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Abstract
In recent years, heavy metal contamination of soils has become a major concern in China due to the potential risks involved. 
To assess environmental pollution and human health risks in a typical heavy metal polluted site in Jiangxi Province, a 
thorough evaluation of the distribution, pollution levels, and sources of heavy metals in soils of the Yangmeijiang River 
watershed was conducted in this study. Positive matrix factorization and Monte Carlo simulation were used to evaluate the 
ecological and human health risks of heavy metals. The research findings indicate that heavy metal pollution was the most 
severe at the depth of 20–40 cm in soils, with local heavy metal pollution resulting from mining and sewage irrigation. The 
high-risk area accounted for 91.11% of the total area. However, the pollution level decreased with time due to sampling 
effects, rainfall, and control measures. Leaf-vegetables and rice were primarily polluted by Cd and Pb. The main four sources 
of heavy metals in soils were traffic emission, metal smelting, agricultural activities and natural sources, mining extraction, 
and electroplating industries. Heavy metals with the highest ecological risk and health risk are Cd and As, respectively. 
The non-carcinogenic and carcinogenic risks of children were 7.0 and 1.7 times higher than those of adults, respectively. 
Therefore, children are more likely to be influenced by heavy metals compared to adults. The results obtained by the risk 
assessments may contribute to the identification of specific sources of heavy metals (e.g., traffic emissions, metal smelting, 
mining excavation, and electroplating industries). Additionally, the environmental impacts and biotoxicity associated with 
various heavy metals (e.g., Cd and As) can also be reflected. These outcomes may serve as a scientific basis for the pollution 
monitoring and remediation in the mining-affected areas.
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Introduction

Land is a crucial resource for human production and live-
lihood, and with advancements in agriculture and indus-
trial technology, soil heavy metal pollution has become an 
increasingly significant issue (Hu et al. 2020). Soil heavy 
metal pollution is characterized by its wide extent of con-
tamination, long duration, poor degradation, and strong 
concealment, causing serious harm to soil quality, crop 
yield, groundwater quality, and human health (Dong et al. 
2017). Uncontrolled and unreasonable mining activities are 
the primary cause of soil heavy metal pollution in develop-
ing countries, leading to the encroachment of vast amounts 
of land resources and waste production, including dust and 
acidic wastewater, which increase soil heavy metal pollution 
(Xiao et al. 2017). Mining activities, particularly in indus-
trial and agricultural areas, have been well-documented as 
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one of the primary sources of heavy metals in soil (Long 
et al. 2021).

Source analysis is an essential part of heavy metal pol-
lution management, providing targeted advice (Dong et al. 
2021). Previous studies conducted the source analysis of 
heavy metals through the sampling methods or multivari-
ate statistical analyses (Liu et al. 2020; Qadeer et al. 2020). 
However, the sampling methods require large amounts of 
sample data and the accurate numerical models (Xu et al. 
2022; Yang et al. 2023). This can be time-consuming and 
costly. Multivariate statistical analyses, including cluster 
analysis, principal component analysis, and positive matrix 
factorization (PMF), are frequently used to identify the 
sources of heavy metals (Ogundele et al. 2016). Among 
these methods, PMF is widely employed in source analysis 
due to its simplicity and robustness in dealing with missing 
or inaccurate data (Men et al. 2020; Sun et al. 2019). Unlike 
other methods, PMF uses least squares to identify the major 
source of pollution and their contributions, eliminating the 
need for source profiles (Demirsöz et al. 2022). For example, 
Huang et al. (2021) used PMF to identify that the heavy met-
als in the soil of a Shanghai urban park came from natural 
sources, agricultural activities, industrial production, and 
traffic emissions. Similarly, Zhao et al. (2022) used PMF to 
determine that agricultural activities were the main source 
of heavy metals in agricultural soils.

Soil heavy metal contamination has become a growing 
concern due to its potential impact on environmental pol-
lution levels and human health (Fei et al. 2017; Wang et al. 
2012). To evaluate heavy metal pollution, various indexes 
such as the single pollution index, Nemerow pollution index, 
geoaccumulation index, enrichment index, and potential eco-
logical risk index are commonly used (Hakanson 1980; Yang 
et al. 2018). Non-carcinogenic and carcinogenic health risk 
indexes are also utilized to assess the effects of heavy metal 
pollution on human health (MohseniBandpi et al. 2018; 
Yang et al. 2023). Monte Carlo simulation is frequently 
employed in health risk assessments as it takes into account 
the uncertainty of heavy metal concentration and exposure 
parameters (Saha et al. 2017). For example, Jaafarzadeh 
et al. (2023) used the 95% percentile of the results from 
the Monte Carlo simulation to determine the health risk of 
heavy metals and found no significant non-carcinogenic 
health risks to humans. Yu et al. (2022) determined that the 
probability of a child’s carcinogenic risk index exceeding the 
limited value was 30.75% based on Monte Carlo simulation 
and positive matrix factorization (PMF).

The other factors (e.g., the depth and spatial distribution 
of heavy metals and ecological risks in soils and plants) 
should also be taken into consideration in the heavy metal 
pollution management (Li et  al. 2021; Liu et  al. 2016; 
Wang et al. 2019). The previous studies of risk assessments 
mainly focused on determining the pollution sources or the 

population groups that are most likely to be affected. For 
example, Wu et al. (2021) evaluated the health risks of soil 
heavy metals in an industrial city after the development of 
environmental protection strategies. Inaccurate conclusions 
about treatment effects may arise due to the absence of 
source analysis and ecological assessments. In consequence, 
a comprehensive analysis of heavy metal pollution in mining 
areas is required.

Chongyi County in Jiangxi Province is one of the major 
mining areas that has caused serious soil, water, and health 
impacts from heavy metal pollution. The objectives of this 
study in this area are to (1) provide ecological risk assess-
ments and health risk assessments based on soil samples 
collected from the Yangmei River watershed; (2) examine 
the relationship between the spatial distribution of industrial, 
mining, and agricultural areas in the Yangmei River water-
shed and heavy metal pollution; (3) identify the sources of 
heavy metals in soil using PMF; and (4) determine the heavy 
metal that poses the highest health risk to humans.

Materials and methods

Study area

The Yangmei River Watershed, located in Chongyi County, 
southeastern China, covers an area of 281 km2 and spans 
from 25°33′N to 25°45′N and 114°18′E to 114°38′E. The 
river stretches 57 km from west to east and receives an aver-
age annual rainfall of 1510 mm. The region experiences a 
dry period from October to February and a wet period from 
April to June. The middle and eastern portions of the water-
shed are rich in minerals such as tungsten, coal, rare earths, 
lead–zinc, and copper-zinc, with 13 key mining industries 
located in the upstream area (Fig. 1). Seven of these indus-
tries have been closed since 2016 (Fig. 1).

Sampling and analysis

Soil sample analysis

In this study, 37 sampling points were selected along the 
mainstream of the river based on the field survey with con-
sideration of the distribution of farmland and mining areas 
(Fig. 1). Soil samples were generally collected at depths 
of 0–20 or 20–40 cm, with the deepest sampling depth not 
exceeding 50 cm (Huang et al. 2018). Thus, soil samples 
were collected within 50 m of the riverbanks at depths of 
0–20, 20–40, and 40–60 cm in this study. The samples col-
lected in September 2018, December 2018, March 2019, and 
May 2019 were used to investigate the local soil pollution 
by heavy metals.
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Fig. 1   Map of sampling sites and main mine factories in the Yangmei River
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Plant sample analysis

56 leaf-vegetable samples and 15 rice samples were collected 
from the farmland around the sampling points. The edible 
parts of leaf-vegetables and rice were washed and dried in 
an oven at 150 ℃ for half an hour. Then they were dried at 
60 ℃ for 72 h until a constant weight was obtained. The leaf-
vegetables and rice were ground pass through a 1.0-mm sieve 
after the drying process. The collected soil samples were air-
dried, ground and passed through a 100-mesh nylon sieve. 
These soil samples were moistened with deionized water in 
the digestion tank. Crop samples were digested with a mixture 
of HNO3-H2O2 in a closed PTFE (poly-tetrafluoroethylene) 
system at 120 ℃ for 10 h, and then they were analyzed together 
with soil samples. The soil samples were digested by adding 
a mixture of HNO3-HF in an acid-proof ventilated area. After 
microwave-assisted acid digestion, the concentration of the 
samples was determined by inductively coupled plasma mass 
spectrometry (Plasma MS). The control experiments used the 
same pretreatment method. Each sample was repeated 3 times.

Spatial distribution analysis

Table S1 shows the test results of the normality of data. Inverse 
distance weighting (IDW) is adopted to investigate the spatial 
distribution of heavy metals as the heavy metals did not obey 
the normal distribution. Additionally, Spearman’s correlation 
analysis was used to investigate patterns of similarity between 
the distribution of heavy metals and to determine the correla-
tion among different heavy metals. The distributions of the 
original variables were not required as it is a non-parametric 
test (Wang et al. 2019).

Ecological risk assessment

Single pollution index and Nemerow pollution index

Two risk assessment indexes, namely, the single pollution 
index and the Nemerow pollution index, were used to evalu-
ate the pollution level of heavy metals in the study area. The 
single pollution index is a widely adopted international index 
for assessing soil heavy metal pollution, which can be used 
to identify the primary sources of pollution (Gao et al. 2020). 
The Nemerow pollution index is usually used to investigate 
polymetallic pollution. These two indexes can be given by 
(Zhang et al. 2021).

(1)Pi=Ci
∕B

i

(2)Pn=

√

(P
2

i
+P2

imax
)∕2

where Pi is the single pollution index of heavy metal i; Ci is 
the measured concentration of heavy metal i ( mg ⋅ kg−1 ) and 
Bi is the background value (BV) of heavy metal i. The BVs 
are the heavy metal concentrations of the natural compound 
in soils, also known as the natural geographic concentrations 
(Duman et al. 2022). Additionally, the heavy metal BVs only 
depend on the soil substrates and forming processes, which 
are not related to human activities. Pn is the Nemerow pol-
lution index; 

−

Pi is the average value of the single pollution 
index of each pollutant in soil, and Pimax is the maximum 
value of the single pollution index. The classifications of 
contamination levels for Pi and Pn were referred to the study 
of Zhang et al. (2021).

There are two ways to estimate BV: geochemical method 
and statistical method (Santos-Francés et al. 2017). He et al. 
(2006) followed the geochemical method and collected over 
700 soils samples. The effects of the natural factors such as 
the parent material, topography, climate, and hydrological 
conditions on BVs of 12 different heavy metals are high-
lighted. The BVs for different regions of the Jiangxi Province 
were evaluated. It should be noted that BVs is assumed to 
be the fixed values in this study as BVs do not change much 
within a county (e.g., < 10%). BVs of the main heavy metal 
pollutants Pb, Cr, Cd, As, Hg, Cu, Zn, and Ni in Chongyi 
County are 32.10, 48.00, 0.10, 10.40, 0.08, 20.80, 69.00, and 
19.00 ( mg ⋅ kg−1 ), respectively.

Geoaccumulation index

The geoaccumulation index Igeo was mainly used to study 
the damage to the water environment caused by pollutants 
in bottom sediments, which was later used in the evaluation 
of soil heavy metal pollution (Doabi et al. 2018). The effects 
of geological changes and human activities on heavy metal 
pollution in soils can be reflected by the value of Igeo. Addi-
tionally, Igeo is defined as follows (Muller 1969):

where k is the correction coefficient that reflects the litho-
genic effects. It is reported that the natural fluctuations in 
the concentrations of specific substances in the environment 
and anthropogenic impacts can be better reflected when k 
is equal to 1.5 (Duman et al. 2022; Santos et al. 2020). In 
addition, the classifications of the geoaccumulation index 
was based on the study of Doabi et al. (2018).

Potential ecological risk index

The potential ecological risk index (RI) is proposed to 
evaluate the pollution of soil heavy metals and their eco-
logical hazards based on the environmental characteristics 

(3)Igeo=log2[Ci
∕(k × B

i
)]
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(Hakanson 1980). The calculation equation of RI is given as 
follows (Kumar et al. 2021):

where Ei is the single potential ecological risk index for 
heavy metal i and Ti is the toxic response coefficient. The 
values of Ti were determined based on the study of Hakan-
son (1980). The classifications of levels for RI and Ei were 
referred to Kumar et al. (2021)

Health risk assessment

The U.S. Environmental Protection Agency (EPA) model 
was used to investigate the health risks of soil heavy metal 
pollution. The calculation formulas of the three exposure 
pathways are as follows (USEPA 1997):

where ADDing,ADDinh , and ADDderm are the daily exposure 
dose to heavy metals via ingestion, inhalation and dermal 
contact, respectively (mg∙kg−1∙day−1). Other parameters can 
be found in the relevant standards (USEPA 2011, USEPA 
1997; USEPA 2009).

where HQi and CRi are the non-carcinogenic and carcino-
genic health risk indexes of heavy metal i , respectively, HI 
and TCR​ are the sum of HQi and CRi, respectively, and RfDi 
and SFi are the chronic reference dose of toxicant and the 
carcinogenic slope factor, respectively.

According to the different classifications of chemical sub-
stances stipulated by the US EPA, the evaluation standards 
are different. For non-carcinogenic risk, if the values of HQ 
(of HI) > 1, it suggests a potential adverse health effect. As 
for carcinogenic risk, humans will be posed the risk of can-
cer when the values of CR (or TCR​) > 10−4. In contrast, a 
value of CR (or TCR​) below the acceptable threshold of 10−6 
means that heavy metals pose a negligible risk to humans 
(MohseniBandpi et al. 2018). Additionally, due to differ-
ent living habits and body structures, different exposure 

(4)RI =
∑

Ei =
∑

Ti × Ci∕Bi

(5)ADDing = (Ci × IngR × EF × ED)∕(BW × AT) × 10−6

(6)ADDinh = (Ci × InhR × EF × ED)∕(PET × BW × AT)

(7)
ADDderm = (Ci × SA × SL × ABS × EF × ED)∕(BW × AT) × 10−6

(8)
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n
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n
∑

i=1

(
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)

∕RfDi

(9)

TCR =

n
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i=1

CRi =

n
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i=1

(

ADDing + ADDinh + ADDderm

)

× SFi

parameters were used in health risk assessments for adults 
and children, respectively (Fei et al. 2017).

Source analysis

Positive matrix factorization (PMF) has been widely used to 
identify the sources of heavy metal pollution. The concen-
tration of the sample can be decomposed by the following 
function based on PMF (Lv 2019):

where gj is the contribution of source j, n is the number 
of sources, fj,i is the amount of heavy metal i produced by 
source j, and ei is the residual error.

The object function Q is assumed to be the sum of the 
residual errors of all samples, and it can be calculated by the 
following function (Lv 2019):

where es,i and us,i are the residual error and uncertainty of 
heavy metal i in sample s, respectively.

When the concentration of heavy metal is below or equal 
to the corresponding method detection limit (MDL), the 
uncertainty is given by

Otherwise, it can be given by

where σ is the relative standard deviation and c is the con-
centration of heavy metal.

The USEPA PMF 5.0 software was used for source 
analysis.

Probability risk analysis

Monte Carlo simulation is an approach to characterize 
uncertainty and variability in health risk assessment through 
statistical sampling techniques (Kroese et al. 2014). The risk 
calculation was repeated 10,000 times for all the different 
random values entered using the Crystal Ball software in 
EXCEL (version 11.1). The distributions and values of 
Monte Carlo parameters (except for heavy metal concen-
trations) used in the health risk assessment can refer to 
Saha et al. (2017). 95th percentiles of HI and TCR​ were 
used as a reference point for human health risk, with HI and 
TCR​ allowed to have the values of 1.0 and 10−6 as the final 

(10)Ci =

n
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judgment on the health risk of the heavy metals (Jaafarzadeh 
et al. 2023).

Results and discussion

Descriptive statistics of heavy metals in soils

To understand the basic situation of local heavy metal pollu-
tion, descriptive statistical analysis was conducted on the soil 
heavy metal concentrations determined at different times. 
According to Table 1, the mean concentrations of all heavy 
metals were higher than BVs. In other words, the study area 
had been affected by heavy metals. Additionally, the maxi-
mum values of all heavy metals were observed at the depths 
of 20–40 cm. It should be noted that the coefficients of vari-
ation for all heavy metals at the depth of 20–40 cm were 
larger than those at other depths. According to Liu et al. 
(2016), the coefficients of variation reflect the influence of 
human activities on the distribution of heavy metals and 
an increase in coefficients of variation indicates increased 
disturbance from humans. Therefore, it can be demonstrated 
that the heavy metals in soil at the depth of 20–40 cm were 
most likely to be influenced by human activities (Liu et al. 
2016). However, it should be noted that the ecosystem and 
human beings are more likely to be influenced by the soil 
at the depth of 0–20 cm (Long et al. 2021). Additionally, it 
has been proved that people are mainly exposed to surface 
soil (Jiang et al. 2017). The ecological and health risks of 
heavy metals in soil were assessed based on the surface soil 
samples (Xiao et al. 2017). For example, Wu et al. (2020) 
assessed the health risks of agricultural soil in the industrial 
city based on the 28 soil samples collected at the depth of 
0–20 cm. Thus, all of the assessments in this paper are based 

on the heavy metal concentrations of the soil samples at 
depths of 0–20 cm.

As is shown in Table S2, the mean concentrations of Pb, 
Cr, Cd, As, Hg, Cu, Zn, and Ni in the first sampling were 
86.96, 90.36, 4.66, 85.45, 0.071, 156.74, 282.05, and 36.71 
(mg ∙kg−1 ). All of them except Hg were larger than BVs. 
The concentrations of Pb, Cr, Cd, As, Cu, Zn, and Ni were 
2.71, 1.88, 46.60, 8.22, 7.54, 4.09, and 1.93 times bigger 
than that of their BVs, respectively. Only the concentration 
of Hg was 0.89 lower than BV. Compared to the first sam-
pling, the mean concentrations of all the soil heavy metal 
concentrations in the second sampling except Cd and Hg 
were decreased by 2.39% to 38.06%. The Hg concentra-
tion remained relatively stable, while the Cd concentration 
exhibited a slight increase. It is noted that the concentrations 
of all heavy metals are larger than that of the background 
values. The mean concentrations of Cr, Cd, As, Cu, Zn, and 
Ni exceeded BVs in the third sampling campaign. The mean 
concentrations of Cd, As and Cu exceeded the soil BVs in 
the fourth sampling campaign.

It was noted that the mean concentrations of heavy metals 
decreased with time. For example, the mean concentration 
of Cd and As decreased from 4.66 and 85.45 (mg/kg) to 0.97 
and 54.82 (mg/kg). It is noted that only a few representa-
tive points (e.g., near the source or town) were resampled 
during the third and fourth sampling events. Comparisons 
of, with the average heavy metal concentrations decreased 
by 10–20% when comparing the data from the same sam-
pling points in the first and fourth samplings. This decreas-
ing trend may be attributed to the control of wastewater 
discharge process and the amount of pesticide used on the 
farmland by the local government. For example, the emis-
sion of heavy metals in Chongyi County was decreased from 
1568.84 kg in 2018 to 1470.18 kg in 2019. It is noted that the 

Table 1   Profiles of heavy 
metals at different depths in the 
study area (mg/kg)

Depth Statistic Cu Pb Zn Cd Ni Cr Hg As

Minimum 38.51 26.26 82.04 0.62 12.96 38.03 0.004 17.86
Maximum 462.73 224.82 1029.29 21.62 81.7 162.04 0.203 405.87

0–20 cm Mean 156.74 86.96 282.05 4.66 36.71 90.36 0.071 85.45
SD 124.87 40.96 206.24 3.85 15.53 33.04 0.056 69.19
CV (%) 79.67 47.11 73.12 82.62 42.3 36.57 78.15 80.98
Minimum 25.6 18.88 55.74 0.63 16.15 45.81 0.002 17.91
Maximum 701.65 401.19 1301.4 22.4 131.25 529.99 0.695 388.69

20–40 cm Mean 164.26 90.01 306.57 5.21 38.94 99.96 0.082 113.27
SD 179.29 74.01 316.83 5.28 19.04 71.49 0.107 86.74
CV(%) 109.15 82.23 103.35 101.27 48.9 71.52 130 76.58
Minimum 26.46 21.81 54.61 0.39 20.18 56.98 0.004 26.66
Maximum 358.26 245.94 529.1 7.33 75.89 168.01 0.302 159.45

40–60 cm Mean 122.1 71.04 202.62 2.86 36.93 90.07 0.071 89.15
SD 113.55 55.73 144.33 1.75 15.15 34.32 0.077 37.61
CV(%) 93 78.45 71.23 61.1 41.02 38.11 107.64 42.19
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physical transportation and chemical treatment of the slag 
carried out by the local government effectively reduced the 
adverse effects. In addition, controlling the use of pesticides 
and recycling packaging wastes could also contribute to the 
heavy metal management. Zhou et al. (2020) reported that 
the use of fertilizers and pesticides might be the main source 
of heavy metals in agricultural land.

The decrease of soil heavy metal concentrations might 
be induced by the variation of rainfall amount as well. Slag 
was one of the main sources of soil heavy metals, and rain-
fall could accelerate the transport of pollutants in slag (Vil-
lanueva et al. 2016). The first sampling was at the end of 
the wet period with relatively abundant rainfall. The fourth 
sampling was at the end of the dry season with relatively lit-
tle rainfall. The rainfall of the fourth sample decreased suc-
cessively, which might be attributed to the reduction of the 
heavy metal pollution of soil. Zhang et al. (2018) found that 
heavy rainfall and long-lasting rainfall can cause soil heavy 
metal pollution aggravation. However, compared to human 
activities, their study showed that the impacts of rainfall 
were relatively small.

Spatial distribution characteristic analysis of heavy 
metals in soils

Figure 2 shows the spatial distribution maps of 8 heavy met-
als. The peak values of Cr and Ni were both located in the 
west side of the watershed, indicating similar distribution 
patterns. As, Cd, Cu, and Zn, on the other hand, had peak 
areas in the middle and west of the watershed, while Hg 
was concentrated in the south-middle and east. Pb was well 
dispersed throughout the studied areas, likely due to the high 
concentration of tungsten ore in Chongyi County, where Pb 
was found to be evenly distributed around the ore. Lei et al. 
(2022) noted that during the mineralization of tungsten ore, 
cations such as Ca2+, Fe2+, Mn2+, and Pb2+ could combine 
with WO4

2−, leading to high concentrations of Pb around 
tungsten ore. This is likely one of the main reasons for the 
high background value (BV) of Pb observed in this study.

The correlation analysis results, presented in Fig.  3, 
showed high correlations between Cr and Ni, Cd and Cu, 
Cd and Zn, and Cu and Zn with correlation coefficients of 
0.937, 0.837, 0.914, and 0.913, respectively. Moderate cor-
relations were found between Pb and Cd, Pb and As, Pb and 
Cu, Pb and Zn, Cd and As, As and Cu, As and Zn, and Hg 
and Ni with correlation coefficients of 0.735, 0.609, 0.637, 
0.711, 0.732, 0.757, 0.706, and 0.439. There were two main 
reasons for the correlation among the distribution of soil 
heavy metal content: (i) natural causes: Chongyi County was 
rich in mineral resources, and the distribution of minerals 
itself had some correlation. For example, the distribution 
of Cu and Zn, Pb and Zn itself was correlated as there were 
copper-zinc and lead–zinc mines in the area. The similar 

correlation between Zn and Cu was reported by Jiang et al. 
(2021) who suggested that these two elements had a complex 
contamination relationship or homologous relationship with 
each other and might experience similar geochemical effects. 
(ii) Anthropogenic causes: it can be seen from Fig. 1 that 
the distribution of the industries was concentrated in the 
middle and west of the study area, which might contribute 
to the higher concentration of certain kinds of heavy metal 
pollution in the middle and west sides of the watershed. The 
human activities in the agricultural areas of the eastern and 
southern parts of the watershed led to the peak formation of 
heavy metals contained in the fertilizers into the soil. It was 
the main reason for the increase in the concentration of Hg 
in soils as the distribution of the peak concentration areas 
of Hg was the same as that of agricultural areas. In addition, 
the use of industrial wastewater for irrigation in agricultural 
areas had led to a significant increase in the concentration of 
heavy metals in the soil. The influence of land-use types on 
the distribution of heavy metals had also been proved by Dai 
et al. (2019). However, Yamaguchi et al. (2003) found that 
the main source of Hg was from the atmosphere rather than 
industrial and agricultural enterprises in the upper Thames, 
in contrast to the results of this paper. This was due to the 
small number of local polluting enterprises and limited 
use of fertilizers in their study areas. Dong et al. (2017) 
confirmed that sewage irrigation and the use of mercury-
containing pesticides were the main sources of mercury 
contamination in soil.

Ecological risk assessment

Ecological risk in soil

According to the results presented in Fig. 4 and Table S3, 
the degree of heavy metal pollution in the soil within the 
watershed was highest for Cd, followed by As, Cu, Zn, Pb, 
Ni, Cr, and Hg. The site was found to be seriously polluted 
by Cd and As, with pollution levels at stages III–IV. The 
mean pollution levels of the remaining heavy metals were at 
stages I–III, which exceeded the safety limit. These results 
indicate that there is still a certain level of pollution risk, 
and measures must be taken to reduce heavy metal pollu-
tion. Even for the fourth sampling, which had relatively low 
pollution, the average Nemerow pollution index was 7.08 
(Fig. S1), which was much higher than the specified heavy 
pollution level of 3.00. The local soil heavy metal pollution 
was severe, with Cd and As having the highest Pi values 
and reaching the highest pollution levels due to their high 
concentrations in soils.

Fig. S2 shows that the Igeo results obtained by the same 
variation of Pi were similar. According to Fig. S1, the very 
high risk and high-risk areas accounted for more than 90% 
of the total area, indicating that the local potential ecological 
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Fig. 2   Spatial distribution of soil heavy metal concentrations at the depth of 0–20 cm
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risks were very high, and the ecological pollution was 
severe. The peak areas of the ecological risk index were 
mainly distributed in the central, southwestern, and north-
eastern parts of the watershed, consistent with the peak areas 
of Cd (Fig. 2). Ei of Cd accounted for 87.54% of the overall 
RI (Table S4), indicating that the heavy metal with the high-
est ecological risk to the local area was Cd. The potential 
ecological risks of heavy metals were in the order of Cd > 
As > Hg > Cu > Pb > Ni > Zn > Cr. This can be explained by 
the fact that the mean concentration of Cd in soils was 46.60 
times higher than BV. The high ecological risk of Cd might 
also be attributed to its large toxic response coefficient. It 
should be noted that similar phenomena have been reported 
in many industrial areas in China (Makokha et al. 2016; 
Rao et al. 2021). For instance, Rao et al. (2021) reported a 
serious ecological pollution caused by Cd in Houguan Lake, 
which was linked to the large discharge of pollutants from 
local industrial areas and the spraying of cadmium-contain-
ing pesticides during fish farming.

Ecological risk in plant

According to Fig. S3, the average concentrations of Pb, Cr, 
Cd, As, and Hg in leaf-vegetables were found to be 3.90, 
3.89, 6.44, 2.31, and 1.73 times higher than their maximum 
allowable concentrations (MAC) in China (MEP 2014). 
Similarly, the mean concentrations of Pb, Cd, and As in 
rice were 3.60, 5.84, and 1.90 times higher than MAC, 
respectively. In contrast, the average concentrations of Cr 

and Hg were only 0.89 and 0.21 times higher than MAC. 
While heavy metals are known to be easily and largely accu-
mulated in rice due to their absorption capacity and metal 
bioavailability, we found that heavy metal pollution was 
more serious in leaf-vegetables. This difference could be 
due to the basic physical and chemical properties of upland 
and paddy that affect the chemical transformation and bio-
availability of heavy metals. For instance, plants in paddy 
fields are more likely to be polluted by Cd and Pb under wet 
conditions (Ok et al. 2011). The higher foliar deposition of 
heavy metals is the main cause of more serious pollution in 
leaf-vegetables. Xu et al. (2022) found that foliar deposition 
was the primary way for plants to absorb heavy metals from 
nature, and leaf-vegetables with larger leaves were more 
prone to induce foliar deposition than rice. Additionally, Tu 
et al. (2020) reported that leaf-vegetables were more likely 
to absorb heavy metals from the soil and air due to their 
larger leaves, faster growth rates, and transpiration. It should 
be noted that the anthropogenic activities (e.g., the mining 
excavation and traffic emissions) can significantly influence 
the foliar deposition (Adhikari et al. 2022).

The concentrations of Cd and Pb in both leaf-vegetables 
and rice were found to be much higher than MAC, which 
is consistent with the findings of Li et al. (2021) that plants 
are more likely to be polluted by Cd and Pb. Typically, the 
concentration of Pb accumulated in plants is low due to the 
chemisorption process in the soil (Chen et al. 2008). How-
ever, our study showed that the mean concentrations of Pb 
in leaf-vegetables and rice were 3.89 and 3.60 times higher 

Fig. 3   The result of Spearman’s 
correlation analysis
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than MAC. This could be attributed to the high mean con-
centration of Pb observed in the first sampling, which was 
86.96 times larger than the background value. Cd, on the 
other hand, is easily absorbed by plant roots due to its highly 
transportable capacities (Tu et al. 2020), and Cd in the air 
produced by mining is also an important source for plants 
to absorb by foliar deposition.

Comparison of ecological risks in soil and plant

The average ecological risks for the five heavy metals 
in plants were as follows: Cd > Pb > Cr > As > Hg, based 
on the average pollution of all the plants. The ecological 

risks for the heavy metals in soil were in the order of 
Cd > As > Pb > Cr > Hg. As described in the previous sec-
tion, Cd and Pb had high ecological risks in plants due 
to their high accumulation and transportable capacities. 
In contrast, Cr and As were weakly translocated in soil 
according to Rahman et al. (2021), with Cr being more 
translocated than As. This resulted in a higher ecologi-
cal risk of As in soil compared to Cr, while the ecologi-
cal risk of As in plants was lower than Cr. Mercury was 
found to accumulate mostly on the soil surface and is 
easily taken up by plants, as it is adsorbed by clay miner-
als and organic matter in the soil, according to Pei et al. 
(2022). However, the ecological risk of Hg in plants was 

Fig. 4   The proportion of single pollution indices in each degree for the four sampling times
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not high, possibly because of the low concentration of 
Hg in the soil.

Heavy metal source analysis

Concentration data from 78 soil samples, including 8 heavy 
metals, were used to identify the possible sources of heavy 
metals in soils based on PMF, along with uncertainty data. 
It should be noted that the numbers of soil samples collected 
in September 2018, December 2018, March 2019, and May 
2019 are 41, 19, 11, and 11, respectively. The value of the 
rotation parameter was chosen to be 0.1 to improve the slope 
edge. Five factors were identified, and their contributions are 
presented in Fig. 5.

The first factor (F1) consisted predominantly of Pb 
(58.34%) and Ni (18.63%) and explained 20.3% of the total 
variances. Previous studies have shown that lead in soil can 
be attributed to traffic emissions (Huang et al. 2021), and 
the large amount of Ni in F1 can also be attributed to traf-
fic emissions since it is reported that the main source of Ni 
was the gas emissions produced by cars (Jiang et al. 2017). 
Therefore, F1 can be defined as traffic emissions.

The second factor (F2) was predominated by Ni (61.52%) 
and Cr (59.20%) and explained 17.2% of the total vari-
ances. Numerous studies have proven that Ni and Cr con-
taminations are elements that occur in metal smelting wastes 
(Moreira et al. 2020). For example, Ni is mainly used in the 
manufacture of stainless steel and other anticorrosive alloys 

(Demirsöz et al. 2022). Cr may originate from the metallur-
gical industry (Dong et al. 2021). The concentrations of Ni 
and Cr in the soil were 1.93 and 1.88 times larger than BV, 
respectively, indicating that the Ni and Cr in the soil were 
affected by human activities. This is also illustrated by the 
high value of CV. Thus, F2 can be defined as metal smelting.

The third factor (F3) was predominated by Hg (86.66%), 
explaining 18.2% of the total variances. It was reported that 
the main unnatural source of Hg in the soil was the con-
sumption of pesticides and fertilizers containing mercury 
(Cheng et al. 2020). Therefore, the high CV value of Hg 
induced by human activities could be specified by agricul-
tural activities. However, the average concentration of Hg in 
the soil was 0.89 times lower than BV, indicating the influ-
ence of natural factors. As a result, F3 can be defined as 
the combined effects of agricultural activities and natural 
sources.

The fourth factor (F4) was predominated by As (69.54%) 
and explained 24.8% of the total variances. As mainly comes 
from the sloppy and irregular production processes of some 
mining and metallurgical enterprises (Alloway 2013). 
Although there were also studies indicating that As is likely 
to come from the parent rock material, As in the study area 
highly exceeds BV (Liu et al. 2020). Therefore, F4 can be 
defined as mining extraction.

The fifth factor (F5) was predominated by Cd (69.06%), 
Cu (62.45%), Zn (55.65%), and Pb (28.08%) and explained 
19.5% of the total variances. Previous studies have shown 

Fig. 5   Contribution of sources 
to each heavy metal
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that the typical pollutants of electroplating factories are Cd 
and Cu, and some Zn and Pb are also produced (Martinková 
et al. 2016). There were several electroplating factories dis-
tributed in the Yangmei River watershed. Therefore, we can 
identify the source of Factor 5 as the electroplating industry 
(Fig. 5).

Health risk assessment

Non‑carcinogenic health risk assessment

A Monte Carlo simulation was used to estimate the prob-
abilities of carcinogenic and non-carcinogenic risks associ-
ated with exposure to heavy metals. The resulting probabil-
ity distributions of health quotient (HQ) and hazard index 
(HI) for both adults and children were presented in Fig. 6. 

In addition, Table S5 and Table S6 showed the health risk 
indexes of heavy metals in soil samples without using Monte 
Carlo simulation. The heavy metals were ranked in order of 
As > Cr > Pb > Cd > Cu > Ni > Zn > Hg, with As being the 
most hazardous metal. The HQ values of all heavy metals, 
except for As, were below 1.0. Only 8.79% of simulation 
results for As were greater than 1.0 for adults, while for chil-
dren, 88.92% and 0.07% of simulation results for As and Pb, 
respectively, were greater than 1.0. These results suggest that 
As is the heavy metal that should be prioritized for treatment 
and control. According to the study of He et al. (2018), Cr 
posed the highest risk to human health in Jiangxi Province. 
The main reason for this difference is that there are a large 
number of heavy metal smelters in the arear where He et al. 
(2018) collected samples. This can contribute to the high 
concentrations of Cr in their samples. However, the mining 

Fig. 6   Probability distribution of total non-carcinogenic risk (HI) and non-carcinogenic risk (HQ) index (the yellow region means that the risk is 
out of the acceptable range)
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extraction is the main industrial activity in Chongyi County, 
resulting in the higher As concentrations in soils. This can 
also be concluded from the “Heavy metal source analysis” 
section that the F4 (mining extraction) has a more significant 
influence on the heavy metal concentration in soil than the 
F2 (metal smelting). This indicates that the different indus-
trial activities can lead to the different types of pollution. 
The impacts of the industrial activities should be subdivided.

The non-carcinogenic risk of heavy metals in soils was 
assessed based on the HI values. For adults and children, 
11.86% and 98.05% of simulation results were greater than 
1.0 for HI, respectively. The mean and 95th percentile levels 
of HI were 0.61 and 1.31 for adults and 4.24 and 8.96 for 
children, respectively. This indicates that heavy metals in 
soils pose a non-carcinogenic health risk to humans. Moreo-
ver, the HI value for children was 6.85 times higher than that 
for adults, indicating that children are more susceptible to 
the harmful effects of exposure to heavy metal pollution due 
to their physical habits and lifestyle. The results also show 
that ingestion is the primary route of exposure for non-car-
cinogenic risks, with HQingest > HQinhale > HQdermal for both 
adults and children.

Carcinogenic health risk assessment

The probability distributions of carcinogenic risk (CR) and 
total carcinogenic risk (TCR​) for both adults and children are 

presented in Fig. 7. Heavy metal concentrations were found 
to follow the order of As > Cd > Cr, with As being the main 
contributor to the carcinogenic risk to human health. The 
mean CR values of As for adults and children were 75.42 
and 129.21 times larger than the limited value, respectively, 
indicating a significant risk. These findings are consistent 
with those of Cui et al. (2020). For Cd, 99.56% and 99.80% 
of simulation results were above the limited value for adults 
and children, respectively. The mean and 95th percentile 
levels of Cd for adults and children were also above the lim-
ited value. According to the study of Teng et al. (2015), Cd 
always poses the insignificant carcinogenic health risk to 
human due to its low carcinogenic slope factor. However, it 
is noted that the concentration of Cd in the study area was 
46.60 times higher than the background value (BV). The 
extremely high concentration can result in the potential risk 
to human health.

For adults and children, all of the simulation results are 
larger than 1.0 × 10−6 for TCR​, and respective mean and 95th 
percentile levels of TCR​ were 9.23 × 10−5 and 2.03 × 10−4 
for adults and 1.57 × 10−4 and 3.46 × 10−4 for children. This 
indicates that the heavy metals in soils posed very high carci-
nogenic health risks to humans. The TCR​ value for children 
was 1.70 times higher than that for adults and the carcino-
genic risk of adults and children for different exposure path-
ways are in the following order: CRingest > CRinhale > CRdermal. 
The same conclusion was also found by Wu et al. (2021).

Fig. 7   Probability distribution 
of total carcinogenic risk (TCR​
) and carcinogenic risk (CR) 
index
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Conclusions

In conclusion, a systematic evaluation of soil pollution in 
the Yangmei River watershed of Jiangxi Province was con-
ducted using soil samples. The distribution and correlation 
of heavy metals were analyzed based on IDW, and source 
analysis was conducted based on PMF. Additionally, eco-
logical risk assessment and health risk assessment based 
on Monte Carlo simulation were conducted to provide sci-
entific guidance for soil heavy metal pollution prevention 
and control and ecological environmental protection.

1.	 The concentrations of Pb, Cr, Cd, As, Hg, Cu, Zn, and 
Ni in soils along the Yangmeijiang River were found 
to be 2.71, 1.88, 46.60, 8.22, 0.89, 7.54, 4.09, and 1.93 
times higher than background values in the first sam-
pling. The degree of soil heavy metal pollution within 
the watershed was in the order of Cd > As > Cu > Zn 
> Pb > Ni > Cr > Hg. This was mainly due to the large 
number of tungsten-tin mines in Chongyi, which would 
produce a large amount of Cd and As during mining. 
Additionally, the maximum values of all heavy metals 
were observed at the depths of 20–40 cm.

2.	 Spearman’s correlation analysis indicated that Cr and Ni, 
Cd and Cu, Cd and Zn, and Cu and Zn were highly cor-
related. Cr and Ni in soils were influenced by common 
minerals and therefore the spatial structure and distri-
bution of the two were similar. There were copper-zinc 
and lead–zinc mines in the area, so the distributions of 
Cd, Cu, and Zn were similar. Also, the distribution of 
industries was concentrated in the middle and west of 
the study area, which may be attributed to the higher 
concentration of certain kinds of heavy metals.

3.	 The high ecological risk area accounted for 91.11% of 
the total area, and Cd was found to be the heavy metal 
that posed the highest ecological risk to the soils in the 
watershed. The potential ecological risk parameter of Cd 
accounted for 87.54% of the overall RI. The main rea-
son for this was that the concentration of Cd was 46.60 
times higher than the background value. The larger toxic 
response coefficient of Cd may also contribute to the 
high potential ecological risk of Cd.

4.	 The mean concentrations of Cd and Pb in leafy vegeta-
bles were 3.90 and 6.44 times higher than the maximum 
allowable concentration (MAC), while those in rice were 
3.60 and 5.84 times higher than MAC. Leafy vegetables 
were likely to be more polluted due to their larger leaves, 
faster growth rates, and transpiration. The high concen-
tration of Pb in plants was attributed to the large mean 
concentrations of Pb observed in soils, while the high 
concentration of Cd was induced by its high transport-
able capacity.

5.	 Mining extraction, traffic emissions, electroplating industry, 
agricultural activities and natural sources, and metal smelt-
ing were identified as the main sources of soil heavy metals 
in the study area, accounting for 24.76%, 20.25%, 19.58%, 
18.23%, and 17.18% of the variances, respectively. Addi-
tionally, the main source of Pb is traffic emissions; the main 
sources of Ni and Cr are metal smelting; the main sources 
of Hg are agricultural activities and natural sources; the 
main source of As is mining extraction; and Cd, Cu, and 
Zn are mainly from electroplating industries.

6.	 The average HQ values rankings of heavy metals from 
high to low were As > Cr > Pb > Cd > Cu > Ni > Zn > H
g. The average CR values of heavy metals were in the 
order of As > Cd > Cr, as was the heavy metal that posed 
the greatest risk to human health, which was suggested 
to be controlled first. The average non-carcinogenic and 
carcinogenic risks of children were 6.85 and 1.70 times 
higher than those of adults, respectively.
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