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Abstract
Sulfides are usually associated with deposits of metals and coal. The reactive wastes from their exploitation, typically stored 
in piles and tailings dams, are often the mining sector’s primary source of environmental problems. The surrounding river 
waters can present signs of acid mine drainage, responsible for aquatic ecosystem degradation. So, the main target of the 
present study is to investigate the impact of this process on the water’s environmental quality and potential ecological risk. 
The study area is located at the Iberian Pyrite Belt, in an old sulfide exploitation, closed without environmental rehabilitation 
measures. The results exhibit high sulfate concentrations (410,601 mg/L) and potentially toxic elements, with prominence of 
Fe (134,000 mg/L), overcoming many other extreme cases of AMD pollution. The Ficklin diagram exposes that most samples 
are classified as “high-acid, high-metal.” Two of them have extreme classifications (high-acid, extreme-metal). The pH value 
is well below the acceptable range for the environmental quality of superficial waters (5–7), measuring at a minimum of 0.84. 
Regarding seasonal variability, the study showed a higher degree of contamination in dry conditions (e.g., 4,420 mg/L of 
Cu), while the rainy month had lower concentrations of PTE (186.8 mg/L of Cu for the same sampling point). In addition, 
the water does not accomplish the environmental objectives established by the EU Water Framework Directive. According 
to the new approach developed based on a scale adjustment, the potential ecological risk index studied indicates that most 
sampled sites present strong, very strong, and even extremely potential ecological risk. With a typical Mediterranean climate, 
the region suffers from water scarcity, predicting increasingly in the future more degrading scenarios for water environmental 
quality. Consequently, urgent mitigation and remediation measures are necessary to improve and preserve water quality and 
fulfill the objectives of the United Nations Sustainability Development Goals.

Keywords  Acid mine drainage · Seasonal variability · Water environmental quality · Potential ecological risk index · 
Drought episodes

Introduction

Sulfides are the most common minerals, stable under reduc-
ing circumstances (Nordstrom and Alpers 1999). Lottermoser 
(2010) highlights the role of pyrite, marcasite, pyrrhotite, and 
chalcopyrite due to their abundance and environmental rel-
evance under oxidative dissolution conditions. They are usu-
ally associated with coal and metallic mining (e.g., Cu, Zn, 

and Pb). However, exploitation of these elements can generate 
large amounts of waste that are typically stored in specific 
infrastructures, such as piles around the mine and tailings 
dams, constituting the main environmental focus of the mining 
sector (e.g., Sánchez España et al. 2008). The problem centers 
on mineral–water, mineral-atmosphere, and mineral-biosphere 
interactions, producing acid mine drainage (AMD) (Nordstrom 
et al. 2015). Classic mining landscapes start to present waters 
with typical ochre coloration, supergenic minerals in various 
bright colors (Alpers et al. 1994; Wolkersdorfer et al. 2020), 
and crustification of streambeds (Valente et al. 2012). Also, 
the receiving water systems are characterized by low pH, 
high concentrations of acidity, sulfate, and potentially toxic 
elements (PTE) (Gomes et al. 2018), which often behave as 
permanent pollutants (Kicińska et al. 2021). From an ecologi-
cal point of view, the specific impact of sulfide-rich wastes is 
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often manifested by the appearance of extremophiles, where 
acidophilic algae and other microorganisms essentially pro-
liferate (e.g., Aguilera et al. 2006; Amils et al. 2011; Levings 
et al. 2005; Schneider et al. 2018; Gomes et al. 2021).

As water is an essential resource for the maintenance of 
biota, its environmental quality is a critical factor influencing 
ecosystems and human health (Zhang et al. 2012). There-
fore, water availability with a suitable value for specific uses, 
like human consumption or maintenance of ecological qual-
ity, is a crucial issue, especially in semi-arid climates (Tiri 
et al. 2014). Nevertheless, water scarcity associated with fre-
quent drought generates deep concern about the quantity and 
quality of this vital resource (Bonnail et al. 2019). According 
to the same authors, the environmental quality standards in 
aquatic ecosystems have been increasingly prioritized by the 
EU Water Framework Directive (WFD, Directive, 2000/60/
EU, and modifications such as Directives, 2008/105/EU 
and 2013/39/EU). “Good chemical status,” such as PTE, 
and “ecological status” are two fundamental environmental 
quality standards for surface waters. According to Zhou et al. 
(2022) and Zhang et al. (2019), it is necessary to identify 
factors, such as land use, meteorology, and hydrology, that 
may contribute to degradation and explore their effects on 
water quality to protect riverine water resources scientifi-
cally. In this context, according to knowledge, no study has 
been carried out that allows the assessment of surface waters 
in the old mining area of São Domingos about current EU 
requirements. Furthermore, it developed and proposed an 
addition of new classes of potential ecological risk index. 
So, this work intends to investigate the fulfillment of quality 
environmental objectives for surface water, the impact that 
water scarcity, related to seasonality, may have in the aquatic 
medium, and the potential ecological risk inherent in current 
conditions. The present study focuses on the hydrochemical 
properties of two streams that run through an old sulfide 
mine, representing a unique scenario of AMD contamina-
tion. Downstream, the reservoir (The Chança River) is used 
for drinking water production. So, the study contemplated 12 
sampling points, including a pit lake and water dams along 
the streams, over a complete hydrological year. Thus, this 
investigation intends to contribute to the knowledge about 
the available water bodies, warning to their appropriate man-
agement — in terms of improving ecological and functional 
quality — in a traditional mining region with a typical Medi-
terranean climate that faces water shortages.

Materials and methods

Study area and sampling sites

The Iberian Pyrite Belt (IPB) is a large metallogenic prov-
ince in Portugal and Spain known as one of the major in the 

world (Fig. 1). Mining activities in the region have resulted 
in important contamination due to the exploitation of sulfide 
deposits. The São Domingos mine (Fig. 1), situated in the 
Portuguese sector of IPB, has a long history of mining 
activity dating back to pre-Roman times, with operations 
continuing until 1966. It was closed without environmental 
remediation, having recently started a rehabilitation project 
(EDM 2021; www.​edm.​pt.). Several authors (e.g., Abreu 
et al. 2008; Tavares et al. 2009; Pérez-López et al. 2008) 
characterized the study area as exhibiting low pH and abun-
dant elements with potential implications for the environ-
ment and human health, such as Fe, Cu, Zn, Sb, As, Hg, and 
Pb. Numerous old infrastructures (ore-processing plants and 
machinery), waste dumps, and tailings dams are dissemi-
nated along the mining complex (Cordeiro et al. 2017). The 
pit lake (PAT2 in Figs. 1 and 2) reached a depth of 120 m 
and a perimeter of 2 km. PAT1, the Tapada Grande, was 
initially constructed for mining activities and is now a res-
ervoir for recreational use. The remaining sampling points 
are located within the mining complex along the two main 

Fig. 1   Sketch with the location of the São Domingos mine in the Por-
tuguese sector of the Iberian Pyrite Belt and respective sampling sites 
(PAT1 to PAT12).  Adapted from Gomes et al. 2022

https://www.edm.pt
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streams that drain the area: São Domingos and Mosteirão 
(Fig. 1). The waters have an intense red–orange color asso-
ciated with high iron concentrations and ochre-precipitates 
deposition (Fig.  2a, b) (Gomes et  al. 2017). Regarding 
aquatic biodiversity, blooms of acidophilic algae are fre-
quently reported (Fig. 2d) (Wolowski et al. 2008; Luís et al. 
2019) but with low diversity (Gomes and Valente 2019).

Samples were collected monthly from October 2016 to 
September 2017 in a complete hydrological year. The sam-
pling sites can be categorized according to their hydrological 
conditions related to the flow regime. PAT1, PAT2, PAT3, 
PAT4, PAT5, PAT7, and PAT12 generally indicate lentic 
behavior, while the remaining PATs indicate lotic conditions 
(Fig. 2) (Gomes et al. 2022). The final receptor of the acidic 
discharges is the Chança River, here entitled with PAT12, 
which presently works as a reservoir for human supply.

Climate conditions

Concerning average monthly precipitation, the 30 hydro-
logical years (1936/37–1966/67) demonstrated that 

precipitation varied between 1.1 and 85.9 mm, in July and 
January, respectively. For the same period, the average air 
temperature varied between 10.4 °C in January and 25.7 
°C in July, with the hottest period occurring from May to 
October, while November to April is the coldest period. 
According to the United Nations Framework Convention 
on Climate Change (ENAAC, 2010), Portugal is one of the 
European countries that is most vulnerable to the impacts 
of climate change. In this sense, risk situations such as 
precipitation peaks, heat waves, and storms associated 
with strong winds can occur more frequently (APA, 2016). 
The year of the present sampling was, especially in Por-
tugal, atypical of high temperatures. The country suffered 
heat waves that led to fires of magnitudes and proportions 
never before reported, affecting numerous populations. 
Thus, the period corresponding to the sampling (2016 to 
2018) was analyzed. So, the average monthly tempera-
ture for this period reveals that the driest months are also 
the hottest. The coldest month is January, with the low-
est temperature recorded (7.7 °C) in 2017. July 2016 was 
the hottest month, with an average temperature of 26.6 

Fig. 2   Field images illustrating some sampling points: a PAT2 (pit lake); b PAT6 (typical ochre color of acid mine drainage water); c PAT7 (len-
tic environment with efflorescent salts); d PAT11 (lotic environment after confluence with Mosteirão river)



21127Environmental Science and Pollution Research (2024) 31:21124–21135	

°C. These data demonstrate higher thermal amplitude and 
temperature increase. Figure 3 presents the rainy season 
from October to March, with an average rainfall of 54 to 
72 mm, and the dry period comprises the months between 
April and September, with rainfall ranging from 17.6 to 
0.2 mm. Figure 3 also shows February as having the high-
est rainfall, 72.6 mm. July is the driest month, with 0.2 
mm, showing less precipitation during the study period.

Analytical methods

The pH, electrical conductivity (EC at 25 °C), and poten-
tial redox (Eh) were recorded in situ with a portable meter 
Thermo Scientific Orion. Surface water was collected for 
further analyses: 500 mL was used for sulfate determina-
tion, and 100 mL was filtered (0.45 µm) and acidified with 
nitric acid (75%) to maintain a pH below 2. The samples 
were immediately transported to the laboratory in polyeth-
ylene containers and refrigerated conditions (4 °C).

Sulfate was determined by turbidimetric method (Stand-
ard Methods 4500 E; APHA 2012). Selected element con-
centrations (Al, As, Cu, Fe, Ni, Co, Zn, Pb, and Cd) were 
obtained by inductively coupled plasma optical or mass 
spectrometry (ICP-OES/MS). These analyses were per-
formed by Activation Laboratory, Lda—Actlabs, Canada, 
including duplicate samples and blanks to check preci-
sion, whereas accuracy was obtained by using certified 
standards (IV-STOCK-1643 (ICP/MS) Cert). All the rea-
gents used were of analytical grade or Suprapur quality 
(Merck, Darmstadt, Germany). The standard solution was 
the Merck AA Certificate. Milli-Q water was utilized in 
all the experiments.

The SPSS Release 25.0 software was used to treat the 
results statistically. Ficklin diagram (Ficklin et al. 1992) 
was applied to distinguish and classify the different water 
samples.

Potential ecological risk — a new approach

According to different authors (e.g., Ojekunle et al. 2016; 
Withanachchi et al. 2018), the metal index (MI) and the 
potential ecological risk index (RI) provide the bigger pic-
ture of water quality. Based on the work of Ojekunle et al. 
(2016), the RI represents different classification categories. 
The MI is a general index applied for different types of water 
uses, e.g., river waters (Bakan et al. 2010; Khoshnam et al. 
2017). The RI was proposed by Håkanson (1980) for sedi-
ments and aims to assess PTE’s characteristics and environ-
mental behavior for basins/lakes. Although, according to 
more recent studies, several authors have applied similar 
indexes to evaluate the potential ecological risk for water 
(e.g., Karunanidhi et al. 2022).

The first is calculated using the following equation:

According to Tamasi and Cini (2004) and Withanachchi 
et al. (2018), Ci is each PTE concentration in each sample, 
and MAV is the standard maximum allowed concentration, 
as defined by the European and Portuguese legal framework 
for water quality (Decree Law No. 236/98).

The second one was achieved through:

where Ti
r
 is the toxic response factor (Håkanson 1980) and 

the Ci
f
 is the contamination coefficient of a specific PTE, 

calculated by measured value obtained in the field sample, 
divided by the reference value, which is the MAV 
(Ci

f
= Ci

sl
∕MAVi

n
).

However, because the index results may be out of adjust-
ment for different types of water, this investigation proposes 
an adaptation and addition of new classes of potential eco-
logical risk and Metal Index (MI). This new organization is 
presented in Table 1.

Results and discussion

Hydrochemistry in the mining area

Table 2 presents the statistical summary of in situ parameters 
and sulfate. The box and whisker plots regarding the PTE 
selected are shown in Fig. 4. Both were analyzed monthly 
in the hydrological year of 2016/2017 and are crucial AMD 
indicators.

The highest pH value was detected in the dam upstream 
of the mining area, PAT1, with 8.13. In the opposite situa-
tion, there is PAT7, with the lowest pH recorded (0.4). EC 
is also highlighted in PAT7, as it has the highest registered 

(1)MI =
∑N

i=1
Ci∕(MAV)i

(2)RI =
∑8

i=1
Eri =

∑8

i=1
Ti
r
.Ci

f

Fig. 3   Monthly values of total precipitation, covering October 2016 
to September 2017
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value, with 27,300 μS/cm, in May 2017. Comparing spe-
cifically with other sites in the IPB, González et al. (2020) 
refer to EC values of around 11,000 μS/cm in the Tharsis 
mines. So, in the present study, São Domingos (PAT7) pre-
sents an even superior EC. As expected, higher values for 
Eh (500–600 mV) are observed in environments that are 
presumed to be more oxidizing, associated with the evolu-
tion of AMD. This parameter generally behaves similarly 
to the EC along the sampled path. PAT7, PAT2, and PAT5 
exhibit higher sulfate concentrations (410,601; 6,699; and 
6,565 mg/L, respectively).

The results of PTE demonstrate that PAT7 and PAT2, 
followed by PAT5, are the most contaminated sites, and Fe 
and Al have higher concentrations. The results obtained for 
Al can be explained by the abundant dissolution of felsic 
host rocks, increased by the medium's strong acidity, as sug-
gested by Soyol-Erdene et al. (2018)On the other hand, high 
Fe concentrations may be related to the paragenesis of the 
study area, very rich in pyrite, whose availability is associ-
ated with AMD. For example, Fe presents a concentration 
of 134,000 mg/L in PAT7. These values agree with others 
registered in different parts of the world, corresponding to 
extreme AMD pollution cases. According to Giloteaux et al. 
(2013), Carnoulés, in France, also exhibits extreme sulfate 
concentrations, up to 30,000 mg/L, and low values for pH 
(down to 1.2). A paradigmatic example is the Richmond 
Mine at Iron Mountain, which presents 111,000 mg/L of Fe, 
23,500 mg/L of Zn, 340 mg/L of As, and 760,000 mg/L of 
sulfate (Nordstrom and Alpers 1999). According to Migasze-
wski et al. (2014), Wisniówka tailing pile pools in Poland 
show 66,000 mg/L of Fe, 1500 mg/L of As, pH values of 1.2, 
and 330,000 mg/L of sulfate concentrations.

The most contaminated samples revealed higher range 
values for almost all the PTEs analyzed, indicating a stronger 
seasonality impact (PAT5 and PAT7). According to Zhou 
et al. (2022), Cu and As are more associated with the pre-
cipitation, and they might decrease abruptly when the pre-
cipitation is above 4.68 mm. However, the results referring 
to PAT2 (also a very contaminated site) do not reveal the 
same behavior, that is, a large variation in the concentration 
of these elements throughout the hydrological year. This 
event may be because PAT2 is a pit lake whose hydrochemi-
cal component appears to remain more stable (Gomes and 
Valente 2019). Despite presenting with a lower degree of 
contamination, the remaining points, such as PAT6, PAT10, 
and PAT11, also appear to reflect some variation in the Cu, 
Fe, Zn, and Al concentrations. One factor contributing to 
these changes is that these sampling points may vary from 
lotic to lentic environments in the dry season. So, with the 
decrease in precipitation (in the driest months), these points 
adopt lentic characteristics. Thus, seasonality appears to 
have a higher impact on the concentration of PTE, revealed 
in bigger or less water contamination and inevitably in its 

Table 1   Different contamination degrees and classes are presented 
concerning MI and RI values, respectively. *A new approach pro-
posal (adapted from Dong et al. 2007; Jiao et al. 2012)

Contamination degree Classes

 < 150, low 1
 > 150 < 300, moderate 2
 > 300 < 600, strong 3
 > 600 < 5000, very strong* 4*
 > 5000, extremely strong risk* 5*

Table 2   Statistical summary of expeditious parameters and sul-
fate, analyzed over 12 campaigns. Avg = average; Min = minimum; 
Max = maximum

Samples pH EC (μS/cm) Eh (mV) SO4 (mg/L)

PAT1 Avg 7.1 247 217 8.6
Min 5.2 28 49 2.2
Max 8.1 308 352 25.3

PAT2 Avg 2.6 7297 552 5873
Min 2.4 741 506 4742
Max 3.0 8850 615 6699

PAT3 Avg 2.7 2877 517 1608
Min 2.3 228 498 662
Max 3.5 4378 543 2761

PAT4 Avg 2.7 2655 555 1728
Min 2.3 310 487 552
Max 3.0 4230 605 2600

PAT5 Avg 2.5 4035 538 3155
Min 2.1 251 272 866
Max 2.8 6943 619 6565

PAT6 Avg 3.0 1735 480 1002
Min 2.6 117 216 68.2
Max 4.0 4320 545 2955

PAT7 Avg 1.6 16,132 514 157,230
Min 0.4 1252 447 10,124
Max 2.5 27,300 657 410,601

PAT8 Avg 2.8 3393 506 2498
Min 2.2 182 288 58.5
Max 4.7 7320 576 5732

PAT9 Avg 2.9 1729 515 836
Min 2.4 204 374 110
Max 3.5 3186 566 1642

PAT10 Avg 2.9 3200 470 2055
Min 2.4 186 242 151
Max 3.7 8598 561 6753

PAT11 Avg 4.0 741 371 301
Min 2.9 169 84.8 58.4
Max 6.3 1527 516 790

PAT12 Avg 6.5 249 285 34.1
Min 5.3 26.5 114 24.8
Max 7.9 503 391 48.2
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quality. PAT1 and PAT12 do not show ample variation 
throughout the hydrological year. These sampling points 
reveal low concentrations of analyzed PTE.

Trends of fluvial system‑Ficklin diagram

Ficklin diagram (Ficklin et al. 1992), in Fig. 5, reveals the 
result of 12 sampling points projected according to the sum 
of metals and their respective pH. It is possible to observe 
a clear distinction among samples. Thus, PAT7 and PAT1 
are at opposite extremes, with “high-acid, extreme-metal” 
classifications and “near-neutral, low-metal”, respectively. 
In the same range as PAT7, however, with a higher pH and 

lower concentration of metals, is PAT2. These results are 
in accordance with the obtained by Gonzalez (2020) for 
Tharsis mine. In the previous study, the projection in the 
Ficklin diagram revealed that samples are mostly classi-
fied as high acid-extreme metal and high acid-high metal, 
like PAT2. However, PAT7 exhibits more extreme values in 
the São Domingos mine. Another study (Sarmiento et al. 
2018) focuses on a lagoon designated by “radical point” 
and located in a small mining leachate dam (IPB, Span-
ish side, in Cobica River watershed), revealing a negative 
pH, and that seems similar to PAT7, studied here. PAT7 
seems to have extreme contamination characteristics, being 
an acidic lake in the industrial area of the complex. The 

Fig. 4   Box and whisker plots of selected PTE analyzed during a com-
pleted hydrological (12 campaigns) in the respective sampled points. 
The box plot displays the interquartile range with the median repre-

sented by the line inside the box. The whiskers are lines extending 
from the box to the highest and lowest, excluding outliers, represent-
ing extreme (star symbol) or mild outliers (circle symbol)
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more considerable degree of contamination seems to be 
strongly associated with the presence of the most reac-
tive wastes, such as accumulations of washed ore, that is, 
materials highly enriched in fine-grained pyrite disposed 
of, for example, around the most acidic lagoon — PAT7 
(e.g., Sarmineto et al. 2018; Tavares et al. 2009). The digital 
surface model obtained by Gomes et al. (2021) indicates 
the influence of drainage pathways on water chemistry in 
this area. This information confirms the direct relationship 
between the nature of the materials in the surrounding area 
and the degree of impact on the water environment. Cordeiro 
et al. (2017) identified the waste dumps and landfills with 
the highest contamination potential. These are located in the 
North sector (near the pit lake) and in the industrial area of 
Achada do Gamo (PAT7), in line with the results obtained 
in the present study. The very fine accumulations of washed 
ore had high reactivity index (pH paste < 3.0). So, according 
to the results, and similar to what was investigated by other 
authors (Pérez-López et al. 2008; Sarmiento et al. 2018; 
Grande et al. 2015), the finest mining wastes are respon-
sible for more harmful effects on the environment. PAT11 
and PAT12 are arranged separately in the “acid, high-metal” 
and “near-neutral, high-metal” ranges. All other samples are 
grouped in the same classification: “high-acid, high-metal,” 
emphasizing the PAT5 point, located at the interface with 
the most concentrated range of metals and the lowest pH. 
The results can be related to the disposition, proximity, and 
quantity of waste in mining areas. PAT2 is highly contami-
nated in this case due to low pH and extreme metal con-
centration. Additionally, surrounding wastes (reactive slags) 
can contribute to runoff phenomena in the pit lake. After 
points PAT3, PAT4, PAT5, and PAT6, there appears to be 
a tendency towards a reduction in contamination along the 
sampling line. In addition to reducing the amount of waste 
disposed along the watercourse and its reactivity, another 
aspect that can contribute to the reduction of contamina-
tion after point PAT8 is the confluence of the Mosteirão 

River. This clean stream without metallic contamination pro-
motes an increase in the hydrological load, which in turn is 
reflected in the dilution effect.

Furthermore, from PAT11 onwards, there tends to be 
decreased contamination, mainly because of dilution and 
higher distance from the waste accumulation. Also, min-
eralogical controls related to the precipitation of jarosite 
and other secondary phases contribute to this attenuation, 
as Alpers et al. (1994) referred to. PAT12, water for human 
consumption, was revealed to be a point of clean water, as 
indicated by lower concentrations of the selected elements.

Seasonal variability and environmental quality

Figure 6 reveals the maximum allowed values (MAV), con-
sidered as standards for environmental objectives of qual-
ity for surface waters (pH, Cu, Zn, SO4, Pb, As, and Cd) 
(Decree Law No. 236/98, of August 1) in different periods: 
the wettest (02/17) and driest month (07/17). Only PAT1 and 
PAT12 proved to comply with MAV (water dam for recrea-
tional use and water dam for human consumption, respec-
tively). As regards the other points, it is possible to notice 
that all elements suffered notable variations, with higher 
concentrations in the dry month (July 2017 campaign). The 
MVA was largely exceeded. The pH value at PAT7 is excep-
tional compared to the other analyzed data, with a value of 
0.84 in the July campaign, well below the range presented as 
admissible (between 5 and 9). Despite not reporting extreme 
events in their study, Sarmiento et al. (2018) have found, 
between October 2003 and January 2007, negative pH values 
on the other side of the border, also in a lagoon of an old 
IPB mine. Such results are justified by the low dilution in 
the context of lesser water availability, leading to the intense 
water–rock interaction processes (Cánovas et al. 2007).

Nevertheless, some elements showed minimum con-
centrations in the dry period, probably due to the intense 
precipitation of Fe oxyhydroxysulfate and sulfates that 
incorporated some elements in their structure (González 
et al. 2020). These lower concentrations occur for Pb and 
Cd in PAT11. According to Farkas et al. (2007); Duodu 
et al. 2016), after some metals are introduced into the 
aquatic ecosystem, most can be attached to fine-grained 
particles and accumulate in bottom sediments through set-
tling. Even when water quality criteria are not exceeded, 
these substances can harm biological systems (Bibi et al. 
2007). In this regard, during field sampling, it was pos-
sible to visually confirm the presence of ochre precipi-
tates, which were more intense at the end of the chan-
nel, specifically in locations PAT10 and PAT11. These 
precipitates formed long, thick pastes deposited on the 
watercourse bed. Furthermore, Rao et al. (2021) reported 
that the metals with the highest potential eco-risk were Pb 
and Cd. These were retained in the sediments, presenting 

Fig. 5   Ficklin diagram (1992) showing different classifications for 
water sampled at the São Domingos mine
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Fig. 6   Hydrochemical variations referring to the rainiest month 
(02/17) and the driest month (07/17), considering the quality envi-
ronmental objectives for surface waters (Decree Law No. 236/98, of 

August 1st – Annex XXI). The x-axis represents each MAV value: pH 
(5–7); Cu = 0.1; Zn = 0.5; S04 = 250; Pb = 0.05; As = 0.1; Cd = 0.01
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high concentrations. Also, concerning Pb, Gomes et al. 
(2021) made it possible to verify in their study of clusters 
an intrinsic association of this element with algae in the 
aquatic environment. These algal mats could be accumu-
lating these metals in their cells. Moreover, Yu and Wang 
(2004) and Yuan et al. (2015) found that eutrophication 
can stimulate the absorption and accumulation of toxic 
metals in freshwater phytoplankton cells, which can affect 
their mobility in the aquatic ecosystem.

Several authors have reported for decades (e.g., John-
son and Hallberg 2005; Gomes et al. 2018) that AMD 
from abandoned mines can be the main limiting factor for 
water use in the river basins in which they are located, as 
well as the primary source of ecological degradation of 
river systems. Thus, the São Domingos and Mosterirão 
streams are outside the stipulated environmental qual-
ity objectives. It should be noted that according to the 
EU Commission (2000), the main goal of the EU Water 
Framework Directive (WFD) is to achieve good ecologi-
cal and chemical quality for all European rivers. In this 
sense, the results obtained for this mining site are clearly 
out of the scope of the legal framework and the United 
Nations Sustainability Development Goals (SDG-UN, 
Agenda, 2030).

Drought episodes: potential ecological risk

PTE’s implications for the ecosystem were analyzed in 
the driest conditions, as they present more extreme values 
and, therefore, higher risk. In this way, Table 3 exposes 
the results of the MI and RI.

The analysis indicates that PAT1, PAT11, and PAT12 
have low potential ecological risk. PAT4, PAT6, and PAT9 
belong to class 3, exhibiting strong risk. PAT3, PAT8, and 
PAT10 reveal one of the proposed new classes (class 4), 
evidencing very strong risk. As revealed throughout the 
study, PAT2, PAT5, and PAT7 are classified in the highest 
proposed class (> 5000), indicating potential extremely 
strong ecological risk. In this way, it is possible to order 
the sampling points by groups, depending on the ecologi-
cal risk of contamination: PAT1, PAT11, PAT12 < PAT4, 
PAT6, PAT9 < PAT3, PAT8, PAT10 < PAT2, PAT5, PAT7. 
No samples are in the moderate class (> 150 < 300). The 
index thus reveals extreme classification values. Accord-
ing to Bakan et al. (2010), the results of MI are even 
more pessimistic, indicating that all sampled points are 
representative of a warning limit (MI > 1). According to 
Batty et al. (2010) and Reyes-Becerril et al. (2019), ele-
ments such as Cu, Zn, Pb, As, or Cd are directly toxic to 
the metabolism of aquatic organisms, and their release 
poses an environmental and health threat.

Conclusion

The AMD-studied waters have very high EC, low pH, and 
very high concentrations of dissolved PTE. They are clas-
sified mostly as high-acid, extreme-metal, and high-acid, 
high-metal. A seasonal pattern in AMD hydrochemistry can 
be observed: the rainy month has lower PTE. In contrast, 
the driest month is the most contaminated, revealing the 
impact of extreme drought episodes on the water medium. 
In addition to not complying with the environmental objec-
tives in the legislation, the water quality is not in line with 
the United Nations Sustainability Development Goals. Only 
PAT1 (recreation dam) and PAT12 (dam for human con-
sumption) agree with the minimum quality environmental 
objectives for surface water in both studied months: dry and 
rainy. However, the MI reveals that all samples are repre-
sentative of a warning limit (> 1). The potential ecological 
risk shows extreme classes, and the risks presented in this 
study may have major implications in the future, consider-
ing the current water scarcity scenario. According to the 
preliminary document of the Intergovernmental Panel on 
Climate Change (IPCC, ONU), published in 2021, the region 
is in a “hot spot,” being subject to extreme climate changes, 
implying a strong probability of heat waves and extreme risk 
of drought. Thus, the new classifications can alert compe-
tent authorities to implement preventive and even remedial 
measures in line with different risks determined.

Table 3   The metal index (MI) and the potential ecological risk index 
(RI) for sampled sites in the driest month (07/17). Five classes and 
contamination degrees are presented concerning RI values obtained 
(adapted from (Dong et al. 2007; Jiao et al. 2012). *A new approach 
proposal

Driest month MI RI Contamination degree Class

PAT1 1.392 11.552  < 150, low 1
PAT2 1143.1 6550  > 5000, extremely strong 

risk*
5*

PAT3 175.12 854.08  > 600 < 5.000, very 
strong*

4*

PAT4 186.26 578.3  > 300 < 600, strong 3
PAT5 874.82 5047.2  > 5000, extremely strong 

risk*
5*

PAT6 82.72 427.9  > 300 < 600, strong 3
PAT7 59,162.4 341,594  > 5000, extremely strong 

risk*
5*

PAT8 580.38 2675.8  > 600 < 5000, very 
strong*

4*

PAT9 110.04 555.62  > 300 < 600, strong 3
PAT10 145.92 764.9  > 600 < 5000, very 

strong*
4*

PAT11 4.662 25.262  < 150, low 1
PAT12 1.308 11.228  < 150, low 1
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