t) . The variance nj(t) is defined as 
σ_j2 = E⌊n_i2 (t)⌋, and E[x] is the mathematical expectation 

(8)Yj(t) = Y(t) + nj(t)

of X. If the observations are independent and unbiased, 
the measure can be estimated using the following LMS 
estimator:

where Wj is the weight applied to Yj and 
∑N

j=1
Wj = 1 . The 

estimation variance is also defined as Eq. 10:

It represents the jamming noise variance of the jth obser-
vation sequence. The observation sequence is referred to as 
the data sequence obtained from the jth sensor. Hence,�2

j
 is 

simply called the variance of the jth observation or sensor 
sequence.

If the weight of all observation sequences is the same, 
that is,Wj = 1∕N . For all j and Ŷ are estimated from Eq. 9, 
then, the arithmetic mean of observations will be N. The 
variance of this estimate is calculated by Eq. 11:

Although the arithmetic mean is widely used for esti-
mating measurements from multiple independent obser-
vations, the estimates are not optimal regarding the 
least mean squared error. Therefore, to minimize the 

(9)Ŷ =
∑N

j=1
WjYj

(10)�2 =
∑N

j=1
W2

j
�2
j

(11)�2
avg

=
1

N2

∑N

j=1
�2
j

Fig. 3  The component of pro-
posed modeling in this study
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polynomial in Eq. 10, the optimal weights should be equal 
to 1 ( 

∑N

j=1
Wj = 1 ) which can be calculated through Eq. 12:

Therefore, the minimum variance estimated from Y will 
be calculated as Eq. 13:

In this case, the estimator is consistent and unbiased. It 
can also be proven that �2

min
 is not only smaller than the vari-

ance of any observed sequence but also smaller than Eq. 11. 
If it is possible to obtain �2

min
= 1
∑N

j=1
1

�2
j

 in advance, relations 9 

and 12 can be used to obtain the optimal estimation of the 
measurement in terms of the minimum mean squared error.

b) Weighted Majority Voting (WMV)

Majority voting is a simple and highly effective linear 
hybrid group learning method. For example, in real-world 
research on a particular issue, in case some experts are more 
competent than others, weighting the decisions of those 
qualified experts may improve the overall performance more 
so than mere multi-voting (Ekbal and Saha 2012, 2011). 
The same problem exists in combining results when using 
SAI algorithms because finding the best weight is important. 
If the weight coefficients are not chosen correctly, it will 
yield poor results. Now, to combine the dataset, the weight 
combination is used according to Eq. 14, which is derived 
from the single-layer perceptron neural network (de Almeida 
et al. 2020).

where H is the input data, T is the target vector, λ is a small 
fixed value, and I is the singular matrix, which is also known 
as the penalty because it penalizes large weights in the opti-
mization process. Now, having the optimal weights, by 
multiplying it with the data, a combined and optimal target 
vector can be obtained through Eq. 15.

c) Extended Kalman Filter (EKF)

The EKF algorithm is used to merge the input data 
(taken from different datasets). This algorithm is applied 
in two phases (Kaczmarek et al. 2022). Suppose all system 
information is available up to sample k − 1. Then, based 
on the system’s mathematical model and the available data 

(12)Wj =
1

�2
j

∑N

j=1

1

�2
j

(13)�2
min

=
1

∑N

j=1

1

�2
j

.

(14)WO =
(
HT .H + �.I

)−1
.HT .T

(15)T = H ∗ WO

up to time k − 1, an initial estimate of the state variables in 
sample k is calculated. We call this step of the Kalman fil-
ter the prediction process. Now, naturally, a new measure-
ment is made by the sensors at time k, that is, yk becomes 
available. In the second step of the Kalman filter, which 
is called the update phase, the prediction made in the first 
step is improved using the newly available data in order 
to obtain the final estimated states in the K sample. The 
prediction phase is performed through the following two 
equations:

In these relations, x̂k−1 is the vector of estimated states 
in the sample k − 1 ; uk−1 is the control vector in sample 
k − 1 ; Qk−1 is the noise matrix in sample k − 1 ; Pk−1 is the 
covariance matrix in the sample k − 1 ; x̂k|k−1 is the predic-
tion of the state variable in sample k based on the infor-
mation from the system up to the sample k − 1 ; Pk|k−1 is 
the prediction of the covariance matrix in sample k based 
on information from the system up to the sample k − 1 ; 
finally, Fk and FT

k−1
 are the linearized dynamics obtained 

through Taylor linearization and the T mark on it indicates 
that it is a transpose.

The update phase of the EKF is performed as follows:

Here, Hk is the measured linearized dynamics, which 
is used in the update phase. This matrix is also calculated 
as follows.

In the formula, zk is the output measured by the sensors. 
Therefore, in the first step, the Kalman interest (Kk) is cal-
culated and then the final estimate of the state variables 
(̂xk) and  the covariance matrix (Pk) in the sample k are cal-
culated. Phrase 

[
zk − h

(
x̂k|k−1

)]
 also indicates the difference 

between the actual output measured by the sensors and the 
output obtained in the prediction phase.

d) Entropy Weight (EW)

(16)x̂k|k−1 = f (̂xk−1, uk−1)

(17)Pk|k−1 = (Fk−1Pk−1F
T
k−1

) + Qk−1

(18)Fk = frac �f �x|xk−1,

(19)Kk = Pk|k−1H
T (HkPk|k−1H

T + Rk)
−1
,

(20)x̂k = x̂k|k−1 + Kk

[
zk − h

(
x̂k|k−1

)]
,

(21)Pk =
(
1 − KkHk

)
Pk|k−1,

(22)Hk = frac�h�x|x̂k|k−1
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EW is a linear method that helps to weigh indicators 
(Zhu et al. 2018). In this method, the indicator-derived 
matrix is first standardized and the entropy of every indi-
cator is calculated:

In which

where fij is the value of the index matrix, j is the variable, 
m is the year, and i is the month. The indicator weight is 
calculated using Eqs. 25 and 26:

where wj is the assigned weight of each variable, which 
should be equal to 1 ( 

∑n

j=1
wj = 1) ; Dj represents a measure 

of the entropy for the jth variable.

Scenarios of simulation

To make input model, six scenarios are considered as 
follows:

• S1 (MI-8 V): Model input including four datasets of 
precipitation (TEERA, MEERA2, GLDAS, and ERA5) 
and four datasets of runoff (TEERA, MEERA2, 
GLDAS, and ERA5)

• S2 (MI-2 V-F1): Two variables as representative of 
precipitation and runoff with datasets of each variable 
combined by WB fusion method

• S3 (MI-2 V-F2): Two variables as representative of 
precipitation and runoff with datasets of each variable 
combined by WMV fusion method

• S4 (MI-2 V-F3): Two variables as representative of 
precipitation and runoff with datasets of each variable 
combined by EKF fusion method

• S5 (MI-2 V-F4): Two variables as representative of 
precipitation and runoff with datasets of each variable 
combined by EW fusion method

• S6 (MI-2 V): Two variables as representative of 
precipitation and runoff selected based on the 
results of single- and multi-product models versus 
local observations)

(23)Hj =
−
∑m

i=1
fi,j ∗ ln(fi,j)

Ln(m)

(24)fij =
abs(ri,j)

∑m

i=1
abs(ri,j)

(25)Dj = 1 − Hj

(26)wj =
Dj

∑n

j=1
Dj

Results

Temporal and spatial assessment of monthly runoff 
and precipitation gridded products at the river 
basins

First, the upstream basin of the selected hydrometric sta-
tion was determined at each river basin. Then, upstream 
runoff for each product was measured against observa-
tional monthly point-based data from the selected sta-
tions. The result of the evaluation criteria for runoff at 
the monthly scale can be observed for all river basins in 
Fig. 4. As it is clear, all of the products showed that there 
is a higher correlation coefficient (KGE between 0 and 
1) in winter (Jan-Feb-Mar) (40%) and spring (Apr-May-
Jun) (30%) than in other seasons (Fig. 4a). GRUN and 
ERA5 products had the highest correlation (50%, 42%, 
40%, and 30% above 0.5, respectively) than other prod-
ucts. It should be noted that all negative KGE values are 
related to high bias ratio values. The NRMSE was the low-
est for GRUN year-round (with an average value of 33%) 
(Fig. 4b). GRUN had the highest accuracy (lower than 1) 
in the Mand, Gavkhuni, Gharesu Gorgan, Karun, Karkheh, 
Haraz-Ghareso, and Talesh-Mordab Anzali river basins, 
with the average NRMSE being the lowest in Karkheh 
(0.7) and the highest in Mand (0.99) river basins. All of 
the products had the lowest error in Karun and Gavkhuni 
river basins and the highest error in the Central Desert 
(even GRUN product). According to MBE values, GLDAS 
overestimated runoff in all of the seasons (80% mean val-
ues), whereas GRUN, ERA5, and TERRA underestimated 
runoff compared to observational values (with average val-
ues of 52%, 55%, and 62%, respectively) (Fig. 4c) among 
all river basins. All products mostly overestimated run-
off during four seasons in the Siahkooh, Central Desert, 
Ghareghoom, Namke Lake, Tasht Bakhtegan, and Haraz-
Sefidrood river basins, but not in Helle, Hamun Jazmurian, 
Karun, and Gavkhuni river basins.

Figure S1 (Supplementary Material) shows the result 
of the evaluation criteria for precipitation at the monthly 
scale for all river basins. As can be observed, all of the 
products showed a higher correlation coefficient (KGE 
between 0 and 1) in winter (Jan-Feb-Mar) (80%) and 
spring (Apr-May-Jun) (82%) than in other seasons (Fig-
ure S1-a). All products had a KGE value higher than 0.5 
in 70% of the cases. NRMSE was the lowest and high-
est for MERRA2 and ERA5 products during four seasons 
(with an average value of 60% and 30%, respectively) (Fig-
ure S1-b). MERRA2 had the highest accuracy (lower than 
1) in Haraz-Ghareso, Haraz-Sefidrood, and Gharesu-Gor-
gan (with an average value of 65%). According to MBE 
values, GLDAS over- and under-estimates precipitation 
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in all of the seasons and river basins (50% mean values), 
while MERRA2, ERA5, and TERRA under-estimate pre-
cipitation compared to observational values (with average 
values of 72%, 77%, and 64%, respectively) (Figure S1-c).

Fusion‑based assessment of runoff 
and precipitation gridded products at the river 
basins

Considering the various climate zones across Iran, the pre-
cipitation and runoff datasets do not have the same accu-
racy for different river basins, which makes it difficult to 
choose the best product for a specific area. The fusion-based 
approaches can be used to overcome this issue by increasing 
the accuracy of remotely sensed datasets. In this section, 
the combined remotely sensed products were investigated 
using four fusion-based methods. The Taylor diagrams in 

Fig. 5 demonstrate the data accuracy in each dataset and 
model compared against local observations at some river 
basins as an example. As can be seen, WMV had the closest 
performance to local observation in the Talesh river basin 
(Fig. 5a). WMV and WB methods had a good performance 
for precipitation and runoff, respectively, in Haraz-Ghareso. 
WMV showed the highest accuracy (~ 60%) compared to 
single-source precipitation and runoff products. In addi-
tion, WMV (50%) and EKF (20%) outperformed WB and 
EW methods in merging data in all river basins. Figure S2 
provides information on some statistical metrics, including 
KGE, NRMSE, and MBE obtained from each precipitation 
and runoff product and four fusion-based models. It can be 
seen that all products and fusion-based models yielded dif-
ferent outputs compared to local observations. For instance, 
EKF fusion-based model outperformed other methods 
(with the lowest NRMSE 0.7 and highest KGE 0.83) for 

Fig. 4  The results of evaluation 
criteria for runoff datasets with 
observed runoff in differ-
ent months and river basins 
(ER: ERA5; GR: GRUN; 
GL: GLDAS; TE: TERRA) 
(1987–2019)
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both precipitation and runoff in Helle, while MERRA2 and 
GRUN products had a good performance for precipitation 
and runoff, respectively, in the Lut Desert river basin. This 
difference may be due to the poor performance of products, 
which were not improved after fusion.

Fusion‑based Hydro‑Meteorological Drought Index 
(FHMDI)

Individual indices including hydrological and meteorologi-
cal drought indices were computed for the selected stations 
and different time scales (e.g., 6, 9, and 12 months). NSRI 
and NSPI appear to be good solutions for the problem of 
probability distribution fitting, because a fixed distribution 
may not always be the best choice. According to Table 3, 
the best probability distribution functions were used 
for precipitation and runoff data of each ground station 

through the Kolmogorov–Smirnov test. Results showed 
no relevance between the datasets and the probability dis-
tribution functions. Hence, NSPI and NSRI were used as 
nonparametric meteorological and hydrological drought 
indices in the river basins of Iran. Then, a composite 
drought index, called FHMDI, was calculated to monitor 
compound hydrological and meteorological drought using 
WB method.

Compound drought modeling based on SAI models

Here, 24 river basins were classified into different clusters 
aiming to attain better composite drought prediction and 
estimation results. The AGNES model provided four clus-
ters based on their feature similarity (FHMDI) (Table 4). 
Figure 6 shows the value of FHMDI12 in all clusters (for all 
river basins) as an example. FHMDI12 variation in monthly 

Fig. 5  Taylor diagrams of 
precipitation data on remotely 
sensed datasets and two fusion-
based models compared to local 
observations in the 1987–2019 
period (left: precipitation, right: 
runoff)
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time series from 1987 to 2019 in all river basins shows that 
the highest drought severity (less than − 2) and extent (100% 
of region or all pixel) occurred in the 1999–2000 period 
(24 months) in all clusters across Iran.

Table 5 demonstrates the statistical error metrics for 
SAI models in FHMDI predictions at a 12-month time-
scale for different clusters in the calibration and valida-
tion stages, as an example. It can be seen that the error 
index differences at the validation stage are negligible for 
the four models in clusters 1, 3, and 4, suggesting that 
they are suitably trained and verified. Although none of 

the models is entirely superior to the others, GPR slightly 
outperformed other models under scenario 1 (MI-8 V) 
with the highest KGE (0.94) and lowest NRMSE (0.06). 
In cluster 2, the ensemble model with the average values 
of KGE = 0.95 and NRMSE = 0.07 had the lowest estima-
tion error under scenario 1 (MI-8 V). Generally, drought 
modeling was satisfactory under scenario 1 in all clusters, 
while it was better in clusters 1 and 2 than in clusters 3 
and 4.

Based on the results, scenario 2 (MI-2  V and WB 
method) also had a good performance (after scenario 1) in 
clusters 1 and 2 (KGE = 0.87 and NRMSE = 0.09), while 
there was no other satisfactory scenario in clusters 3 and 
4. In other words, other scenarios performed poorly in 
clusters 3 and 4. Moreover, the results of the four SAI 
models at different time scales showed that the model per-
formance improved by increasing the time scale (Table S1 
and Table S2; respectively, 6- and 9-month timescales). 
The scatter plots of the estimated and observed 12-month 
FHMDI under scenario 1 are presented in Fig. 7. As can be 
seen, Ensemble and GPR models had a better correlation 
than other models in all clusters.

Table 3  Top probability distribution functions for precipitation and runoff data of selected synoptic and hydrometric station

Synoptic station Distribution function Statistical test 
(KS)

Hydrometric station Distribution function Statistical 
test (KS)

Miyane Gen.Gamma 0.09 Miyane Shrichay Johnson SB 0.14
Takab Gen.Extreme value 0.1 Safakhane Dagum 0.05
Gharakhil Wakeby 0.02 Shirgah Talar Pearson6 0.02
Gorgan Wakeby 0.02 Gorgan Log normal 0.03
Kermanshah Gen.Extreme value 0.16 Tangsareban Log normal(3p) 0.03
Omidieh Power function 0.16 Gargar Log normal 0.02
Koohrang Gen.Extreme value 0.16 Ghale shahrokh Log-Logistic 0.05
Mashhad Gen.Extreme value 0.13 Moshang Log-Logistic 0.07
Shiraz Wakeby 0.21 Band Bahman Burr 0.06
Sirjan Wakeby 0.21 Jamjaz&Soj Log-Logistic 0.09
Kashan Gen.Extreme value 0.17 Pol Hanjen Johnson SB 0.07
Torbat Heydareh Gen.Extreme value 0.16 Hosein Abad Jangal Wakeby 0.3
Anzali Johnson SB 0.02 Nokhale Wakeby 0.03
Ramsar Wakeby 0.02 Harat bar Johnson SB 0.06
Ghom Gen.Extreme value 0.15 Jalayer Burr 0.05
Aligodarz Wakeby 0.15 Talezang Johnson SB 0.02
Kerman Wakeby 0.21 Godarz&Jirofto Log normal(3p) 0.02
Iranshahr Power function 0.13 Daman Burr 0.03
Chabahar Normal 0.35 Kahir Beta 0.17
Minab Beta 0.28 Berentin Minab Wakeby 0.07
Bandarlenge Power function 0.29 Dezhgan Burr 0.04
Dogonbadan Gen.Logistic 0.2 Chiti Borki Johnson SB 0.03
Bam Power function 0.1 Sorakh Mar Gen.Extreme value 0.14
Abadeh Power function 0.18 Tangbolagh Wakeby 0.11

Table 4  Results of AGNES algorithm for river basin classification

Clusters based on AGNES algorithm River basin number

Cluster 1 29, 42
Cluster 2 24, 25, 26, 27, 28, 

43, 44, 46, 47, 48, 
49, 60

Cluster 3 13, 22, 23, 30, 41, 42
Cluster 4 12, 14, 15, 16
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Compound drought modeling based 
on fusion‑based methods

Four fusion-based methods including WB, EKF, WMV, 
and EW were used for improving the SAI results under 
scenario 1 (since drought modeling had the best perfor-
mance under this scenario). Table 6 presents the results 
of fusion-based methods in predicting FHMDI at the 
12-month time scale for the calibration and validation 
stages in four clusters. WMV had the lowest error for all 
clusters. WMV also had the best results in cluster 3 with 
NRMSE of 0.02 and KGE of 0.99. Based on the NRMSE 
indicator, WMV enhanced the precision of the predicted 
FHMDI by 48%, 60%, 56%, and 45% compared to the 
best SAI model for clusters 1, 2, 3, and 4, respectively. 
Tables S5 and S6 show that fusion methods performed 

poorly in the short-term (6) compared to the long-term 
(12) timescale.

Figure  8 demonstrates the predicated FHMDI at a 
12-month time scale using WMV for four ground stations in 
four clusters. As can be seen, WMV with R2 = 0.99 had the 
best performance in cluster 3. Figure 9 shows that FHMDI 
estimations in the Hamun river basin (as an example) per-
formed better in the 12-month ( R2 = 0.9783 ) than in the 
6-month ( R2 = 0.8033 ) timescale.

Discussion

Precise prediction of precipitation and runoff is a significant 
challenge in the study of drought characterization and moni-
toring (Nassaj et al. 2022). Additionally, drought modeling 

Fig. 6  The change in the 
monthly FHMDI 12 in all 
clusters (for each river basin) in 
monthly time series from 1987 
to 2019
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Table 5  The evaluation criteria for SAI models in estimating 12-month FHMDI for calibration and validation stages in all clusters under differ-
ent scenarios

Cluster Scenario Model input SAI models Calibration Validation

KGE NRMSE MBE KGE NRMSE MBE

1 S1 MI-8 V:
P (TE, ME, GL, and ER) and R (TE, GL, and ER.GR)

Ensemble 0.92 0.04 0.11 0.93 0.06 0.17

SVR 0.76 0.11 0.35 0.87 0.10 0.29

FNN 0.91 0.07 0.24 0.91 0.08 0.24

GPR 0.99 0.01 0.03 0.94 0.06 0.12

S2 MI-2 V-F1:
PFB1 (TE, ME, GL, and ER) and RFB1 (TE, GL, and ER.GR)

Ensemble 0.86 0.07 0.20 0.88 0.09 0.29

SVR 0.68 0.12 0.39 0.83 0.10 0.36

FNN 0.77 0.11 0.37 0.88 0.09 0.37

GPR 0.78 0.11 0.28 0.89 0.09 0.30

S3 MI-2 V-F2:
PFB2 (TE, ME, GL, and ER) and RFB2 (TE, GL, and ER.GR)

Ensemble 0.82 0.08 0.23 0.82 0.09 0.26

SVR 0.46 0.16 0.45 0.68 0.12 0.41

FNN 0.49 0.15 0.45 0.68 0.13 0.47

GPR 0.76 0.10 0.31 0.83 0.09 0.29

S4 MI-2 V-F3:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.85 0.07 0.20 0.85 0.09 0.28

SVR 0.70 0.13 0.39 0.81 0.10 0.39

FNN 0.73 0.12 0.35 0.83 0.11 0.35

GPR 0.83 0.09 0.27 0.84 0.10 0.27

S5 MI-2 V-F4:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.86 0.07 0.16 0.74 0.11 0.35

SVR 0.71 0.12 0.13 0.81 0.12 0.17

FNN 0.76 0.12 0.28 0.83 0.11 0.53

GPR 0.82 0.10 0.86 0.70 0.13 0.13

S6 MI-2 V-selected variables (P:WMV and R:EKF) Ensemble 0.84 0.07 0.16 0.86 0.09 0.33

SVR 0.71 0.12 0.18 0.76 0.12 0.36

FNN 0.77 0.11 0.61 0.83 0.11 0.59

GPR 0.80 0.10 0.45 0.84 0.10 0.11

2 S1 MI-8 V:
P (TE, ME, GL, and ER) and R (TE, GL, and ER.GR)

Ensemble 0.94 0.04 0.11 0.95 0.07 0.18

SVR 0.82 0.10 0.32 0.90 0.10 0.30

FNN 0.91 0.08 0.27 0.91 0.10 0.26

GPR 0.99 0.01 0.03 0.88 0.08 0.20

S2 MI-2 V-F1:
PFB1 (TE, ME, GL, and ER) and RFB1 (TE, GL, and ER.GR)

Ensemble 0.88 0.07 0.24 0.88 0.09 0.26

SVR 0.74 0.12 0.41 0.84 0.11 0.35

FNN 0.83 0.10 0.41 0.89 0.10 0.37

GPR 0.82 0.10 0.36 0.87 0.10 0.31

S3 MI-2 V-F2:
PFB2 (TE, ME, GL, and ER) and RFB2 (TE, GL, and ER.GR)

Ensemble 0.85 0.08 0.23 0.89 0.10 0.34

SVR 0.67 0.15 0.45 0.81 0.16 0.47

FNN 0.72 0.13 0.37 0.83 0.13 0.39

GPR 0.80 0.11 0.40 0.77 0.14 0.41

S4 MI-2 V-F3:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.87 0.07 0.23 0.89 0.10 0.34

SVR 0.76 0.12 0.40 0.87 0.12 0.37

FNN 0.81 0.11 0.40 0.86 0.12 0.36

GPR 0.80 0.11 0.37 0.87 0.12 0.36

S5 MI-2 V-F4:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.88 0.07 0.16 0.88 0.10 -0.12

SVR 0.77 0.13 0.18 0.85 0.11 0.12

FNN 0.80 0.12 0.67 0.84 0.11 0.16

GPR 0.81 0.11 0.45 0.85 0.11 0.19

S6 MI-2 V-selected variables (P:TERRA and R:GRUN) Ensemble 0.81 0.09 0.54 0.88 0.09 -0.15

SVR 0.67 0.14 0.17 0.78 0.14 -0.17

FNN 0.74 0.13 0.45 0.88 0.12 0.25

GPR 0.71 0.13 0.37 0.85 0.13 0.27
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Table 5  (continued)

Cluster Scenario Model input SAI models Calibration Validation

KGE NRMSE MBE KGE NRMSE MBE

3 S1 MI-8 V:
P (TE, ME, GL, and ER) and R (TE, GL, and ER.GR)

Ensemble 0.90 0.05 0.16 0.90 0.07 0.17

SVR 0.73 0.13 0.05 0.85 0.11 0.26

FNN 0.95 0.06 0.15 0.91 0.07 0.19

GPR 0.99 0.01 0.06 0.94 0.05 0.11

S2 MI-2 V-F1:
PFB1 (TE, ME, GL, and ER) and RFB1 (TE, GL, and ER.GR)

Ensemble 0.83 0.08 0.01 0.78 0.11 0.26

SVR 0.63 0.16 0.11 0.76 0.15 0.36

FNN 0.70 0.14 0.21 0.76 0.15 0.37

GPR 0.85 0.08 0.18 0.80 0.12 0.29

S3 MI-2 V-F2:
PFB2 (TE, ME, GL, and ER) and RFB2 (TE, GL, and ER.GR)

Ensemble 0.81 0.09 0.11 0.82 0.12 0.22

SVR 0.65 0.15 0.10 0.77 0.14 -0.11

FNN 0.73 0.13 0.19 0.79 0.13 -0.11

GPR 0.75 0.12 0.18 0.79 0.13 -0.12

S4 MI-2 V-F3:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.76 0.10 0.07 0.60 0.21 0.12

SVR 0.36 0.19 0.12 0.53 0.22 0.16

FNN 0.55 0.16 0.22 0.57 0.23 0.16

GPR 0.84 0.07 0.15 0.49 0.23 0.15

S5 MI-2 V-F4:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.75 0.10 0.14 0.79 0.10 0.48

SVR 0.43 0.18 0.16 0.60 0.15 0.58

FNN 0.56 0.16 0.15 0.72 0.13 0.45

GPR 0.75 0.11 0.66 0.82 0.11 0.29

S6 MI-2 V-selected variables (P:WMV and R:EKF) Ensemble 0.82 0.08 0.10 0.85 0.11 0.21

SVR 0.46 0.18 0.19 0.43 0.17 0.20

FNN 0.66 0.14 0.38 0.60 0.15 0.11

GPR 0.74 0.12 0.26 0.79 0.12 0.12

4 S1 MI-8 V:
P (TE, ME, GL, and ER) and R (TE, GL, and ER.GR)

Ensemble 0.89 0.04 0.06 0.84 0.08 0.20

SVR 0.74 0.12 0.18 0.84 0.12 0.34

FNN 0.88 0.08 0.05 0.87 0.11 0.21

GPR 0.98 0.02 0.03 0.95 0.06 0.15

S2 MI-2 V-F1:
PFB1 (TE, ME, GL, and ER) and RFB1 (TE, GL, and ER.GR)

Ensemble 0.70 0.10 0.17 0.63 0.17 0.41

SVR 0.50 0.16 0.33 0.66 0.18 0.50

FNN 0.53 0.15 0.24 0.65 0.16 0.49

GPR 0.54 0.15 0.30 0.60 0.17 0.42

S3 MI-2 V-F2:
PFB2 (TE, ME, GL, and ER) and RFB2 (TE, GL, and ER.GR)

Ensemble 0.69 0.10 0.12 0.64 0.13 0.38

SVR 0.37 0.17 0.22 0.60 0.19 0.45

FNN 0.56 0.15 0.20 0.65 0.14 0.41

GPR 0.61 0.13 0.17 0.63 0.14 0.41

S4 MI-2 V-F3:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.68 0.11 0.15 0.66 0.16 0.49

SVR 0.41 0.17 0.33 0.57 0.18 0.48

FNN 0.57 0.15 0.24 0.68 0.16 0.44

GPR 0.60 0.13 0.28 0.66 0.16 0.47

S5 MI-2 V-F4:
PFB3 (TE, ME, GL, and ER) and RFB3 (TE, GL, and ER.GR)

Ensemble 0.71 0.10 0.17 0.49 0.19 -0.20

SVR 0.26 0.18 0.36 0.52 0.18 -0.20

FNN 0.49 0.15 0.35 0.48 0.19 -0.21

GPR 0.68 0.12 0.18 0.59 0.19 -0.16

S6 MI-2 V-selected variables (P:TERRA and R:GRUN) Ensemble 0.65 0.11 0.10 0.68 0.14 0.67

SVR 0.30 0.18 0.14 0.36 0.19 0.46

FNN 0.35 0.17 0.20 0.44 0.17 0.11

GPR 0.45 0.16 0.15 0.54 0.16 0.19
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is essential for mitigating its impacts, informing the pub-
lic about its consequences, and planning water resources 
(Docheshmeh Gorgij et al. 2022).

Several studies have evaluated the performance of 
different gridded precipitation datasets over Iran, unlike 
runoff. Among these studies, one conducted by Saemian 

Fig. 7  The performance of SAI 
models in estimating 12-month 
FHMDI in different clusters 
(cluster 1: South Baluchestan, 
cluster 2: Mehran-Kal, cluster 
3: Lake Namak, and cluster 4: 
Haraz-Ghareso river basins) 
for all data (1987–2019) under 
scenario 1

Table 6  The evaluation criteria 
for four fusion models in 
estimating 12-month FHMDI 
for calibration and validation 
stages under scenario 1

Time scale Cluster Fusion models Calibration Validation

KGE NRMSE MBE KGE NRMSE MBE

12 1 Wavelet-Based 0.87 0.04 0.11 0.86 0.05 0.14
Weighted Majority Voting 0.99 0.02 0.05 0.97 0.03 0.03
Extended Kalman Filter 0.96 0.04 0.12 0.89 0.05 0.15
Entropy Weight 0.91 0.01 0.07 0.84 0.07 0.16

2 Wavelet-Based 0.92 0.05 0.14 0.91 0.06 0.13
Weighted Majority Voting 0.98 0.04 0.08 0.97 0.04 0.07
Extended Kalman Filter 0.95 0.05 0.11 0.93 0.06 0.09
Entropy Weight 0.91 0.05 0.17 0.84 0.09 0.18

3 Wavelet-Based 0.92 0.04 0.10 0.90 0.05 0.12
Weighted Majority Voting 0.97 0.02 0.05 0.95 0.02 0.05
Extended Kalman Filter 0.94 0.04 0.10 0.91 0.04 0.11
Entropy Weight 0.90 0.07 0.11 0.88 0.08 0.12

4 Wavelet-Based 0.94 0.05 0.13 0.91 0.04 0.12
Weighted Majority Voting 0.97 0.03 0.10 0.96 0.03 0.10
Extended Kalman Filter 0.93 0.05 0.14 0.90 0.04 0.12
Entropy Weight 0.92 0.07 0.17 0.90 0.06 0.14
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et al. (2021) demonstrated the high accuracy of MERRA2 
over Iran, which aligns with the findings of this research. 
Similar conclusions have been reported by other studies 
regarding the accuracy of MERRA2 in various regions 
worldwide such as Chen et al. (2019), Kuswanto and 
Naufal (2019), Le et al. (2020), Odon et al. (2019), and 
Ullah et al. (2021).

Our findings regarding the combination of multiple pre-
cipitation datasets align with the results reported by Beck 
et al. (2017), Xu et al. (2020), and Fooladi et al. (2023). 
These studies also demonstrated that combining multiple 
precipitation datasets resulted in higher accuracy compared 
to relying on a single dataset alone. It is important to note 
that there is currently no existing study specifically focused 

on the combination of runoff datasets for Iran or any other 
region. Therefore, our research on the assessment of run-
off, particularly in Iran, represents a novel contribution to 
the field.

The performance of FHMDI at all river basins was also 
measured against numerous drought events in Iran during 
1998–2001(Morid et al. 2006; Hosseini et al. 2023) which 
confirmed their efficiency (composite drought index) in 
drought monitoring (as can be observed at the next section).

Previous studies such as Mishra and Desai (2006), Morid 
et al. (2007), Bacanli et al. (2009), and Marj and Meijerink 
(2011) have provided evidence supporting the effectiveness 
of machine learning models in accurately forecasting drought. 
These studies highlight the potential of machine learning 

Fig. 8  Predicted 12-month 
FHMDI using remotely sensed 
datasets based on WMV in four 
river basins from different clus-
ters for all data (1987–2019)
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models to capture the complex relationships between mete-
orological and hydrological variables and drought occurrence. 
Among the various models used in research studies, the Gauss-
ian Process Regression (GPR) model has demonstrated high 
performance in several research studies (Sihag et al. 2017; 
Mishra and Kushwaha 2019; Shabani et al. 2020; Ghasemi 
et al. 2021) similar to our results.

Our findings regarding the effectiveness of fusion-based 
models in accurately meteorological forecasting drought at 
different time scales are consistent with the results reported 
by Alizadeh and Nikoo (2018) and Fooladi et al. (2021). In 
other words, the fusion-based model application improved the 
accuracy of forecasting compared to all SAI models alone.

Conclusion

This study investigated four fusion-based methods for 
improving the accuracy of precipitation and runoff evalu-
ation with low uncertainty and estimation of FHMDI using 

different remotely sensed precipitation and runoff products. 
In addition, the study compared the performance of single 
and composite products and single and composite models 
under different scenarios based on the four proposed fusion-
based models using remotely sensed data versus ground-
based FHMDI estimations at different timescales. The 
results indicated that while single products showed a good 
performance in some river basins, some fusion-based mod-
els improved the accuracy of dataset products compared to 
local measurements. However, the fusion-based assessment 
showed that fusing datasets did not perform satisfactorily in 
some river basins due to the high uncertainty of some single 
products. SAI models showed acceptable performance in 
composite drought prediction, especially at the 12-month 
timescale in clusters 1 and 2 under scenario 1. Fusion-based 
models significantly improved the accuracy of FHMDI esti-
mation and research results compared to those of SAI mod-
els based on local measurement, especially in cluster 3. The 
WMV fusion-based method, with the lowest error, had a 
good performance in comparison with other products and 

Fig. 9  Predicted 6, 9, and 
12-month FHMDI using 
remotely sensed datasets based 
on WMV in Karun river basin 
from different clusters for all 
data (1987–2019)



25656 Environmental Science and Pollution Research (2024) 31:25637–25658

other SAI and fusion-based models. In addition, the estima-
tion of FHMDI 12 had higher precision than FHMDI 6 as 
shown in other research. Overall, the WMV model was the 
best fusion framework with good performance in predicting 
FHMDI using remotely sensed datasets compared to ground 
observations, so it can be adopted as a reliable and accurate 
method for composite drought modeling.
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