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Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects 
plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, 
and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supple-
mentation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response 
of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation 
of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-
physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, 
fruit quality, disease control, phytoremediation potential, and resource use efficiency.
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Introduction

Plants play a significant role in human lives. The plants are 
dependent on light for photosynthesis to get their energy. 
Plants can perceive ultraviolet, blue, green, red, and far-
red light wavelengths through the photoreceptor families 

(Huché-Thélier et al. 2016). With the advancement in agri-
culture, the demand for artificial or supplementary light-
ing is rising continuously. Unlike natural sunlight, which 
provides a complete range of light spectrum, artificial lights 
include limited range of spectrum and for that reason, the 
composition of the spectrum can be added and/or adjusted 
to achieve required efficiency. Therefore, under controlled 
environment, the selective spectrum of artificial lights can 
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be applied to optimize the growth of plants (Rehman et al. 
2017). Artificial supplementary light can favor photosyn-
thetic efficiency by optical regulation of plant photoreceptors 
to improve plant production efficiency and accumulation of 
metabolites for getting the products with better nutritional 
quality (Appolloni et al. 2021; Jiang et al. 2017; Rehman 
et al. 2017; Ouzounis et al. 2015). Supplemental light is nec-
essary to boost greenhouse production during winter espe-
cially in areas with low sunlight to meet the rising demand 
for fresh produce (Lanoue et al. 2022). For instance, the use 
of a specific light spectrum can improve the nutritional prop-
erties of vegetables and their yields in the commercial pro-
duction system (Kuan-Hung et al. 2012). When it comes to 
artificial lighting, these spectrum and colors can have signifi-
cant effects on the plant growth and development (Rehman 
et al. 2020). Such as red light caused larger and longer stems 
and helps to flower in plants. However, under the exposure 
of blue light, plants likely be more compact with smaller, 
thicker, and darker green leaves (Izzo et al. 2020). Among 
different colors of light, red and blue lights are more effec-
tive for leaf photosynthesis (Zhang et al. 2020). Over dec-
ades, the monochromatic or binary red and blue light (in 
various ratios) has been successfully used in plant morpho-
genesis both in vitro and in vivo (Naznin et al. 2016; Gupta 
and Jatothu 2013; Vitale et al. 2023). In case of green light 
in the visible spectrum, previous research showed that green 
light wavelengths are less efficient for photosynthesis but it 
is still useful in photosynthetic process and to regulate the 
plant architecture. New research revealed that green light 
under stronger illumination can drive more efficient photo-
synthesis than the red light (Arsenault et al. 2020). Similarly, 
recent studies have been proved the effectiveness of green 
light for plants (Razzak et al. 2022; Schenkels et al. 2020; 
Vitale et al. 2020).

The use of artificial lighting to enhance crop productivity 
was made successful by the invention of long-lasting and 
robust electrical lamps in the start of twentieth century. Tra-
ditionally, high pressure sodium lamps were used as a source 
of artificial light. While, currently, electric lighting could be 
applicable as a most reliable and steady radiation source to 
control the plant growth environment (Gupta 2017). Among 
various available lighting, the light emitting diodes (LEDs) 
are advertised as most energy efficient and environment 
friendly lighting because they do not contain mercury (Lim 
et al. 2011). According to Ramesh et al. (2023), LEDs are 
more energy-efficient, eco-friendly and have a lesser impact 
on environment. LEDs have been verified to present remark-
able features for their application in plant lighting designs in 
greenhouses and other closed growth chambers for in vitro 
cultures (Rehman et al. 2017; Agarwal and Gupta 2016). 
LEDs consume low energy or give higher lighting efficiency 
over compact fluorescent or incandescent lamps (Nardelli 
et al. 2017; Zeb et al. 2016). Therefore, LEDs are receiving 

great interest in greenhouse production due to their high 
photon efficacy and possibility to finely modulate light inten-
sity and spectrum (Lanoue et al. 2022; Paradiso and Proietti 
2022).

In present review, we aim to shed light on the multidi-
mensional benefits of artificial light spectra on plant growth 
while underscoring the need for their judicious application 
in modern agriculture under controlled conditions. There-
fore, this review summarizes the growth responses of plants 
under artificial light conditions especially the roles of red, 
blue, and green light wavelengths on plant morpho-physio-
logical, biochemical, and molecular aspects both in confined 
and/or in vitro environment (Fig. 1).

Light as a source of energy for plants 
and an environmental signal

Light is an important environmental factor which is essen-
tial for photosynthesis and affects the growth and develop-
ment of plants starting from seed germination to flower-
ing or fruit production. Earth’s climate system is driven by 
the terrestrial sunlight, which consists of ultraviolet (UV) 
radiation (100–400 nm), visible light (400–700 nm), and 
infrared radiation (700–1000 nm) (Taylor et al. 2022; Wong 
et al. 2020; Rehman et al. 2017; McCree 1971). Each range 
of light wavelengths can persuade certain responses in 
plants (Bayat et al. 2018). Light affects the plants in differ-
ent ways for instance, by light duration, light intensity, and 
light quality (Wong et al. 2020). However, plant pigments 
(Fig. 2) can only absorb photosynthetically active radiation 
which is visible light spectrum required for photosynthe-
sis (McCree 1971). Plants sense light by photoreceptors, 
which are made up of a protein linked to a pigment called a 
chromophore. Absorption of light in chromophore causing 
a change in protein shape modifies its activity and initiated 
a signaling pathway to elicit a change in growth habit or 
development. Research advances in this field are necessary 
to know how plant photoreceptors act under narrow band 
light? Which looks to be different from normal light environ-
ment (Kochetova et al. 2023).

Morpho‑physio‑biochemical responses 
of plants to different colors of light

Monochromatic red light

Red light is useful for plants to produce chlorophyll and 
an energy source for photosynthesis to promote the growth 
(Table 1). A plethora of research reported essential role 
of red light in chlorophyll production and photosynthesis. 
For instance, red light (660 nm) showed higher quantum 
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Fig. 1  A diagram showing possibly main effects of monochromatic 
red, blue, and green light wavelengths and their combination on plant 
growth and development (Guo et  al. 2023; Heo et  al. 2002; Razzak 

et  al. 2022; Rehman et  al. 2020; Rehman et  al. 2017; Golovatskaya 
and Karnachuk 2015). Chl, chlorophyll

Fig. 2  A presentation of main photoreceptors and pigments in the plants
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efficiency in terms of photosynthetic rate in Fragaria anana-
ssa L. leaves (Yanagi et al. 1996). Red light enhanced the 
chlorophyll content, net rate of photosynthesis, and the Fv/
Fm ratio in senescing grape leaves (Wang et al. 2016). Red 
light increased chlorophyll a/b ratio in Asplenium (Leong 
et al. 1985). However, a comprehensive influence of red 
light on photosynthesis is observed as it increases photo-
synthesis by improving total chlorophyll in leaves while sup-
pressing photosynthesis by inhibiting carbohydrate transport 
from source (leaves) to sink (Dou et al. 2017; Bondada and 
Syvertsen 2003). In contrast to far-red light, red light acti-
vated the phytochromes (Cosgrove 1981). Wavelengths of 
red light also promote seed germination, growth of stems, 
flowering, and fruiting (Fan et al. 2013; Rehman et al. 2020). 
Generally, plants under red light treatment have longer roots 
and larger leaf areas as it stimulates cell division and expan-
sion (Dou et al. 2017). The maximum dry-mass in broccoli 
(Brassica oleracea L.) seedlings was produced under red 
light (Pardo et al. 2014). Compared with control, red light 
significantly improved plant growth, biomass, chlorophyll 
content, and photosynthesis in ramie (Boehmeria nivea L.) 
(Rehman et al. 2020) and rapeseed (Brassica napus L.) (Sal-
eem et al. 2020) grown under greenhouse conditions. Red 
light can support growth of stem in Norway spruce (Picea 
abies L.) seedlings by regulating GAs biosynthesis (Ouyang 

et al. 2015). Red light stimulates division of cells and expan-
sion. In addition, red light favors stem and root elongation in 
tomato (Solanum lycopersicum) seedlings (Wu et al. 2014).

Monochromatic blue light

How much blue light is necessary for different plant species 
is an important aspect for research on crop plants. Ouzou-
nis et al. (2014) reported that blue light wavelength has a 
comparatively little influence on single leaf photosynthetic 
process; however, it was stated that increasing proportion of 
blue light can increase the photosynthetic capacity of leaves 
(Graham et al. 2019; Hernández and Kubota 2016; Terfa 
et al. 2013). Available literature showed more effectiveness 
of blue light than red light to suppress shoot or leaf elonga-
tion in different plant species (Kong et al. 2012; Cosgrove 
1994). Thus, elongation could be promoted as shade avoid-
ance response using pure blue light; however, these effects 
may vary among different plant species (Johnson et  al. 
2020). Blue light encourages root growth and photosyn-
thetic activity to support vegetative growth (Table 1). Usu-
ally, blue light is used to promote seedling growth, where 
flowering is not required. In a previous study on tomato, the 
stem elongation was found to be dependent on blue light 
quantity (Naya et al. 2012). Similarly, in a study, an increase 

Table 1  Morphological, physiological, and biochemical changes in plants under monochromatic red, blue, or green light

*ROS, reactive oxygen species; SA, salicylic acid; IAA, indole-3-acetic acid (auxin); Pn, net photosynthesis; Tr, transpiration rate; Gs, stomatal 
conductance; Ci, intercellular  CO2

Morpho-physiological and biochemical changes References

Blue light promotes morphogenesis and flavonoid synthesis in Isatis tinctoria L. hairy root cultures Jiao et al. (2023)
Green light improves the growth of cut flowers by increasing GA3 and IAA biosynthesis while inhibiting biosynthesis of 

ABA under closed type plant factory system
Roh and Yoo (2023)

Blue light increases glucoraphanin content and total GSLs in broccoli microgreens Demir et al. (2023)
Monochromatic red and blue light differentially involved in regulating leaf growth, morphogenesis, and photosynthetic 

metabolism in submerged macrophyte Ottelia alismoides
Wang et al. (2022a)

Blue light led to the highest contents of anthocyanins and ascorbic acid in broccoli sprouts Zhuang et al. (2022)
Additional blue LED light during cultivation improves cold tolerance in tomato fruit (up to an optimum) Affandi et al. (2022)
In lettuce, increased intensity of blue light stimulated cyclic electron flow and respiration, while increased intensity of 

red light stimulated linear electron flow
Yudina et al. (2022)

Red light enhances SA level and induces SA signaling mediating ROS production Gallé et al. (2021)
Blue light promotes sun-type morphogenesis of leaves in rapeseed that gives a sun-type leaf phenotype and anatomical 

structure
Chang et al. (2016)

Red light increases Pn and Tr, while blue light increases Ci and Gs in strawberry Liu et al. (2015)
Green light is a factor which regulates the morphology of cells, tissues, and organs in plants Golovatskaya and 

Karnachuk (2015)
Red light supports compact growth of sunflowers Schwend et al. (2015)
Blue light improves the weight and height of buckwheat sprouts, while red light increases the phenolic compounds in 

common buckwheat sprouts at 9 days
Lee et al. (2014)

Blue LED light at 238 μmol  m−2  s−1 promotes plant growth by controlling the integrity of chloroplast proteins Muneer et al. (2014)
Blue LED light improves the content of sesamin in sesame compared with red LED and white fluorescent lights Hata et al. (2013)
Red light increases IAA levels in stems, and blue light enhances endogenous cytokinins in leaves in potato plantlets 

cultured in vitro
Sergeeva et al. (1994)
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of 5 to 20% in blue light resulted in increased leaf thick-
ness and photosynthesis (Terfa et al. 2013). Furthermore, 
in cucumber, blue light proportion up to 50% at higher light 
intensity increased its photosynthetic potential (Hogewon-
ing et al. 2010). In another study, blue light proportion up 
to 10% increased leaf area and dry weight (Hernández and 
Kubota 2016). Similarly, some characteristics for radish and 
soybean are superiorly predicted using blue light (Cope and 
Bugbee 2013). Blue light enhanced chlorophyll a/b ratio 
and improved photosynthetic rate/unit of leaf area (Li and 
Kubota 2009). Blue light significantly improved gaseous 
exchange in industrial hemp plants and increased the shoot 
fresh weight, dry weight, leaf number, stem diameter, root 
length, and chlorophyll content by 15%, 27%, 14%, 10%, 7%, 
and 7%, respectively (Cheng et al. 2022).

Blue light plays a key role in several plant processes 
during growth and development, including chlorophyll 
synthesis (Naznin et al. 2019b), photomorphogenesis and 
phototropism response (Christie 2007; Saebo et al. 1995; 
Senger 1982), stomatal opening or stomatal conductance and 
photosynthesis (Matthews et al. 2020; Inoue and Kinoshita 
2017; Hernández and Kubota 2016), water relations and  CO2 
exchange (Bula and Zhou 2000), and stem or leaf elongation 
(Matsubara et al. 2005). Blue light gives feasible strategy 
for artificially regulating indican synthesis and flowering in 
Polygonum tinctorium L. (Nakai et al. 2020). In contrast, 
few studies reported inhibitory or suppressive roles of blue 
light in different plant species for example, Dou et al. (2017) 
reported that blue light restrain cell division and extension 
growth which results in plants with smaller leaf area. Nis-
sim-Levi et al. (2019) investigated the growth and flowering 
in Chrysanthemum morifolium under different light qual-
ity and duration of day length illumination and their results 
revealed that overnight blue light illumination inhibited 
flowering in Chrysanthemums.

Monochromatic green light

Green light can play a key role in plant development but 
its significance in photo-biology was neglected previously. 
However, research of present era realized that green light 
also deserves attention (Zhang et al. 2022). Green light 
wavelength penetrates deeper into canopy and excites the 
chlorophyll deeper into leaf tissue (Liu and van Iersel 2021; 
Smith et al. 2017; Snowden et al. 2016; Wang and Folta 
2013; Sun et al. 1998). It has been observed that some of 
the green light is important in photosynthesis processes as 
well as plant growth and development (Kusuma et al. 2021; 
Kaiser et al. 2019; Snowden et al. 2016; Terashima et al. 
2009; Folta and Maruhnich 2007). Blue light and red light 
drive carbon dioxide  (CO2) fixation for most of the parts in 
upper palisade mesophyll, whereas green light drives  CO2 
fixation in the lower palisade (Sun et al. 1998). Therefore, 

after the saturation of upper parts of canopy and leaves by 
red and blue lights, the additional green light could be of 
use to enhance plant photosynthesis (Nishio 2000). Low 
light response to green light suggests that it may possibly 
involve in growth adaptation under foliage or within the 
close proximity of other plants. However, Wang and Folta 
(2013) reported an opposed response of plants under green 
light to those of blue and red wavebands.

Green light is useful to drive photosynthesis in plants 
(Kusuma et al. 2021; Terashima et al. 2009), and it affects 
processes in plants via cryptochrome dependent as well 
as cryptochrome independent ways (Folta and Maruhnich 
2007). Plants can utilize green light to fine tune the efficacy 
of whole canopy and to optimize stomatal aperture (Smith 
et al. 2017). Green light can regulate morphology of cells, 
tissues and organs, growth, respiration, photosynthesis, and 
the duration of plant ontogenesis stages (Golovatskaya and 
Karnachuk 2015). Green light increases plant defense to 
biotic or abiotic stresses by triggering specific gene expres-
sion (Nagendran and Lee 2015). Green light significantly 
improved leaf photosynthesis and shoot dry biomass in 
Lactuca sativa L. (Johkan et al. 2012). Presence of green 
light resulted shade symptoms in Arabidopsis thaliana. Fur-
thermore, an unknown sensor for light and cryptochrome 
receptors contributed in acclimation to green environment 
(Zhang et al. 2011). Due to deep penetration of green light, 
it increases sweet pepper fruit weight and dry matter con-
tent (Lanoue et al. 2022). Addition of green light or par-
tial replacement of other spectra with green light caused an 
increase in biomass production in basil, tomato, and lettuce 
(Schenkels et al. 2020; Kaiser et al. 2019; Kim et al. 2004a). 
Green light can affect the chlorophyll phytyl chain satura-
tion level (Materová et al. 2017). Introducing green light can 
increase mesophyll conductance and maintain high photo-
synthetic potential under drought stress (Bian et al. 2021, 
2019). Supplementing green light enhanced photosynthetic 
capability by increasing net photosynthesis rate, maximum 
photo-chemical efficiency, electron transport for C fixation, 
and content of chlorophyll, but decreased hydrogen per 
oxide  (H2O2) and malondialdehyde (MDA) accumulation by 
enhancing SOD and APX activities (Bian et al. 2018). Liu 
and Iersel (2021) investigated photosynthetic physiology of 
red, blue, and green lights. Their results showed that at low 
PPFD, green light showed lowest photosynthetic efficacy 
due to its low absorptance. Contrarily, at high PPFD, QYinc 
[gross  CO2 assimilation (Ag)/incident PPFD] was among 
the maximum, possibly resulting from uniformly distribut-
ing green light in the leaves. Compared to monochromatic 
blue light or monochromatic red light treatments, green light 
showed higher leaf area and lower specific leaf weight (mg 
 cm−2) in shoots of pepper plant (Claypool and Lieth 2020). 
A previous study of metabolic reprogramming in leaf lettuce 
under varying light intensity and quality showed that energy 
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transmitted by green light could be useful to create a bal-
ance between the production of plant biomass and defense-
related secondary metabolites. (Kitazaki et al. 2018). Green 
light enhanced the chlorophyll and soluble sugar, protein, 
and starch content in tomato (Ma et al. 2015). However, 
in another study, the tomato plants grown at 40% G along 
with 35% R and 25% B light exhibited a reduced net Pn, 
and consequently, a decreased dry biomass accumulation 
(Trojak et al. 2022).

Dichromatic red and blue light

Light is necessary for photosynthesis, and each pigment 
can absorb a specific wavelength from visible light (Fig. 2). 
Light modulation in terms of quality deeply influences 
plant morphogenesis, photosynthesis, and growth (Vitale 
et al. 2021). Several review works available in the literature 
consider the effect of combined spectra in eliciting morpho-
physiological and biochemical responses of plants (Table 2). 
In general, specific spectra are more encouraging for normal 
growth and development of plants (Alrifai et al. 2019), such 
as red and blue lights (Li et al. 2021b; Lee et al. 2014). 
The absorption percentage of red or blue light in the plant 
leaves is about 90% (Terashima et al. 2009). Therefore, plant 
development and physiology are strongly influenced by the 
light spectrum of the growth environment (Whitelam and 
Halliday 2007). Red and blue lights significantly improved 
plant growth, photosynthetic pigments, total conductance to 
 H2O vapor and  CO2, maximum quantum yield of photosys-
tem (PS)II, apparent electron transfer chain, and net photo-
synthesis in grape (Vitis vinifera L.) seedlings (Dong et al. 
2023). Composite red and blue light improved Paris poly-
phylla growth (Li et al. 2023). Similarly, previous research 
revealed that red blue lights in combination affected plant 
growth, pigment contents, antioxidative defense system, and 
accumulation of volatile compounds in Aeollanthus suaveo-
lens (Araújo et al. 2021), micropropagated Urtica dioica 
L. plantlets (Coelho et al. 2021), and Lippia rotundifolia 
Cham (De Hsie et al. 2019) under in vitro environments. 
Phytochromes and cryptochromes are the two photoreceptor 
systems that mediate elongation growth in the plants. Phy-
tochromes are activated by red light, while cryptochromes 
are the blue light receptors (Cosgrove 1981). Monochro-
matic red light, monochromatic blue light, or their combi-
nation can promote photosynthesis and final production. 
Red and blue lights in combination can excite photorecep-
tors in an efficient way, thus increase the plant growth and 
photosynthesis as compared to monochromatic red light or 
monochromatic blue light (Spalholz et al. 2020). Blue and 
red lights in equal quantities are more useful for higher fresh 
and dry biomass production in upland cotton (Li et al. 2010). 
Similar findings with blue and red lights (1:1) were also 
recorded under in vitro plant cultures of banana (Nhut et al. 

2003a), strawberry (Nhut et al. 2003b), and chrysanthemum 
(Kim et al. 2004b). Similarly, combined exposure of red and 
blue lights was favorable for the growth and development of 
eggplant (Solanum melongena L.) seedlings (Di et al. 2021) 
and frigo strawberries (Samuolienė et al. 2010). Similarly, 
Hung et al. (2015) reported that 70% red with 30% blue light 
is effective in strawberry culture systems. Mixed blue, red, 
and white lights of peak outputs in blue and red regions with 
supplemental broad spectral energy (500–600 nm) caused 
improvements in lettuce plant growth, development, and 
nutritional quality (Lin et al. 2013).

Quality of light plays an important role in the processes 
of photosynthesis, and its energy inevitably modulates the 
photosynthetic processes. Furthermore, light quality alters 
the structure and function of chloroplasts in leaves (Alberts-
son 2001). Shaver et al. (2008) analyzed the influence of 
light on the amount of chloroplast DNA in Medicago trun-
catula during development and found that cpDNA declined 
under white and blue light whereas remained constant under 
red light. Red and blue lights affect the primary barley leaf 
physiology in terms of ATP and ADP contents (Bukhov 
et al. 1995). Zhang et al. (2010) reported that red and blue 
light supports normal development of chloroplasts in tomato 
leaves. Maximum photosynthetic rate, high pigment con-
tent, and superior growth characteristics in tomato plantlets 
were recorded at red to blue (10:01) light ratio (Naznin et al. 
2019a). Combined red and blue light increased the growth 
and phenolic acid contents of Salvia miltiorrhiza Bunge 
(Zhang et al. 2020). Red blue binary light with intensity of 
1000 μmol  m−2  s−1 resulted in the highest energy sustain-
able anthocyanin production in Eruca sativa (Mill) Thell 
plants (Veremeichik et al. 2023). Furthermore, combined 
red blue light showed highest aliphatics in cabbage (Demir 
et al. 2023). Ratio of red to blue light affects cannabinoid 
metabolism in medical cannabis (Cannabis sativa L.) and 
blue-rich light stimulated CBGA accumulation (Danziger 
and Bernstein 2021). Meanwhile, Lalge et al (2017) reported 
that full spectrum of light influences C. sativa growth and 
development better than combined blue red lights.

Combined red‑blue‑green light

Red and blue lights pose great influences on the growth of 
plants because of their high quantum yield of  CO2 assimila-
tion per mole of photons during photosynthesis (Liu and 
Iersel 2021), and the action spectra have action maxima in 
blue and red wavelength ranges (Kasajima et al. 2008). How-
ever, photosynthetically active radiation including and red 
(600–699 nm), blue (400–499 nm), and green (500–599 nm) 
wavelengths designates spectral range offering light energy 
for photosynthesis, consequently affecting the plant bio-
mass production (Kozai et al. 2015). Green light wave-
lengths also induce variable responses in photosynthesis and 
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Table 2  Morpho-physio-biochemical changes in plants under dichromatic red and blue light

*GA, gibberellin; IAA, indole-3-acetic acid (auxin); Gs, stomatal conductance; Pn, net photosynthesis/photosynthetic rate; conc., concentration; 
C, carbon; N, nitrogen; P, phosphorous; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; B, boran; Cu, copper; Fe, iron; Mo, molybdenum; 
Zn, zinc; Mn, manganese

Light quality Plant species Morpho-physio-biochemical changes Reference

70% red
30% blue

Cucumber seedlings Increased stem diameter, Dixon Quality Index (DQI), 
and rate of net photosynthesis

Jin et al. (2023)

50% red
50% blue

Anoectochilus roxburghii Promote accumulation of biomass. Enhanced area of 
stomata pores. Increased total phenolica, total flavo-
noids, and soluble proteins and sugars

Wu et al. (2022)

50% red
50% blue

Ginkgo biloba Elongated petiole. Increased leaf flavonol content. Slen-
der leaves with reduced leaf area, and Gs

Wang et al. (2022b)

83% red 17% blue Impatiens Increased cuttings number per Impatiens plant in winter. 
Reduced plugs height Impatiens White

Kobori et al. (2022)

70% red
30% blue

Basil plant Higher yield and absorption of N and K under low 
applied nutrient quantity

Ren et al. (2022)

75% red 25% blue Tomato seedlings Increased biomass accumulation and  CO2 assimilation. 
Thicker leaves. Enhanced Pn, Gs, pigment content, 
and photosynthetic electron transport capacity. 
Upregulation of Calvin cycle-related activity and level 
of enzyme expression. Inhibition in GA concentration

Increment of IAA in stem and root

Li et al. (2021a)

75% red 25% blue Solanum melongena L Maximum growth of plants, development of leaves, pig-
ments, and C and N metabolism

Di et al. (2021)

75% red 25% blue Tomato fruit Enhanced melatonin content in tomato fruit. Accelerated 
fruit softening. Upregulated ethylene and lycopene 
biosynthesis, rate of respiration, activity of antioxi-
dants, and the accumulation of carbohydrates

Li et al. (2021b)

90% red 10% blue Mesembryanthemum crystallinum L Promote plant growth with high biomass production Kim et al. (2021)
70% red 30% blue Salvia miltiorrhiza Promote growth. Enhanced phenolic acids accumulation 

by upregulated SmPAL1 and Sm4CL1 transcription
Zhang et al. (2020)

50% red 50% blue Tomato Higher leaf Gs and Pn Yang et al. (2019)
60% red 40% blue Lepidium sativum L Increased fresh biomass. Increased length, total area, 

stem diameter, and number of leaves. Enhanced chlo-
rophyll content

Ajdanian et al. (2019)

90% red 10% blue Lachenalia ‘Rupert’ Stimulated inflorescence development
Increased length, stem diameter, and florets number of 

inflorescences

Wojciechowska et al. (2019)

75% red
25% blue

Lettuce Increase the yield, leaf chlorophyll, and flavonoid con-
centrations. Increase the uptake of N, P, K, and Mn

Pennisi et al. (2019)

80% red 20% blue Digitalis purpurea L Higher number of leaves. Longer root
Larger width of leaf stomata and leaf area
Higher leaf or root fresh weight and dry weights

Verma et al. (2018)

Red blue Lippia alba Higher fresh and dry weights, and levels of photosyn-
thetic pigments

Batista et al. (2016)

80% red
20% blue

Broccoli Increased conc. of shoot tissue chlorophyll, a-carotene, 
lutein, total carotenoids, Ca, Mg, P, S, B, Cu, Fe, Mn, 
Mo, Zn, glucoiberin, glucoraphanin, 4-methoxygluco-
brassicin, and neoglucobrassicin

Kopsell et al. (2014)

25% red 75% blue Rapeseed Higher rate of differentiation, high fresh and dry bio-
mass, chlorophyll a conc., soluble sugar conc., stem 
diameter, length of abaxial surface of leaf stomata, 
adaxial surface stomata frequency, and transplantation 
survival rate in the plantlets

Li et al. (2013)

50% red
50% blue

Cotton Higher fresh and dry weights. Maximum stem length 
and length of second internode

Li et al. (2010)
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plant morphogenesis (Johkan et al. 2012). For instance; O. 
basilicum grown in red, green, and blue (4:1:1) light treat-
ment showed high photosynthesis, high quantum yield, and 
photosynthetic electron transport (Lin et al. 2021). Then, 
30 µmol  m−2  s−1 of red and blue light supplemented with 
green light improved the growth and yield of lettuce (Raz-
zak et al. 2022). However, supplementary green light at 
76 µmol  m−2  s−1 and 129 µmol  m−2  s−1 reduced fresh bio-
mass in lettuce (Kim et al. 2004a). According to Claypool 
and Lieth (2020), red, blue, and green light wavelengths 
caused higher shoot dry weight accumulation and plant 
compactness in pepper seedlings. A red-to-blue spectrum 
partially replaced by green light can improve plant biomass 
up to 6.5% (Kaiser et al. 2019). Meng et al. (2019) reported 
that substituting green light or far-red light for blue light 
triggers shade avoidance and accelerates plant growth while 
reducing pigment concentration. According to Bian et al. 
(2016), 24 h continuous red blue LED light with green light 
exposure could be applied to reduce nitrate content and to 
improve lettuce quality. Green light exposure results in high 
number of leaves, stem diameter, and higher sodium con-
tent in okra (Degni et al. 2021). Quantum yield response of 
absorbed light is as red > blue > green under 400–700 nm 
radiation ranges. Inclusion of 24% green light (500 to 
600 nm) to red and blue LEDs improved the plant growth 
(Kim et al. 2004c). Supplementation with green light sig-
nificantly enhanced nitrite reductase (NiR), nitrate reduc-
tase (NR), glutamate synthase (GOGAT), and glutamine 

synthetase (GS) activities, compared with red and blue 
LEDs. Furthermore, supplementary green light efficiently 
promote nutritional quality of plants by maintaining higher 
net photosynthesis and photochemical efficiency (Bian et al. 
2018). However, in a previous study, inclusion of green light 
decreased shoot biomass in basil and brassica species com-
pared with the plants, grown under combined red and blue 
light (Table 3) (Dou et al. 2020).

Molecular responses of plants to red, blue, 
and green light

Plant growth is modulated by different photoreceptors, 
including phytochromes and cryptochromes (Zhu and Lin 
2016). Several insights are being discovered with respect 
to molecular regulation of plant processes in relation to 
spectrum, intensity, photoperiod, and light timing. For 
instance, in a recent study, Zhou et al. (2023) observed 
expression levels of photosynthesis-related genes in Cas-
sava seedlings under different light quality and found that 
MeLHCA1, MeLHCA3, MePSB27-2, MePSBY, MePETE1, 
and MePNSL2 in leaves were at their lowest under red light 
treatment, while MePSB27-2, MePSBY, MePETE1, and 
MePNSL2 were at their highest after blue light. Red light 
promoted starch accumulation in Spirodela polyrhiza L., 
but the high content of protein under blue light was linked 
with the upregulation of most differentially expressed 

Table 3  Morpho-physiological and biochemical changes in plants under combined red, blue, and green light

Light quality Plant species Morpho-physiological changes References

72% red
18% blue
10% green

Lettuce Improved growth and yield Razzak et al. (2022)

35% red
15% blue
50% green

Nasturtium officinale L Enhanced secondary metabolites production and 
antioxidant potential of micro shoot cultures

Klimek-Szczykutowicz et al. (2022)

47% red
34% blue
19% green

Microgreen species Promote dry biomass production and bioactive 
phytochemical accumulation in the majority of 
the microgreen species

Orlando et al. (2022)

Red:blue:green (4:1:1) O. basilicum Larger plants. High photosynthetic capacity, 
quantum yield, and photosynthetic electron 
transport

Lin et al. (2021)

33.3% red
33.3% blue
33.3% green

N. officinale Positive role in increasing the functional compo-
nent. Negative effect on the growth

Choi et al. (2020)

44% red
12% blue
44% green

Green basil
Green mustard

Stimulated stem elongation Dou et al. (2020)

80% red
10% blue
10% green

L. sativa (red leaf ‘Sunmang’) Higher fresh weight of shoot Son and Oh (2015)

Red + blue + green (a 
broad spectrum)

Pepper seedlings Maximum shoot dry weight and plant compact-
ness

Claypool and Lieth (2020)
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genes (DEGs) enriched for specific GO terms and KEGG 
pathways (Zhong et al. 2022). Sucrose at 100 mM in the 
presence of red light wavelengths or blue light wavelengths 
could promote detached ripening of strawberry through 
positive regulation of abscisic acid (ABA) signaling and 
negative regulation of auxin signaling (Jiang et al. 2023). In 
another study on tomato plant, Bian et al. (2021) revealed 
that bZIP transcription factor-HY5 played a very impor-
tant role in drought response under green light and other 
transcription factors, and WRKY46 and WRKY81 could 
be involved for the stomatal aperture regulation and ABA 
accumulation. Liu et al. (2020) evaluated the effectiveness 
of supplementary green, white, and yellow light added to 
red-blue and sole white light on the growth and photosyn-
thesis of rapeseed seedlings. Compared with red-blue light, 
in total, 449, 367, 813, and 751 DEGs were identified under 
supplementary green, yellow, and white and sole white 
light, respectively. The transcriptomic analysis showed 
more distinctive effects of supplementary green light to 
enhance photosynthesis and plant growth. In another study, 
partial replacement of red light and blue light with green 
light increased drought tolerance in cucumber seedlings via 
upregulated CsGAD2 expression and improved GABA syn-
thesis which further downregulated CsALMT9 expression, 
induced stomatal closure, enhanced  H2O use, and conse-
quently lessen the effects of drought (Ma et al. 2022). Blue 
light played a constructive role in lignin biosynthesis by 
the activation of transcription of lignin biosynthesis-related 
genes in ornamental bromeliad Neoregelia ‘Fireball’ plants 
(Shi et al. 2023). Dong et al. (2023) investigated grapevine 
morphology under red, blue, green, and white (control) 
light using multivariate sequencing analysis. The results of 
analysis showed 1065 metabolites (in total), 318 were neg-
ative, and 747 were positive. Kyoto Encyclopedia of Genes, 
Gene ontology, and Genome analyses showed that various 
DEGs were related to secondary metabolites biosynthesis 
of such as flavonols, flavones, and alkaloids, and metabolic 
and phenylpropanoid pathways. In addition, WRKY (29 
DEGs), NAC (31 DEGs), bHLH (32 DEGs), and MYB (37 
DEGs) transcription factors were reported. Furthermore, 
the genes such asPsaD, PsaO, PsbB, PetC, PetE, PetF, 
PetH, PetJ, and Lhca played essential roles in photosyn-
thesis. Weighed gene correlation network analysis found 4 
metabolites, 7 module relationships, 14 structural genes, 
and 36 transcription factor-related genes. In a recent study 
on the photosynthetic capacity and fruit quality of ‘Yanli’ 
strawberry grown in a solar greenhouse, Wang et al. (2023) 
found differentially expressed genes between red/blue light 
(R/B = 4:1) before sunrise and after sunset supplementation 
and control by RNA-seq, including sucrose metabolism-
related genes (SWEET9/BAM1) and light-responsive genes 
(PRR95/LHY/CDF3/CO16/bHLH63/BBX21/PAR1/SIGE).

Insect, pest, and disease control using red 
and blue light

Being a source of electromagnetic radiation energy from 
sun, light plays an important role to regulate plant growth, 
development, and other cellular processes. Biotic stress due 
to insects or pests plays a critical role in loss of crop pro-
duction worldwide (Manosathiyadevan et al. 2017). Thus, 
plant protection measures are inevitable. Besides direct 
killing methods for pathogens in crops, environmental light 
could also play a significant role to regulate plant resistance 
to defend against pathogen invasion (Wang et al. 2022c). 
Research revealed the benefits of using different specific 
light bands to promote plant defense against pathogens, 
infections, or herbivore infestation (Balamurugan and Kan-
dasamy 2021). Normally, red light influences plant defense 
mechanisms and enhances plant resistance to different pests 
and diseases (Gallé et al. 2021) and root-knot nematodes 
(Yang et al. 2018); however, the molecular mechanisms 
still need to study in depth. In a previous study, Gallé et al. 
(2021) investigated the influence of red light on biotic stress 
responses in plants to fungi, bacteria, viruses, and nema-
todes. Their results evidenced the changes in levels of sali-
cylic acid which could benefit plants to survive infections. 
Chen et al. (2015) assayed the influence of different light 
quality on interaction of Nicotiana tabacum and cucumber 
mosaic virus (CMV). The Western blotting and quantita-
tive real-time polymerase chain reaction (QRT-PCR) based 
analysis revealed that red light and blue light can delay the 
symptom expression and CMV replication on N. tabacum. 
Yang et al. (2015) investigated diurnal variations in tomato 
resistance to Pseudomonas syringae pv. tomato DC3000. 
Analysis of RNA sequencing data showed red light induced 
set of circadian rhythm-related genes contributed in the 
phytochrome and salicylic acid (SA) regulated response to 
resistance. Thus, salicylic acid-mediated signaling pathways 
contribute red light induced resistance to pathogens. Red 
and blue light treatment of detached leaves caused stilbenic 
compound accumulation and the differential expression of 
the genes which are involved in response to defense and 
inhibited lesion development of Grey mold (Ahn et  al. 
2015). Being an environmental catalyzer red light encour-
ages mutualism of whitefly begomovirus by stabilizing 
βC1, which interacts with PIFs transcription factors. PIFs 
positively control the plants defense to whitefly (Zhao et al. 
2021). Light wavelength significantly affected the induction 
of tree-top disease in Helicoverpa armigera 3rd instar larvae 
infected with HearNPV (Bhattarai et al. 2018). Blue light 
application could be a pest control approach by adjusting the 
wavelength to target specific developmental stages. Conopo-
morpha sinensis Bradley larvae can bore into fruit, damage 
flowers, tender shoots, and leaves. However, blue and green 
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light treatment at 460 and 520 nm can reduce its activity, 
fecundity, and damage rate (Fang et al. 2023). Specific light 
spectrum can affect the plant feeding arthropod behavior 
and their carnivorous enemies directly or through variations 
in plant morpho-physiology (Lazzarin et al. 2021). Fruits 
under supplemental red light could have higher tolerance to 
Botrytis cinerea thus reducing agrochemical inputs (Lauria 
et al. 2023a, 2023b). Exposure of green light during night 
on litchi production can reduce the activities of C. sinensis 
and pesticide usage (Fang et al. 2023).

Light traps may also be used to control insect related prob-
lems in crops. Balamurugan and Kandasamy (2021) inves-
tigated the effectiveness of a portable solar-powered LED 
light trap (red-630 nm, blue-470 nm, green-525 nm, and 
ultraviolet-405 nm) for monitoring insect pests in groundnut 
crop during autumn for 15 days. The results showed that 
the ultraviolet (405 nm) trap captured maximum number of 
insects and the red (630 nm) trap captured minimum num-
ber of insects but the attraction of Amsacta albistriga to red 
(630 nm) trap was higher as compared to blue (470 nm) and 
green (525 nm) traps. Furthermore, some hemipteran spe-
cies exhibit a mechanism of blue green opponency in which 
high blue light causes repellence (Stukenberg and Poehling 
2019). In another study, use of red light reduces the attrac-
tion of melon thrips Thrips palmi (Thysanoptera: Thripidae) 
towards plants (Murata et al. 2018). It was observed that the 
adult lepidopteran insects were attracted towards blue light 
or light of shorter wavelengths (Castrejon and Rojas 2011). 
Furthermore, Bantis et al. (2020) disclosed that bichromatic 
red and blue LED light can increase grafted watermelon 
seedling vegetative growth during healing. Utilization of 
different colored cladding materials that optically repel or 
arrest pests can also boost crop protection and reduce the 
insecticide uses especially for tomato and pepper crops (Ilić 
and Fallik. 2017). For example, blue color net is known to 
attract thrips (Ben-Yakir et al. 2012). Above reports showed 
that the application or supplementation of red and blue 
light in greenhouses could be effective in reducing insects, 
pests, and diseases, while at the same time benefiting crop 
production.

Vegetable production and fruit quality using 
red, blue, and green light

Rising food demands under global population pressure are a 
serious threat to food security (Carthy et al. 2018). Present 
conditions pointed out that food demand might be doubled 
up to 2050 (de Fraiture et al. 2007). Consequently, adaptation 
of scientific or technical developments in agriculture is very 
important for food security to feed the growing population 
(Odegard and van der Voet 2014). Díaz-Galián et al. (2021) 
tested the effects of red and blue light combinations on 

strawberry production and concluded that increasing red and 
blue lights improved strawberry production and fruit quality. 
Blue light could be a significant factor that modulate growth 
and development and biochemical properties of tomato hp 
mutants, thereby affecting nutritional characteristics, shelf 
life, and product quality (Vereshchagin et al. 2023). Wei 
et al. (2023) studied the effects of red, blue, yellow, and 
white light wavelengths on anthocyanin biosynthesis gene 
expression and fruit quality in blueberry (Vaccinium corym-
bosum). Their results showed that maximum fruit weight, 
fruit height, and fruit width were recorded under blue and 
white light treatments. Red light (150–200 μmol  m−2  s−1) 
increases the height of lettuce (Chen et al. 2021a), Chinese 
cabbage (Brassica campestris L.) (Fan et al. 2013), and soy-
bean seedlings (Fang et al. 2021). Combination of red light 
(30%) and blue light (70%) at 100 µmol  m−2  s−1 improved 
plant height, diameter of stem, number of leaves, internode 
distance, fresh and dry, and shoot and root biomass in pas-
sion fruit (Passiflora edulis) seedlings (Liang et al. 2021). 
According to Tang et al. (2020), red blue green spectrum 
significantly increased the growth, gas exchange, and anti-
oxidant activities of tomato, radish, and lettuce. Blue light 
addition in red LEDs increased the growth attributes, pho-
tosynthetic pigments, and antioxidant capacity in sweet pep-
per, basil, kale, spinach, and lettuce (Naznin et al. 2019b). 
Moreover, different light spectra also affect the nutritional 
quality of the different species. Orlando et al. (2022) tested 
the effects of different spectrum of light wavelengths and 
irradiance levels on the growth, yield, and nutrition quality 
of four vegetables (China rose radish, chicory, alfalfa, and 
green mizuna) and two flowers (celosia and French mari-
gold) of microgreens species. Their results revealed that 
addition of green light at 340 µmol  m−2  s−1 in the red-blue 
light increases growth in terms of dry biomass production 
and bioactive phytochemical accumulation in microgreen 
species. Supplemental red light enhanced plant productivity 
and “photomodulates” quality of strawberry fruits (Lauria 
et al. 2023a).

Bedsides LED lights, Dissanayake and Wekumbura 
(2021) proposed that green and red shading on tomato 
plant is more favorable for the healthy lycopene rich fruit 
production. In addition, the vegetables produced under 
red nets retained high content of phytochemicals (Ilić and 
Fallik 2017). Significantly higher vitamin C content was 
recorded in greenhouse pepper integrated with red shade 
net (Milenković et al. 2012). Previous studies reported that 
red and pearl photo selective nets make favorable growing 
conditions for plants and produce fruits with thicker pericarp 
in sweet pepper (Ilić et al. 2017) and in tomato (Ilić et al. 
2015). The photo selective red screen promoted plant growth 
and increase (about 4%) in the commercial fruit yield of 
sweet pepper, when grown in Midwest climatic conditions 
of Brazil (Santana et al. 2012).
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The vibrant light spectra can offer benefits of improved 
growth and production in high value production systems 
(Dieleman et al. 2019). Furthermore, different LED wave-
lengths can induce the synthesis of bioactive compounds, 
which in turn can improve the nutritional quality of crops 
(Hasan et al. 2017). For instance, LED lighting during car-
rot sprouting improved the synthesis of health-promoting 
compounds (Martínez-Zamora et al. 2021). Exposure of 
red and blue mix light (70 μmol  m−2  s−1) induced the syn-
thesis of carotenoids, starch, sucrose, glucose, and fructose 
in Doritaenopsis hort (Shin et al. 2008). Exposure of red 
light or blue light at 50 μmol  m−2  s−1 induced sugar and 
starch synthesis in vitis root-stock (Heo et al. 2006; Poudel 
et al. 2008). New techniques to adjust light quality should 
be conveyed to the vegetables and fruits producing farmers 
also. Moreover, post-harvest LED treatment has increased 
the accumulation of vitamins, chlorophyll, carotenoids, phe-
nolic compounds, glucosinolates, and total soluble solids 
(Nassarawa et al. 2021). Thus, future studies on the light 
manipulation are essential to get more sustainable and 
demand oriented vegetables or fruits (Table 4).

Heavy metal phytoremediation using red, 
blue, and green light

With the development of industry and modern agriculture, 
more toxic chemicals are released into the environment 
(Shen et al. 2022). Heavy metals can alter soil chemical 
properties, physical structure, and biological system, as a 
result, reduce the soil fertility and enzyme activities (Came-
selle et al. 2013). Plant-based soil remediation methods are 
environment friendly, applicable, and may be considered as 
a sustainable approach for heavy metal removal from con-
taminated soils (Raj and Singh 2015; Rehman et al. 2023). 
Light is increasingly used as a physical trigger in agriculture 
and studies reported changes in heavy metal contents in dif-
ferent plant tissues under different light spectra (Xie et al. 
2023; Marques et al. 2018). For instance, red and blue light 
combined in different ratios improved phytoremediation 
potential of Noccaea caerulescens and Eucalyptus globulus 
L. for Pb, Cd, and Cu and alleviated the leaching risk (Luo 
et al. 2020, 2019a, 2019b). Red light significantly increased 
Zn and Cu extraction ability of Chlorella vulgaris L. (Kwon 
et al. 2017). Xie et al. (2023) suggested that 20% red, 70% 
blue, and 10% green trichromatic light significantly increase 
Cd extraction, hence improving the phytoremediation of 
Cd by Bidens pilosa L. Zafar et al. (2020) studied metallic 
nanoparticles (ZnO NPs) for their optimistic and pessimistic 
influence on Brassica nigra (Linn.) Koch plant growth and 
physiological indices under varied light regimes. According 
to their results, different spectral lights affect ZnO NP toxic-
ity. The HPLC analysis showed that chlorogenic acid (CGA) 

upregulated under NP effects in red and white light, whereas 
quercetin increased under NP stress in the blue light. Chen 
et al. (2021b) reported that the phytoremediation efficiency 
of A. thaliana could benefit from combinations of blue and 
red light. Red and blue lights enhance Cd stress tolerance 
in rice seedlings (Sebastian and Prasad 2014). Yellow light 
with combined spectra of blue and red light improved Cd 
decontamination effect of A. thaliana, consequently increas-
ing the Cd phytoextraction ability of A. thaliana. In another 
previous study, Kwon et al. (2015) reported that phytore-
mediation using red LED (650 nm) and benthic microalgae 
showed potential as a new and environment-friendly method 
for the remediation of eutrophic coastal sediments. Thus, 
phytoremediation, using plants and the accompanying light 
wavelengths to clean up contaminants in the soil, could be a 
suitable solution for heavy metals polluted soil.

Challenges to eco‑friendly lighting

Sunlight serves as a major resource of energy for crops, and 
light intercepted by plants in natural environment fluctuates 
and is much complicated. Artificial or supplementary light-
ing is a competent stratagem to get full benefit of spectral 
compositions during crop production (Liu et al. 2022). Thus, 
artificial or supplementary lights have gained vast popularity 
for indoor farming as an innovative experimental platform to 
find out the regulatory mechanisms of light on morpho-phys-
iological, biochemical, and molecular responses of plants. 
These lights, for example, LEDs are environment friendly 
and offer several advantages including energy savings, target 
spectrum, and fast harvest cycle (Bula et al. 1991). Despite 
numerous benefits of artificial lighting, there are few chal-
lenges such as (i) one of the main challenges is that artifi-
cial lights can increase temperature in experimental envi-
ronment. Although LEDs produce less heat as compared to 
other grow lights, but they do produce heat that can push the 
greenhouse above the ideal temperature for growing plants. 
Thus, it will increase the air conditioning cost associated 
with keeping experimental conditions at the ideal tempera-
ture. (ii) Higher upfront cost is another drawback associ-
ated with LED grow lights and can be prohibitive especially 
for small-scale farmers in developing countries. Solutions 
could lie in scaling up production, government subsidies, or 
developing cost-effective LEDs that do not compromise the 
quality. (iii) Limited light penetration into the densely grown 
crops canopies. However, artificial grow light manufacturers 
tried to come up with solutions to increase the penetration of 
artificial light for example, by changing the designs of grow 
lights and by adjusting the spectrum. All of the above issues 
can be solved by the introduction of advanced technologies 
in lighting in the controlled production systems. In essence, 
the future of artificial lighting in agriculture hinges on the 
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Table 4  Effects of red, blue, and green light wavelengths on pre- or post-harvest fruit quality

Light wavelength Fruit Effects References

Red (660 nm)
Blue (470 nm)

Tomato fruit Post-harvest illumination expedite the pro-
gress of skin coloration in tomato fruit

Promote carotenoids and plant hormones 
(abscisic acid and ethylene) biosynthesis

Xu et al. (2024)

Red light (660 nm) Strawberry Pre-harvest red LED light supplementation 
improved fruit quality and safety

Lauria et al. (2023a)

Red (660 nm) and Blue (445 nm) with a R:B 
ratio of 3

Tomato Supplementary LED interlighting for tomato 
cultivation greenhouse maintains a high 
lycopene and β-carotene content after 
7 days storage

Appolloni et al. (2023)

Green light (520 nm) Litchi fruit Significantly higher contents of fructose, 
glucose, sucrose, L-malic acid, citric acid, 
and shikimic acid in fruits under green 
light during night

Fang et al. (2023)

Red/blue light (R/B = 4:1) Strawberry Supplemental red/blue light before sunrise 
and after sunset caused high photosynthesis 
rate and total fruit weight per plant

Increased fruit soluble solid content and 
firmness

Wang et al. (2023)

Red/blue with 0 (control), 12, 24, and 43% 
green light

Sweet pepper Improved fruit weight up to 15% depending 
on %age of green light and cultivars

Lanoue et al. (2022)

Blue light (430 ± 10 nm) Tomato Supplemental blue light significantly 
improved the contents of vitamin C, 
soluble sugar, total phenolic compounds, 
total flavonoids, lycopene, and the overall 
activity of antioxidants in tomato fruits

He et al. (2022)

Red (657 nm) and blue (457 nm) with a R:B 
ratio of 3:1

Tomato Enhance tomato fruit melatonin content. 
Promote fruit ripening. Accelerate fruit 
softening. Upregulate biosynthesis of 
ethylene and lycopene, rate of respiration, 
antioxidant activity, and accumulation of 
carbohydrate

Li et al. (2021b)

Blue light Bilberry Trigger early photomorphogenesis by CRY2/
COP1 interaction that potentially com-
bine with positive regulators, i.e., MYBA 
and HY5, to promote gene expression for 
regulating anthocyanin biosynthesis and 
accumulation during the onset of ripening

Samkumar et al. (2021)

Red light Kumquat fruits Promoted fruit coloration by inducing 
accelerated degreening and carotenoid 
accumulation

Gong et al. (2021)

Red (638 nm) or blue (454) Tomato Post-harvest 48 h illumination affected the 
fruit color, pigment concentration, and 
nutritive value. Enhanced the lycopene and 
β-carotene concentrations

Ngcobo et al. (2021)

Red and far-red light Tomato Supplemental intra-canopy lighting with red 
and far-red LEDs light on tomato plants 
can increase content of sugar in the fruit

Kim et al. (2020)

Blue light Pear fruit Ethylene response factors Pp4ERF24 and 
Pp12ERF96 regulate blue light-induced 
anthocyanin biosynthesis via interaction 
with MYB114

Ni et al. (2019)

Blue light (peak wavelength 444 nm) Apple Post-harvest 7 days irradiation positively 
influences anthocyanin accumulation

Increased PAL activity. Increased quercetin 
glycoside contents

Kokalj et al. (2019)
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synergy between innovation and responsibility. While the 
potential benefits are vast, they must be pursued with an 
unwavering commitment to safety, sustainability, and inclu-
sivity. As the nexus between artificial LED lighting and agri-
culture strengthens, it promises to revolutionize farming and 
food production in the coming decades.

Summary and future prospects

Evidences presented in this study proved the effectiveness of 
red, blue, and green light wavelengths for plant growth and 
development. Although monochromatic red, blue, or green 
light wavelengths or their combinations have been applied to 
different plants in the greenhouses. However, studies on these 
spectra still are not informative enough for crop production 
and application of these spectra are yet to design for large-
scale crop production. Future studies should focus on how 
red, blue, and green light spectral composition influences crop 
growth, secondary metabolism, fruit quality and storage, plant 
defense, behavior of insect/pest, and disease control.
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