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Abstract
Clarifying the spatial distribution of the impact of different human disturbance activities on the net primary productivity 
(NPP) in regions with single climatic conditions is of considerable importance to ecological protection. Time-series NPP 
from 2000 to 2020 was simulated in Northwest Hubei, China, and the effects of the climate and human activities on the 
NPP changes were separated. Research results showed that from 2000 to 2020, the NPP change with an area of 10,166.63 
km2 in Northwest Hubei is influenced by climate and human activities. Among them, human activities account for as high 
as 84.53%. From 2000 to 2020, the NPP in Northwest Hubei showed a slight upward trend at a rate of 1.61 g C m−2 year−1. 
The significantly increased NPP accounted for 21.4% of the total, which was mainly distributed in north of Northwest Hubei. 
And the farming of cultivated land led to the increase of NPP in west as well as the reduced human distribution in cultivated 
land, which was scattered in forests. Only 6.67% of the total area demonstrated a significantly decreased NPP, which was 
distributed mainly in the central affected by the expansion of rural–urban land and change of broad-leaved forests to shrubs 
and in southeast regions of Northwest Hubei caused by the increase in potential evapotranspiration. This study refined the 
driving factors of spatial heterogeneity of NPP changes in Northwest Hubei, which is conducive to rational planning of ter-
restrial ecosystem protection measures.

Keywords  Net primary productivity · Climate change · Human interference degree · Dynamic change · Influence 
mechanism · Northwest Hubei

Introduction

Vegetation is the primary producer of terrestrial ecosystems, 
which can potentially offset one third of the total fossil fuel 
emissions (Friedlingstein et al. 2019; Le Quere et al. 2018). 
Net primary productivity (NPP) is widely used to exam-
ine the carbon balance of terrestrial ecosystems (Bai et al. 
2023; Hsu et al. 2012; Zhuang et al. 2022). However, cli-
mate change and human activities dramatically altered the 
structure, functions, and services of terrestrial ecosystems 
(Izaurralde et al. 2005; Stevens-Rumann et al. 2018; Xiao 

et al. 2023). Therefore, quantifying the main drivers of spa-
tiotemporal changes in NPP is of considerable importance to 
regional vegetation to maintain ecosystem stability.

Numerous quantitative studies assessed the spatiotem-
poral changes in NPP around the world (Koju et al. 2020; 
Nayak et al. 2013). However, the potential separate or 
common impacts of climate change and human activities 
on vegetation remain uncertain, especially at the regional 
scale. Therefore, separating the impact of climate change 
and human activities on vegetation is crucial (Chen et al. 
2019; Dariane and Pouryafar 2021). Unaltered natural 
vegetation affected only by climate change and vegeta-
tion affected by climate change and human activities were 
separated using multitemporal land use/land cover data 
(Ge et al. 2021). Teng et al. (2020) separated NPP influ-
enced by human activities by estimating the difference 
between the actual NPP calculated with the Carnegie-
Ames-Stanford approach (CASA) and NPP influenced by 
the climate based on evapotranspiration, precipitation, and 
temperature. Zhang et al. (2021) disentangled the effects 
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of land cover change and climate change on gross primary 
production according to the scenario setting. For example, 
to separate the impact of land cover change on gross pri-
mary productivity (GPP), the authors set the land cover to 
the initial period level but allowed all the other variables 
to change. Li et al. (2021) used the fraction of absorbed 
photosynthetically active radiation (FPAR) estimated by 
the leaf area index to separate the impact of climate change 
on NPP. Most of the above studies employed empirical 
models to separate the effects of the climate and human 
activities on changes in the NPP. In addition, many studies 
focused on the use of statistical methods to distinguish the 
effects of the climate and human activities on vegetation. 
According to the residual trend method, Qi et al. (2019) 
determined the relative effects of the climate and human 
activities on vegetation over multiple timescales in China’s 
Silk Road Economic Belt. Wu et al. (2020) analyzed the 
impact of climate change and human activities on changes 
in vegetation productivity based on NPP using the partial 
correlation in karst areas in China.

The dynamic effects of the climate and human activities 
on vegetation demonstrate obvious spatial heterogeneity. 
In arid and semiarid regions, the grassland carbon seques-
tration process is highly susceptible to climate change, 
especially precipitation (Wang et al. 2019). From 1982 to 
2008, increased vegetation greenness was observed in 27% 
of the protected areas monitored in Africa (mostly in West 
Africa), and the changes in the NPP dynamics coincided 
with the changes in precipitation (Pettorelli et al. 2012). In 
Central Asia, temperature and precipitation have significant 
effects on vegetation phenology and NPP owing to the stress 
induced by drought conditions (Wu et al. 2021). Tempera-
ture was highlighted as the main driver of the NPP pro-
jections for the Antarctic tundra biome, which showed that 
climate warming will lead to an average increase in the NPP 
of 167–171% at the end of the century (Beltrán-Sanz et al. 
2022). The above studies are concentrated mainly in ecologi-
cally sensitive areas, where the vegetation is significantly 
affected by climate change. Existing research also showed 
that the human appropriation of the NPP can significantly 
alter the energy flow of ecosystems (Haberl 1997). The arti-
ficial disturbance of the potential natural NPP state of the 
occupied land may exert significant pressure on the biodi-
versity (Haberl et al. 2005). At the same time, countries and 
regions engaged in considerable ecological restoration work 
to improve the ecological environment (Liu et al. 2019; Yang 
et al. 2014; Zhang et al. 2020). The above studies mostly 
analyzed the influence factors of climate change and human 
activities on the changes in the NPP on a large scale. How-
ever, there are significant differences in the impact of climate 
change and human activities on ecosystem services at differ-
ent scales (Bejagam and Sharma 2022). Therefore, this study 
attempts to explore the spatial distribution characteristics of 

the impact of different driving factors on NPP at the regional 
scale.

In addition, to examine the impact of climate change and 
human activities on NPP changes, previous studies mostly 
adopted the absolute amount of change and often ignored 
the ecological process (Li and He 2022; Yang et al. 2021). 
Therefore, this study explores the spatial heterogeneity of 
the impact of the climate and human activities on vegeta-
tion based on the spatiotemporal variation characteristics 
of time-series NPP. This research aims to (1) simulate the 
annual NPP in Northwest Hubei (Exibei, in this study) from 
2000 to 2020 with the CASA and analyze its variation trend 
and (2) determine the main driving factors of the interannual 
spatiotemporal variation in the regional NPP.

Materials and methods

Study area

Exibei (109°29′E–113°6′E, 31°14′N–33°17′N) is located 
in Northwest Hubei Province and covers an area of 46,660 
km2 (accounting for 25% of the total area of Hubei Prov-
ince). The elevation of the study area is within the range of 
33–3097 m, showing a descent from south to west. Exibei 
is surrounded by mountains on three sides, with abundant 
mountain resources. It borders the Qinling Mountains to the 
north, Bashan Mountains to the south, and Wushan Moun-
tains to the west. The western region of the study area is 
mountainous (mainly covered by evergreen broad-leaved 
forest, deciduous broad-leaved forest, and evergreen needle-
leaved forest), and the eastern region is plain. Therefore, 
Exibei has become an important component of the ecologi-
cal barrier in the Qinba Mountains. In addition, there are 
numerous rivers and lakes in northwest Hubei, which pro-
vide excellent soil and water conditions for the eastern plain 
and supporting it as the main grain-producing area of the 
country. In terms of climate, Exibei belongs to the north 
subtropical humid region, characterized by hot and rainy 
summers and mild and rainy winters. The average annual 
precipitation is between 800 and 1000 mm, and the average 
annual temperature ranges from 15 to 18 °C.

Data description

The land cover data from 2000 to 2020 were obtained from 
the European Space Agency Climate Change Initiative. In 
this study, the land cover types were reclassified into nine 
categories, which are shown in Fig. 1. The MODIS Normal-
ized Difference Vegetation Index (NDVI) with 16-day 250-m 
spatiotemporal resolution was provided by the National Aero-
nautics and Space Administration (https://​lpdaa​csvc.​cr.​usgs.​
gov/​appee​ars/). Subsequently, the monthly NDVI was obtained 

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/


19833Environmental Science and Pollution Research (2024) 31:19831–19843	

by Savitzky–Golay filtering according to the detailed quality 
assess (QA) band and then maximum synthesis. The mete-
orological data included precipitation, annual average tem-
perature, solar radiation, and potential evapotranspiration. The 
data on precipitation, annual average temperature, and poten-
tial evapotranspiration were obtained from the National Earth 
System Science Data Center (http://​www.​geoda​ta.​cn/), and the 
information on solar radiation was obtained from ECMWF 
Reanalysis v5 (ERA5) (https://​cds.​clima​te.​coper​nicus.​eu/). 
The spatial resolution of all the data was resampled at 250 m.

Methodology

NPP estimation

NPP, as the basis for the study of material and energy trans-
port in terrestrial ecosystems, is an ideal indicator for char-
acterizing the carbon sequestration capacity of vegetation in 
regional ecosystem functions. It is the net accumulation of 
organic matter in photosynthesis by vegetation after subtract-
ing its own respiration consumption. The time-series NPP was 
simulated with the CASA, which is a process-based model 
driven by remote sensing and climate data (Field et al. 1995; 
Potter et al. 1993). The NPP was determined mainly by two 
variables: absorbed photosynthetic active radiation (APAR) 
and light energy utilization ratio (ε):

(1)NPP(x, t) = APAR(x, t) × �(x, t)()

where NPP(x, t) (g C m−2 year−1) is the vegetation NPP at 
time t in pixel x . APAR(x, t) (MJ m−2) and (x, t) (g C MJ−1) 
are the photosynthetic effective radiation absorbed by the 
pixel x at time t  , and the actual light energy utilization of 
the pixel x at time t , respectively.

where SOL(x, t) (MJ m−2) represents the total solar radiation, 
the constant 0.5 represents the proportion of the total solar 
radiation that can be effectively utilized by the vegetation, 
and FPAR(x, t) represents the fraction of the photosyntheti-
cally active radiation absorbed by the vegetation, which can 
be estimated by the NDVI and simple ratio (SR) index of the 
different vegetation types.

Within a certain range, a linear relationship exists 
between the FPAR and NDVI and SR index (Field et al. 
1995; Ruimy et al. 1994). Therefore, to minimize the estima-
tion error, Los (1998) combined the two methods and took 
the average as the FPAR estimate:

(2)APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5()

(3)
FPAR(x, t) =

(NDVI(x,t)−NDVI(i,min))

(NDVI(i,max)−NDVI(i,min))

(
FPARmax − FPARmin

)
+ FPARmin()

(4)
FPAR(x, t) =

(SR(x,t)−SR(i,min))

(SR(i,max)−SR(i,min))

(
FPARmax − FPARmin

)
+ FPARmin()

(5)SR(x, t) =
1+NDVI(x,t)

1−NDVI(x,t)
()

Fig. 1   Location of study area

http://www.geodata.cn/
https://cds.climate.copernicus.eu/
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where NDVI(i,max) and NDVI(i,min) correspond to the maxi-
mum and minimum value of the NDVI of the i th vegeta-
tion type, respectively; SR(i,max) and SR(i,min) correspond to 
the NDVI(i,max) and NDVI(i,min) of the i th vegetation type, 
respectively; and the value of FPARmax and FPARmin is 
unconcerned with the vegetation type, which is 0.95 and 
0.001, respectively.

In an ideal natural environment, the maximum value of 
the light use efficiency of vegetation can be obtained, but in 
an actual environment, it is constrained by the temperature 
and soil moisture conditions:

where T�1(x, t) and T�2(x, t) represent the stress effect on light 
use efficiency at low and high temperatures, respectively; 
W�(x, t) is the moisture stress condition, which reflects the 
reduction in the light use efficiency caused by the moisture 
factor, and �max is a set of parameters that represents the 
maximum light use efficiency under ideal conditions for 
various vegetation types.

HID

In this study, the human interference degree (HID) was used 
to express the impact of human activities. Land cover change 
is the most direct manifestation of the impact of human 
activities. Human disturbances that cause different land use/
cover patterns and intensities have regional and cumulative 
characteristics. First, in this study, the evaluation unit was 
determined as 1 km * 1 km, and each obtained HID value 
was used as the center point value of the evaluation unit. 
Kriging interpolation was performed to generate the spatial 
distribution map of the HID in Exibei for each year:

where n is the number of land cover types, hi is the dis-
turbance intensity of the i th land cover type, and fi is the 
area proportion of the i th land cover type in the evaluation 
unit. The hi of the evergreen broad-leaved forest, shrubs, 
bare land, deciduous broad-leaved forest, cultivated land, 
rural–urban land, evergreen needle-leaved forest, grassland, 
and water body is 2, 3, 1, 2, 5, 6, 2, 4, and 2, respectively.

Trend analysis

The combination of Theil–Sen median trend analysis (Sokal 
1982) and the Mann–Kendall (MK) test (Kendall 1938; Mann 
1945) has become a mature method for the long-term series 
analysis of vegetation. Compared with linear regression 

(6)FPAR(x,t) =
FPAR(NDVI)+FPAR(SR)

2
()

(7)�(x, t) = T�1(x, t) × T�2(x, t) ×W�(x, t) × �max()

(8)HID =
n∑
i=1

fi × hi, ()

analysis, this method has the advantages of not requiring the 
data samples to follow a specific distribution, being less sus-
ceptible to outlier interference, and having a strong ability to 
avoid measurement errors or abnormal data:

where � is the vegetation change trend; i and j are the time 
series; xi and xj represent the vegetation at times i and j , 
respectively; � > 0 reflects the increasing vegetation trend; 
� < 0 reflects the decreasing trend of the NDVI; and � = 0 
reflects no vegetation trend change.

The MK test was used to judge the trend significance, which 
is defined as follows: for a series of Xt =

(
x1, x2,… , xn

)
 , the Z 

statistic used for the trend test is calculated as follows:

where xi and xj are the variable values of the pixels in years 
i and j , respectively; n is the length of the time series; and Z 
obeys a standard normal distribution, with a value ranging 
from −∞ to +∞ . A calculated Z value less than 0 indicates a 
downward trend, whereas a value greater than 0 indicates an 
upward trend. For a given significance level (p < 0.05), when 
|Z|> 1.96, it passes the significance test at the 0.05 level.

Correlation analysis

In this study, the partial correlation method was used to sep-
arate the impact of climate change and human activities on 
the spatiotemporal changes in the NPP. The effects of human 
activities and climate change on the spatiotemporal changes 
in the NPP were examined by controlling climate change and 
human activities, respectively:

(9)𝛽 = Median
(

xj−xi

j−i

)
,∀i < j()

(10)Z =

⎧
⎪⎨⎪⎩

S−1√
var(S)

, S > 0

0, S > 0
S+1√
var(S)

, S < 0

()

(11)S =
n−1∑
i=1

n∑
j=i+1

sgn
�
xj − xi

�
()

(12)sgn(𝜃) =

⎧
⎪⎨⎪⎩

1, 𝜃 > 0

0, 𝜃 = 0

−1, 𝜃 < 0

()

(13)var(S) =
n(n−1)(2n+5)

18
()

(14)Rxy,z =
Rxy−Rxz×Ryz√
(1−R2

xz)×
(
1−R2

yz

) ()
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where Rxy,z is the partial correlation coefficient between 
x and y , excluding the impact of variable z ; x and y are 
dependent variables; z is the control variable; and Rxy , Rxz , 
and Ryz are the simple correlation coefficients between x , 
y , and z . Finally, a bilateral t test was conducted to assess 
the significance of the partial correlation coefficient, with a 
significance level of 0.05.

In the regions where climate change controlled the spati-
otemporal variation in the NPP, the areas where precipitation, 
the annual average temperature, and potential evapotranspira-
tion mainly controlled the spatiotemporal variation in the NPP 
were identified through correlation analysis:

where Rxy is the correlation coefficient between xi and yi , 
which are the NPP and climate factor, respectively, and x 

(15)Rxy =

∑n

i=1 (xi−x)(yi−y)√∑n

i=1 (xi−x)
2
√∑n

i=1 (yi−y)
2
()

and y are the annual average NPP and mean climate factor, 
respectively, from 2000 to 2020.

Results

Spatiotemporal characteristics of NPP in Exibei 
in 2000–2020

The spatial and temporal distributions of the NPP are 
shown in Fig. 2, which reveals that the NPP demonstrated 
obvious spatial heterogeneity. However, the annual aver-
age NPP exhibited a similar spatial distribution, and the 
NPP in the region west of Exibei was significantly higher 
than that in the region east of the study area. The distri-
bution interval of the NPP values was mainly 200–400 g 
C m−2  year−1, accounting for 38.39% of the total area. 
The high NPP values (over 1000 g C m−2 year−1) were 
observed in 2.22% of the total study area, which were 

Fig. 2   Spatiotemporal distribution of NPP in Exibei from 2000 to 2020
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distributed mainly in Southwest Exibei, and the low NPP 
values (under 200 g C m−2 year−1) covered about 11.29% 
of the total area, which were mostly scattered from the 
northwest to the middle western part of Exibei.

From the viewpoint of temporal change, overall, from 
2000 to 2020, 61.7% (an area of 28,788 km2) of the total 
area of Exibei showed an increasing NPP trend, and the 
trend that passed the t test (p < 0.05) covered 21.4% (an 
area of 9,986 km2) of the total area (Fig. 4). The regions 
with a significant increase in the NPP were distributed 
mainly north and west of Exibei. The proportion of the 
NPP with a decreasing trend (34.63%) was far less than 
that with an increasing trend. The area that demonstrated 
a significant reduction in the NPP was only 3114 km2, 
which accounted for 6.67% of the total area and was con-
centrated east and southwest of Exibei. Additionally, the 
areas that showed no change in the NPP accounted for 
1.87% (an area of 873 km2) of the total area of Exibei. 
The time-series annual average NPP was divided into three 
phases (i.e., 2000–2007, 2008–2013, and 2014–2020) 
based on the results of the M–K statistics (Fig. 3). The 
annual average NPP in 2000–2007 exhibited an increasing 
trend, whereas that in 2008–2013 and 2014–2020 showed 
a decreasing trend. The overall trend was on the rise at a 
low but non-significant annual rate of 1.61 g C m−2 year−1 
in the period of 2000–2020. Moreover, from 2000 to 2020, 
the annual average NPP in Exibei ranged from 368.52 to 
543.54 g C m−2  year−1. Overall, (Fig. 4) indicated the 
regional average NPP in Exibei in the period of 2000–2020 
was approximately 451.60 g C m−2 year−1, with the highest 
in 2015 and the lowest in 2020.

Impact of combined effects between climate 
and HID on NPP change

Table 1 and Fig. 5 reveal the effects of the climate and HID 
on the significant changes in the NPP in terms of quantity 
and spatial distribution. The climate, HID, and their com-
bined effects significantly explained 49.13% (passed the 
t test, p < 0.05) of the changes in the NPP in Exibei from 
2000 to 2020. At the same time, the effects significantly 
explained 43.98% and 65.65% (passed the t test, p < 0.05) of 
the increasing and decreasing changes in the NPP in Exibei 
from 2000 to 2020, respectively.

The changes in the NPP caused significantly by the 
climate and HID covered 690.13 km2 and 8593.94 km2, 
respectively, which illustrated that the changes in the NPP 
in Exibei were affected mainly by the HID. At the same time, 
the areas where the climate and HID together contributed 
significantly to the changes in the NPP amounted to 882.56 
km2. In the joint action of the climate and HID, the positive 
effect of the climate was observed mainly in the east, and the 
negative effect was mainly seen in north of Exibei. Moreo-
ver, the combined effects of the climate and HID resulted in 
a significant increase and decrease in the NPP in an area of 
344.44 km2 and 249.25 km2, respectively. In the interaction 
of the climate and HID, the climate mainly played a positive 
role, whereas the HID played a negative role.

Impact of HID on NPP change

The areas that exhibited a significant positive correlation 
between HID and NPP changes were mainly distributed 

Fig. 3   Interannual change in 
annual average NPP in Exibei 
from 2000 to 2020 (The above 
figure is the M–K trend test 
chart, and the following figure is 
the fitting chart of NPP change 
trend in different time periods)
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in the north of Exibei, and the areas that showed a sig-
nificant negative correlation were mainly distributed in 
the central of Exibei (Fig. 5). On the other hand, the areas 
that exhibited a significantly increasing change in the NPP 
significantly related to HID amounted to 4015.25 km2 
(Table 1), which were mainly distributed in the middle 
east of Exibei, with significant positive effects. And, the 
significant negative effects in north and west. The signifi-
cantly decreasing changes in the NPP caused by the HID 
were observed in an area of 1719.06 km2. The significant 
negative correlation between the HID and NPP, with a sig-
nificantly decreasing trend, was mainly seen in the center 
of the study area, whereas the positive correlation exhib-
ited a sporadic distribution.

Impact of different climate factors on NPP change

The areas where the climate had a significant positive effect 
on the NPP changes were located in the east and southwest 
of Exibei (Fig. 5). And the areas where the climate had 
a significant negative effect were located in the center of 
Exibei. In terms of quantity, only 32.63 km2 and 75.88 km2 
of the area that demonstrated significantly increasing and 
decreasing changes in the NPP were significantly related to 
the climate, respectively (Table 1).

The spatial patterns of the correlations between the NPP 
and temperature, precipitation, and potential evapotranspira-
tion during the study period were further analyzed. Accord-
ing to Fig. 6a and b, among the climate factors significantly 
related to the changes in the NPP, potential evapotranspira-
tion covered an area of 434.40 km2, which indicated that 
it played a dominant role. Potential evapotranspiration was 
significantly negatively correlated with the NPP in the area 
southeast of Exibei. As shown in Fig. 6d, the increase in the 
potential evapotranspiration led to a significant decrease in 
the NPP in the area southeast of Exibei. Figure 6a and c 
illustrate that the significant changes in the NPP caused by 
temperature covered an area of 152.69 km2. Thus, tempera-
ture was positively correlated with the significant changes 
in the NPP, thereby indicating that the increase in the tem-
perature contributed to the increase in the NPP, but the 

Fig. 4   Spatiotemporal changes 
in NPP in Exibei from 2000 to 
2020 (The small image shows 
the proportion of areas with 
different change trends of NPP. 
a, b represents p < 0.05 and no 
significant, respectively)

Table 1   NPP change areas caused by climate and human activities

Region
Factors

Whole study 
area (km2)

significant 
increase of NPP 
(km2)

significant 
decrease of NPP 
(km2)

Climate 690.13 32.63 75.88
HID 8593.94 4015.25 1719.06
Climate + HID 882.56 344.44 249.25
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Fig. 5   Spatial patterns of partial 
correlations between NPP and 
climate and HID in 2000–2020. 
(A, B, and C are the signifi-
cant effects of the climate and 
HID on the NPP changes, the 
significant effects of the climate 
and HID on the significantly 
increasing NPP, and the sig-
nificant effects of the climate 
and HID on the significantly 
decreasing NPP, respectively; 
A(a) is the significant impact of 
the climate and HID on the NPP 
changes; A(b) is the significant 
effect of the climate on the NPP 
changes in the combined effects 
of the climate and HID on the 
NPP changes; A(c) is the sig-
nificant effect of the HID on the 
NPP changes in the combined 
effects of the climate and HID 
on the NPP changes; B(a) is the 
significant impact of the climate 
and HID on the significantly 
increasing NPP; B(b) is the 
significant effect of the climate 
on the significantly increasing 
NPP in the combined effects 
of the climate and HID on the 
significantly increasing NPP; 
B(c) is the significant effect of 
the HID on the significantly 
increasing NPP in the combined 
effects of the climate and HID 
on the significantly increasing 
NPP; C(a) is the significant 
impact of the climate and HID 
on the significantly decreasing 
NPP; C(b) is the significant 
effects of the climate on the 
significantly decreasing NPP 
in the combined effects of the 
climate and HID on the signifi-
cantly decreasing NPP; C(c) is 
the significant effect of the HID 
on the significantly decreasing 
NPP in the combined effects 
of the climate and HID on the 
significantly decreasing NPP)
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distribution was scattered in different areas. According to 
Fig. 6a and c, the contribution of precipitation to the sig-
nificant changes in the NPP covered an area of 103.04 km2, 
and the increase in the NPP east of Exibei was caused by the 
increase in the precipitation.

Discussion

The temporal trend characteristics of NPP, climate, 
and HID in three time periods

Overall, a slight increasing trend was observed in the poten-
tial evapotranspiration, temperature, and HID in Exibei in 
the period of 2000–2020, which was similar to the trend of 
the NPP. The slight increasing trend of the NPP in Exibei 

observed in this study is consistent with that observed by 
Wu et al. (2022). However, precipitation decreased slightly. 
Specifically, the interannual fluctuations of the NPP, poten-
tial evapotranspiration, temperature, and HID, were sub-
stantial. According to the fluctuation trend of the NPP, the 
NPP showed an increasing trend in the period of 2000–2007, 
which was the same as the trend of temperature and poten-
tial evapotranspiration and opposite that of precipitation 
and the HID. In the period of 2008–2013 and 2014–2020, 
the NPP showed a decreasing trend. Specifically, the NPP 
change trend in the former period was the same as that of 
precipitation and temperature but opposite that of poten-
tial evapotranspiration and the HID. Meanwhile, the NPP 
change trend in the latter period was the same as that of 
precipitation but opposite that of temperature, potential 
evapotranspiration, and the HID. Therefore, according to 

Fig. 6   Spatial patterns of effect of climate on NPP in Exibei in 
2000–2020 (a is the area with NPP changes caused by the climate, 
with significant changes, significant increased changes, and signifi-
cant decreased changes; b is the spatial pattern of the effect of the cli-

mate on the NPP in the significant change area; c is the spatial pattern 
of the effect of the climate on the NPP in the significant increased 
change area; d is the spatial pattern of the effect of the climate on the 
NPP in the significant decreased change area)
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the temporal change trends (Fig. 7), a negative correlation 
existed between the NPP and HID. Nevertheless, the cli-
mate change trends could not explain the NPP change trends, 
mainly because the effects of the climate on the NPP were 
spatially heterogeneous.

Spatial heterogeneity of effects of climate and HID 
on NPP

From 2000 to 2020, the spatial heterogeneity of the NPP 
changes in Exibei was obvious. The significant increase in 
the NPP was distributed mainly in the area north of Exibei, 
and the distribution of the significant decrease was scattered 
but mostly concentrated in the central and eastern parts of 
Exibei. Although the forest land in Exibei accounts for over 
60%, while the cultivated land is around 30%, according to 
the partial correlation analysis between the NPP and climate 
and HID, the areas where the HID significantly affected the 
NPP changes amounted to 8593.94 km2, which is much 
larger than the area of 690.13 km2 affected by the climate. 
The above results indicated that compared with forests sig-
nificantly affected by climate, human activities had a more 

significant impact on the NPP change of cultivated land in 
Exibei. Of course, the impact mechanisms of human activi-
ties on NPP changes in cultivated land under different natu-
ral environments were different. Specifically, in the areas 
with a significant increase in the NPP, the significant cor-
relation between the HID and NPP was mainly within the 
range of cultivated land, because human activities have no 
significant impact on vegetation far from human settlements 
(FAO, UN 2020). The HID had a significant positive cor-
relation with the significantly increasing NPP, which was 
distributed in the area in the middle east of Exibei. As the 
area was flat, developed agriculture and the cultivation of 
farmland would increase the crop production. In Northern 
Exibei, the HID had a significant negative correlation with 
the significantly increasing NPP, which was due to the high 
terrain and low agricultural production in the region and 
perhaps to the implementation of the policy of the Grain 
for Green Program and reduced human activities within the 
forestland (Ge et al. 2021). Previous studies showed that 
the impact of human activities on the NPP was more pro-
nounced on the horizontal scale than on the vertical scale of 
the terrain (Yin et al. 2020). In the areas that demonstrated 

Fig. 7   Interannual changes in climate factors and HID
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a significant decrease in the NPP, the significant correlation 
between the HID and NPP was mainly within the range of 
the rural–urban land and shrubs. The HID had a significant 
negative correlation with the significantly decreasing NPP, 
which was located in Central Exibei. On the one hand, the 
expansion of the rural–urban land utilized a large amount of 
the cultivated land resources. On the other hand, the expan-
sion was due to the change of the broad-leaved forest to 
shrubs.

Previous studies indicated that ecosystems in arid and 
semiarid regions are highly sensitive to climate change 
(Zhang and Ren 2017). Exibei is located in the humid 
region of China, with a single climatic zone. Therefore, the 
changes in the NPP in Exibei were less affected by the cli-
mate than other factors. However, potential evapotranspira-
tion played a relatively important role in the NPP changes, 
especially in the southeastern part of Exibei, where potential 
evapotranspiration was negatively correlated with the sig-
nificant decrease in the NPP. This outcome was observed, 
because shrubs and rural–urban land occupied the cultivated 
land, resulting in a decrease in vegetation coverage and an 
increase in the potential evapotranspiration. In addition, the 
areas that exhibited a significant increase in the NPP were 
positively correlated with precipitation and temperature. 
Increasing temperatures can prolong the growth period of 
plants and promote plant productivity (Lian et al. 2020; Piao 
et al. 2007). However, forestland in humid regions is less 
sensitive to precipitation, so the NPP changes in the forest-
land due to precipitation were minimal.

Methodological uncertainties and limitations

The impact of human activities on vegetation often has a lag 
effect. Therefore, the time nodes affected by human activi-
ties should be considered in future research. In addition, this 
study separated the effects of the climate and human activi-
ties on NPP changes through partial correlation analysis but 
did not deeply examine the combined effects of the climate 
and human activities on NPP changes. This study did not 
laterally compare different methods for separating the effects 
of the climate and human activities on NPP, such as machine 
learning (Leroux et al. 2017; Shi et al. 2020).

Conclusion

From 2000 to 2020, NPP, with an increasing trend, was 
observed in an area of 28,788 km2 (61.7%) in Northwest 
Hubei, of which the area that demonstrated a significant 
increase was 9986 km2 (21.4%) and distributed mainly in 
the northern part of the study area. The size of the area with 
a decreasing NPP trend was 16,999 km2 (36.43%), of which 
the area that exhibited a significant decrease was 3114 km2 

(6.67%) and distributed mainly southwest and southeast of 
the study area.

The climate and human activities explained the NPP 
changes in an area of 690.13 km2 and 8593.94 km2, respec-
tively, thereby indicating that from 2000 to 2020, the 
changes in the NPP in Northwest Hubei were mainly from 
human activities. The impact of the climate and human 
activities on the NPP demonstrated obvious spatial hetero-
geneity. The farming of cultivated land in the central eastern 
region led to a significant increase in the NPP. However, in 
the northwestern region, with a high terrain and little human 
activity, NPP also increased significantly. The expansion of 
the rural–urban land and change of the broad-leaved forest 
to shrubs resulted in a significant decrease in the NPP in the 
central region. The changes in the NPP east of Northwest 
Hubei were mainly from the climate. Owing to the occupa-
tion of cultivated land by shrubs and rural–urban land, veg-
etation coverage decreased, the potential evapotranspiration 
increased, and the NPP decreased significantly.
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