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Abstract
The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by 
microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, 
the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we 
identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, 
the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present tran-
scriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 
100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly 
encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not 
previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, 
thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the down-
regulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, 
and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely 
playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT 
biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report 
is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.

Keywords  Transcriptomics · TNT · Xenobiotics · Oxidative stress · Azoreductase · Antarctica · Bioremediation · 
Pseudomonas

Introduction

Since the early twentieth century, the nitroaromatic explo-
sive 2,4,6-trinitrotoluene (TNT) has been extensively used in 
military and civilian activities (e.g., mining, construction), 
and its production is still increasing (Maksimova et al. 2018; 
Lata et al. 2021; Mordor-Intelligence 2021). This has resulted 

in the release of thousands of tons of TNT and its derivatives 
into the environment, causing soil and groundwater contami-
nation (Habineza et al. 2017; Chakraborty et al. 2022). Addi-
tionally, the adverse effects of TNT on human health and other 
organisms, such as cytotoxicity and carcinogenicity, have also 
raised many health concerns (Koske et al. 2019; Thenmozhi 
and Devasena 2020). Therefore, the removal of TNT from 
the environment and the restoration of contaminated sites 
are considered major priorities by the US Agency for Toxic 
Substances and Disease Registry (ATSDR) (ATSDR 2022).

Since physicochemical methods for TNT removal have 
proved to be highly cost-intensive and inefficient, bioreme-
diation has emerged as an eco-friendly and sustainable alter-
native (Claus 2014; Maksimova et al. 2018). The capabil-
ity of many different bacteria to biotransform or mineralize 
TNT has been reported, including those of the Pseudomonas 
(Van Dillewijn et al. 2007; Fernández et al. 2009; Cabrera 
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et al. 2020), Citrobacter (Kao et al. 2016), Bacillus (Merci-
mek et al. 2013; Yakovleva et al. 2022), and Klebsiella (Kim 
et al. 2002) genera (Lamba et al. 2022; Gupta et al. 2023b, 
a; Xu et al. 2023). Nevertheless, the high chemical stability 
of TNT makes this xenobiotic very difficult to degrade (Lata 
et al. 2021). In fact, under aerobic conditions, this compound 
is commonly subjected to reductive attack rather than the 
usual oxidative degradation that typically occurs with aro-
matic compounds (Heiss and Knackmuss 2002).

To date, several transcriptomic and proteomic studies pro-
viding insights into the bacterial TNT degradation process 
have been reported, but they remain scarce (Ho et al. 2004; 
Cho et al. 2009; Fernández et al. 2009; Liao et al. 2018; Xu 
et al. 2021; Yakovleva et al. 2022). In general, these studies 
showed the increased expression of genes and proteins related 
to (nitro)aromatics metabolism (e.g., nitroreductases, Old 
Yellow Enzymes, azoreductases) and stress response (e.g., 
thioredoxins, reductases) upon exposure of different bacteria 
to TNT. Nevertheless, the full set of enzymes and pathways 
involved in TNT degradation, as well as other related to physi-
ological processes, have not been fully elucidated.

In earlier research, we reported the isolation of the Ant-
arctic bacterium Pseudomonas sp. TNT3, which showed 
remarkable TNT biotransformation capabilities compared 
to other well-known TNT-degrading bacteria (Cabrera 
et al. 2020). For further investigation of this phenome-
non, in a more recent study, we performed a comparative 
genomic analysis among TNT-degrading pseudomonads, 
including Pseudomonas sp. TNT3. The results revealed the 
presence of genes (some of them unique) that are likely to 
be related to TNT biotransformation (Cabrera et al. 2022). 
Nonetheless, the changes in gene expression during TNT 
biotransformation by the isolate TNT3 were not assessed.

The present study aimed to examine the changes in the 
transcriptome of Pseudomonas sp. TNT3 upon exposure to 
TNT (100 mg/L) in the culture medium under aerobic con-
ditions. Gene expression patterns were analyzed by utiliz-
ing RNA sequencing and differential expression analysis. 
The identification of differentially expressed genes (DEGs) 
and associated metabolic pathways under the experimental 
conditions allowed to shed light on the molecular mecha-
nisms utilized by this bacterium to withstand TNT, ulti-
mately contributing to a more comprehensive understand-
ing of the TNT metabolism in bacteria.

Materials and methods

Bacterial growth conditions

The bacterium Pseudomonas sp. TNT3 used in this work 
was previously isolated from Deception Island (Antarc-
tica) in 2018 and then cultured as reported before (Cabrera 

et al. 2020). Briefly, the bacterial cells were grown in half-
diluted R2A medium in the absence and presence of TNT 
(100 mg/L) at 28 °C using constant agitation. After 8 h of 
incubation, the culture reached the mid-exponential phase of 
growth (optical density at 600 nm = 0.3 ± 0.01). This cultiva-
tion time was selected since the greatest TNT biotransfor-
mation rate by Pseudomonas sp. TNT3 was observed here 
(Cabrera et al. 2020). Three biological replicates per condi-
tion were used for further analyses.

TNT quantification

To confirm that TNT was indeed biotransformed by Pseu-
domonas sp. TNT3 during cultivation prior to RNA extrac-
tion, the concentration of the remaining TNT in the culture 
was measured as described before (Cabrera et al. 2020). 
Briefly, the bacterial cells were centrifuged at 14,000 g× 
for 10 min. Later, 100 μL of culture supernatant were 
mixed with 900 μL of 50 mM Tris–HCl buffer (pH 7.0) 
and then 160 μL of 1 M NaOH were added. The reaction 
was incubated at 21 °C for 10 min, and the absorbance was 
measured at 447 nm. Finally, TNT concentration was meas-
ured at 0 and 8 h of incubation in the treatment groups.

RNA extraction

Total RNA was performed using the phenol/chloroform 
method. The bacterial cells were harvested by centrifugation 
at 14,000 g× , for 10 min, at 4 °C. The cellular pellet was resus-
pended in lysis buffer (0.5% SDS, 20 mM sodium acetate pH 
5.0, 0.3 M sucrose, and 10 mM EDTA in nuclease-free water). 
The samples were mixed with 500 μL of acid phenol (Sigma 
Aldrich, USA) and incubated at 65 °C for 5 min. Samples were 
then vigorously vortexed and incubated on ice for 5 min. Subse-
quently, the samples were centrifuged at 14,000 g× , for 5 min, 
at 4 °C, and the aqueous phase was recovered and mixed with 
500 μL chloroform. Then, the samples were vortexed vigor-
ously, incubated on ice, and centrifuged under the same condi-
tions. The aqueous phase was recovered, and the RNA was 
precipitated by adding 2.5 volumes of cold absolute ethanol 
and then incubated at − 80 °C for 2 h. The samples were cen-
trifuged at 14,000 g× , for 30 min, at 4 °C, and the RNA pellet 
was dried using a SpeedVac concentrator. Lastly, the RNA was 
resuspended in 50 μL of nuclease-free water containing 4 U of 
Ambion™ DNase I (RNase-free) (Ambion, USA).

RNA quantification and integrity

RNA quantification was performed by measuring its absorb-
ance at 260  nm using a Synergy H1 microplate reader 
(Biotek, USA). The RNA purity was assessed by means of 
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the A260/A280 ratio. Later, the samples with > 1.6 A260/
A280 ratio were selected, and their integrity was assessed 
through capillary gel electrophoresis at the Center of Plant 
Biotechnology (Universidad Andrés Bello, Santiago, Chile). 
Lastly, the samples with RNA integrity number (RIN) val-
ues > 8 were selected to be sequenced.

RNA sequencing and processing

RNA-seq library preparation and whole transcriptome 
sequencing by rRNA depletion were performed according 
to GENEWIZ Company’s service (South Plainfield, NJ, 
USA), for each replicate of treatment and control group. 
The RNA sequencing of the samples was performed with 
an Illumina HiSeq 4000 instrument using HiSeq 2 × 150 
PE HO configuration. The quality of raw sequencing data 
was assessed using FastQC (available at http://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc) and then filtered 
and trimmed to eliminate low-quality reads and adapt-
ers using the BBDuk tool from the BBMap suite (Bush-
nell 2015) utilizing the following parameters: qtrim-rl 
to quality-trim both ends, trimq 20 to trim up to quality 
score of 20, minlen 51 to remove reads of less than 51 bp 
long after trimming, and k 23 (k-mer size for adapters 
decontamination). Filtered reads were aligned to the draft 
genome of Pseudomonas sp. TNT3 (GenBank accession: 
WFGV00000000.2, publicly available) using the short 
sequence alignment software Bowtie2 (Langmead and 
Salzberg 2012), and the number of reads mapped to each 
coding sequence region (coverage) was quantified using 
the htseq-count tool from HTSeq (Anders et al. 2015) with 
the intersection-nonempty mode to deal with multi-map-
ping reads. Samtools (Danecek et al. 2021) was used for 
manipulation of mapping files. The resulting read count 
matrix was used for downstream differential gene expres-
sion analysis with DeSeq2 package according to Love et al. 
(2014). Changes in gene expression levels were expressed 
as the log2-fold change (log2FC) resulting from applying 
a Benjamini-Hochberg (BH) false discovery rate (FDR) 
correction of Wald test p-values for multiple testing at 5%. 
A gene was considered as differentially expressed gene 
(DEG) when its adjusted p-value was below 0.05 (adjusted 
p-value ≤ 0.05) and the expression level exceeded a 2.8-
fold change (|log2FC|≥ 1.5) between control and treatment 
groups.

Functional annotation

The functions of the DEGs were annotated using public 
databases including the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (Kanehisa et al. 2023), Clusters 
of Orthologous Groups (COG) (Galperin et  al. 2021), 

and Gene Ontology (GO) (Carbon et al. 2021) through 
the FACoP web server (De Jong et  al. 2022). UniProt 
Knowledgebase database (UniProtKB) (Bateman et  al. 
2023) and InterPro databases (Paysan-Lafosse et al. 2023) 
were also used to analyze amino acid sequences. For each 
COG, KEGG, and GO term, the gene count was compared 
between the treatment and control conditions. GO terms 
over-representation analysis and KEGG pathway enrich-
ment analysis were performed using Bioconductor’s clus-
terprofileR (Yu et al. 2012).

Results and discussion

RNA‑seq analysis of the Pseudomonas sp. TNT3 
transcriptome in the presence of TNT

To investigate the metabolic response of Pseudomonas sp. 
TNT3 to TNT exposure, RNA-seq transcriptome analysis 
was performed on samples from cultures induced with an 
initial TNT concentration of 100 mg/L. Control (without 
TNT) and treatment (induced with TNT) samples for total 
RNA extraction were collected after 8 h of culture, when 
the cultures had reached the mid-exponential phase. Quan-
tification of TNT in the cultures showed that after 8 h, Pseu-
domonas sp. TNT3 biotransformed approximately 20% of 
the compound.

Later, six cDNA libraries were generated and sequenced 
(three from the TNT-induced samples and three from the 
control samples), resulting in an average of 22 million 
raw reads per sample. After quality control and trimming, 
approximately 1 million reads were filtered out from each 
sample, and the average quality score and length of the 
remaining reads were > Q30 and 130  bp, respectively. 
Cleaned reads were successfully mapped to the 6120 cod-
ing sequences (CDSs) previously predicted for the refer-
ence genome (Cabrera et al. 2022) with Bowtie2, resulting 
in 6114 genes with a nonzero count and an average overall 
alignment rate of 99% (Table S1). A matrix of read counts 
per gene was generated for each sample using HTSeq and 
then transformed into a DESeq2 object for gene expression 
value estimation. The similarity of the sample replicates 
from each group was assessed by means of hierarchical 
clustering and principal component analysis (PCA) of the 
regularized log-transformed data to check how similar the 
replicates were to each other and to ensure that the treat-
ment condition was the major source of variation, respec-
tively. As a result, both clustering and PCA showed that 
the treated and control samples were clearly clustered into 
two separate groups by condition (control and TNT treat-
ment), indicating a high degree of similarity between the 
replicates of the raw data (Fig. S1).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Differential expression analysis

Differential expression analysis was performed based on 
the negative binomial distribution, as implemented in 
DESeq2. Genes showing > 2.8-fold change (|log2FC|≥ 1.5) 
between control and treatment conditions at FDR-corrected 
p-value < 0.05 were considered as DEGs. As a result, 194 
genes out of 6114 with non-zero counts were differentially 
expressed upon exposure to TNT, corresponding to 3% of 
the total genes predicted for Pseudomonas sp. TNT3 (a 
complete list of up- and downregulated genes and their 
respective annotations is attached as Supplementary Mate-
rial). The analysis also showed that the downregulated 
genes comprised a higher fraction (72%, or 140 genes) than 
upregulated genes (28%, or 54 genes). The volcano plot 
in Fig. 1 illustrates the expression distribution of DEGs. 
Additionally, a heatmap showing the normalized expres-
sion of the top 50 most significant genes was generated 
(Fig. S2). The small proportion of DEGs upon exposure to 
TNT with respect to the total predicted CDSs (only 3.2% 
of 6114 genes with nonzero transcript counts) suggests 
that this isolate may have a limited set of genes that are 
specifically involved in responding to this xenobiotic. In 
addition, the observed change in expression was notably 
higher for the downregulated genes than for upregulated 
genes. As suggested by Xu et al. (2021), the first steps of 

TNT metabolism may be carried out by a limited number 
of enzymes whose products are further degraded by central 
metabolic routes such as the β-ketoadipate pathway.

Functional classification of DEGs into Clusters 
of Orthologous Groups (COGs)

DEGs were categorized into COG functional categories 
according to eggNOG annotation. As a result, they were 
classified into 19 categories, with the most enriched being 
[S] “unknown function” (20%), followed by [E] “amino 
acid metabolism and transport” (10%), and [M] “cell wall/
membrane/envelope biogenesis” (10%). As shown in Fig. 2a, 
downregulated genes in these three categories were much 
more abundant than those upregulated. This difference sug-
gests that the downregulation of certain genes involved in 
central metabolism may be key to reducing energetic costs 
and allocating energy to the degradation of TNT and the 
concomitant stress-related response. Interestingly, several 
DEGs with high levels of expression (> 2.8-fold change) 
classified into the [S] category were, in fact, genes with 
known functions according to their Rapid Annotation using 
Subsystem Technology (RAST) annotations, such as those 
encoding proteins involved in the degradation pathway of the 
aromatic compound phenylacetate (e.g., 1,2-phenylacetyl-
CoA epoxidase), as discussed below (Table 1).

Fig. 1   Differential expression 
analysis of Pseudomonas sp. 
TNT3 genes in response to 
TNT exposure. The volcano 
plot shows the DEGs of Pseu-
domonas sp. TNT3 cells in 
response to the TNT expo-
sure (100 mg/L) compared to 
control conditions (untreated). 
The y-axis (log2-fold change) 
represents the difference in the 
expression level of each gene 
between the two conditions. The 
red and blue dots represent the 
upregulated and downregulated 
DEGs based on a 2.8-fold dif-
ference in expression, respec-
tively (dashed horizontal lines); 
the x-axis (− log10 p-value) 
represents the level of signifi-
cance of each gene. The dashed 
vertical line represents a cutoff 
of 10e − 14. The top five most 
upregulated and downregulated 
genes (based on an FDR cutoff 
of 0.05) are labeled in red and 
blue, respectively
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Gene ontology (GO) terms enrichment analysis

After annotation of DEGs with the FACoP server, a GO 
term over-representation analysis was performed using 
the Bioconductor’s clusterProfiler package (Fig.  2b). 
As a result, we found that among the ten most enriched 
GO terms, the most significant were those belonging to 
the biological processes “phenylacetate catabolic pro-
cess” (24%), and “putrescine catabolic process” (12%). 
Although it has been described that phenylacetate is one 
of the compounds into which TNT can be converted under 

anaerobic conditions (Shen et al. 2000), some facultative 
anaerobes (e.g., several Pseudomonas species) possess 
genes for both aerobic and anaerobic toluene degradation 
and are capable of biotransforming this compound by car-
boxylation to phenylacetate via the phenylacetate pathway 
(Ganesh Kumar et al. 2019). The latter route combines 
both aerobic and anaerobic properties for the degradation 
of aromatic compounds (Nogales et al. 2017).

Regarding the GO term “putrescine catabolic process,” 
it has been described that the catabolism of putrescine is 
a core metabolic response to oxidative stress (Schneider 

Fig. 2   Functional annotation and over-representation/enrichment 
analysis of the DEGs. a Bidirectional bar chart showing the clas-
sification of the DEGs into Clusters of Orthologous Groups (COG) 
according to egg-NOG annotation. b Gene ontology (GO) over-rep-
resentation analysis. Only the top 10 over-represented GO-terms are 
shown. Gene ratio is the percentage of total DEGs in the given GO 

term. c Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis. Only the top 10 most enriched pathways are shown. 
The color gradient represents the false discovery rate (p-adjusted), 
from the lowest (red) to the highest (blue), respectively. The number 
of genes in each term/category is represented by the sizes of the cir-
cles
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et al. 2013), such as that resulting from the degradation 
of aromatic compounds like TNT (Fernández et al. 2009; 
Liao et al. 2018; Xu et al. 2021). Putrescine is the meta-
bolic precursor of spermidine and spermine, polyamines 
that, due to their higher number of positive charges, favor 
the maintenance of cellular reactive oxygen species (ROS) 
homeostasis by binding to polyanionic biomolecules like 
DNA, RNA, proteins, and lipids (Solmi et al. 2023). A 
recent study by Solmi et al. (2023) in Pseudomonas syrin-
gae demonstrated that this bacterium responds to oxidative 
stress by increasing the extracellular levels of putrescine, 
while maintaining the intracellular levels of spermidine.

Additionally, the GO molecular function “transferase activ-
ity” was also enriched (12%). Over-representation of this latter 
term was expected because several of these enzymes (e.g., 
acetyl transferases and glutathione transferases) play crucial 
roles in the detoxification of aromatic compounds (Allocati 
et al. 2009; Durante-Rodríguez et al. 2017).

KEGG enrichment analysis

The over-regulated DEGs were also classified into KEGG 
pathways using the FACoP server for enrichment analysis 
using the enricher function from Bioconductor’s clusterPro-
filer package (Fig. 2c). As a result, we observed that most 
of the DEGs in the top 10 most enriched pathways were 
involved in those related to “phenylalanine metabolism” 
(30%), “oxidative phosphorylation” (18%), and “arginine 
and proline metabolism” (15%). These results are consistent 
with those of GO enrichment analysis, since the “phenyla-
lanine metabolism” KEGG pathway includes the “pheny-
lacetate degradation” module (M00878), a route used by 
several bacteria to degrade aromatic compounds (Nogales 
et al. 2017). Regarding the “oxidative phosphorylation,” 
it has been described that the exposure to xenobiotics can 
lead to the over-regulation of genes belonging to this key 
pathway in bacteria, such as those encoding cytochrome c 
oxidases (Fernández et al. 2009; Liu et al. 2017). Lastly, 
the enrichment of the “arginine and proline metabolism” 
pathway, which involves the “polyamine biosynthesis” mod-
ules (M00133 and M00134), is consistent with the results of 
GO enrichment analysis since polyamines (e.g., putrescine) 
catabolism participate in the protection of bacterial cells 
against oxidative stress (Solmi et al. 2023).

Upregulated DEGs in response to TNT exposure

Using the functional annotation of DEGs, we further ana-
lyzed the specific functions that they may be performing in the 
metabolic processes and pathways. As a result, we found that 
most of the upregulated DEGs encoded enzymes related to 
xenobiotic detoxification (e.g., nitroaromatic compounds and 

phenylacetate), cell protection against oxidative stress (such 
as that caused by TNT metabolism), and membrane transport 
processes (efflux pumps that extrude xenobiotics) (Fig. 3; 
Fig. 4; Table 1). The differential gene expression pattern was 
broadly similar to that reported in other transcriptomic stud-
ies of bacteria exposed to TNT (Fernández et al. 2009; Liao 
et al. 2018; Xu et al. 2021). The functions of the DEGs with 
the highest fold changes are described below.

DEGs encoding detoxification enzymes

The differential expression analysis showed a significant 
upregulation (> 1300-fold change) of a gene (gene ID: 
peg.3142) that encodes an FMN-dependent NADH azore-
ductase (AzoR) (Fig. 1; Table 1; Table 2), named “AzoR-
a” in our previous work (Cabrera et al. 2022). AzoRs are 
enzymes that can reduce the azo bond (R − N = N − R′) of 
aromatic azo dyes, converting them into the corresponding 
amines. During TNT biotransformation, the spontaneous 
condensation of partially reduced TNT derivatives, such as 
HADNTs and nitroso-toluenes produces azoxy compounds, 
which then are biotransformed into azo compounds. These 
metabolites are even more toxic than TNT to the cell (Haï-
dour and Ramos 1996; Hawari et al. 2000; Lata et al. 2021). 
Hence, AzoR could be playing a role in the detoxification 
of these metabolites.

It has also been reported that AzoRs possess nitroreduc-
tase activity, which involves the reduction of nitro groups of 
some nitroaromatic compounds (Mercier et al. 2013; Misal 
and Gawai 2018). Although the nitroreductase activity of 
AzoRs toward TNT has not been extensively studied, it has 
been shown to play a role in the metabolism of this xeno-
biotic. This is supported by the upregulation of an azoR 
gene or the overexpression of the enzyme in transcriptomic 
and proteomic analyses when bacteria have been exposed to 
TNT (Fernández et al. 2009; Yakovleva et al. 2022), which 
is in agreement with our results. Furthermore, AzoR from 
Rhodobacter sphaeroides AS1.1737 has been shown to per-
form the nitroreduction of TNT (a pathway carried out by 
nitroreductases), converting it to hydroxylaminodinitrotol-
uenes (HADNTs) (Liu et al. 2007). In addition, an Escheri-
chia coli biosensor strain with a plasmid containing an azoR 
promoter that responds to TNT and 2,4‐dinitrotoluene has 
been reported (Henshke et al. 2021).

Remarkably, the AzoR enzyme identified in the isolate 
TNT3 exhibits a noteworthy 37% sequence similarity with 
the AzoR enzyme found in R. sphaeroides AS1.1737. More-
over, several crucial residues involved in cofactor (FMN) 
binding and several conserved residues are present as pre-
viously reported (Liu et al. 2007; Gonçalves et al. 2013) 
(Fig. S3). Furthermore, upon analyzing the genomic con-
text of peg.3142, it was found to be next to a gene encod-
ing a dienelactone hydrolase (Fig.  S4) involved in the 
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biodegradation of chloroaromatic pollutants (Nogales et al. 
2017). As we reported before, TNT3 also demonstrates the 
ability to catalyze the nitroreduction of TNT, resulting in 
the production of 2-amino-4,6-dinitrotoluene (2-ADNT), 

a metabolite derived from the reduction of 2-HADNT 
(Cabrera et al. 2020). This capability could be attributed, at 
least in part, to the nitroreductase activity exhibited by the 
AzoR enzyme encoded by the gene peg.3142. It is important 

Fig. 3   STRING protein–protein interaction network of upregu-
lated DEGs. Each network node represents a protein encoded by 
an upregulated differentially expressed gene (p-adjusted < 0.05, 
|log2(FC)|> 1.5). The thickness of the gray lines represents the con-
fidence of the data supporting a protein–protein interaction, inferred 

considering both functional and physical protein associations (full 
STRING). The network was clustered to a Markov clustering (MCL) 
inflation parameter of 3, resulting in 13 clusters; each one represented 
in a different color. Dashed lines represent edges between clusters
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Fig. 4   KEGG pathview graph of representative metabolic routes 
where DEGs are present. Red denotes downregulation, and green 
denotes upregulation of genes/transcripts (|log2(FC)|> 1.5|). Light 
colors represent lower expression values (|log2(FC)|> 1.0|). KO terms 

were assigned to the protein sequences encoded by the DEGs and 
subsequently mapped to their respective pathways using BlastKO-
ALA
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to mention that although TNT3 possesses genes encoding 
enzymes potentially involved in the direct biotransformation 
of TNT, such as nitroreductases, Old Yellow Enzymes, and 
azoRs (Cabrera et al. 2022), only peg.3142 was found to be 
upregulated in the experimental conditions tested. However, 
it is likely that the other enzymes may be acting at earlier or 
later steps of TNT biotransformation.

Another upregulated DEG (gene ID: peg.1349) was that 
encoding an alkyl hydroperoxide reductase (Ahp). This 
enzyme is a NAD(P)H-dependent peroxidase that catalyzes 
the reduction of hydrogen peroxide (H2O2) and organic 
hydroperoxides such as lipid peroxides (Rocha and Smith 
1999; Seaver and Imlay 2001). It consists of AhpC and 
AhpF subunits that work together to protect the cell from 
ROS and reactive nitrogen species (RNS), such as nitric 
oxide (NO·) and nitrogen dioxide (NO2·). Both ROS and 
RNS are known to cause damage to DNA, proteins, and cell 
membranes (Chen et al. 1998; Rocha and Smith 1999; Poole 
2012; Juarez 2017). Previous studies have shown that the 
degradation of TNT leads to oxidative and nitrosative stress 
due to the oxidation of the aromatic ring and the reduction 
of nitro groups, respectively (Esteve-Núñez et al. 2001; 
Kumagai and Shimojo 2002; Ladino-Orjuela et al. 2016). 
Thus, our findings are consistent with previous reports in 
bacteria exposed to aromatic xenobiotics, including TNT 
(Cho et al. 2009; Liu et al. 2017; Ortiz-Hernández et al. 
2021). Therefore, the Ahp enzyme in the isolate TNT3 
may function as a defensive mechanism that protects 
biomolecules from ROS and RNS produced during TNT 
biotransformation.

We also observed that a considerable number of 
upregulated DEGs encode enzymes related to the 
phenylacetate degradation route (Fig. 3; Fig. 4; Table 1). 
This pathway is the core of the phenylacetyl-CoA catabolon, 
a functional unit that comprises several catabolic pathways 
that transform structurally related aromatic compounds (e.g., 
styrene, ethylbenzene, phenylacetyl esters) into the common 
intermediate phenylacetyl-CoA. The latter is then converted 
into other metabolites that enter the tricarboxylic acid (TCA) 
cycle (Luengo et al. 2001). Although the degradation of 
TNT by this catabolon has not yet been established, given 
the structural resemblance between TNT and ethylbenzene, 
it is plausible that certain TNT metabolites lacking nitro 
groups may enter the phenylacetate pathway.

In the process of converting these TNT metabolites to 
phenylacetate-like derivatives, their methyl group should be 
oxidized to methyl alcohol. We propose that this process 
may be facilitated by the upregulated DEG peg.4934 
(log2FC = 4.2) encoding a pirin enzyme in Pseudomonas 
sp. TNT3 (Table  1). Pirins are multifunction proteins 
involved in the oxidative stress response (Talà et al. 2018), 
but they also exhibit quercetin 2,3-dioxygenase activity, 
contributing to the reduction of polyphenolic compounds Ta
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(Adams and Jia 2005; Widiatningrum et al. 2015; Wang 
2022). In the case of peg.4934, its gene product shares 89% 
identity with a Quercetin 2,3-dioxygenase (UniProtKB: 
A0A0C5ECP9) of Pseudomonas sp. MRSN 12121 
(Table  2). Additionally, when analyzing the genomic 
context of this DEG, we observe its proximity to a gene 
encoding a γ-Carboxymuconolactone, an enzyme implicated 
in the benzoate degradation pathway (Nogales et al. 2017). 
Additionally, it is situated in close proximity to three 
upregulated DEGs encoding the multidrug efflux pump 
MexEF-OprN, responsible for expelling nitroaromatic 
compounds (Fetar et al. 2011; Juarez 2017).

It is noteworthy that certain dioxygenases involved in 
TNT biotransformation in certain TNT-degrading bacteria 
also possess the capability to oxidize the methyl group of 
2-amino-4,6-dinitrotoluene (2-ADNT) to form a methyl 
alcohol group as a secondary reaction (Johnson et al. 2001; 
Keenan and Wood 2006). Given our previous identifica-
tion of 2-ADNT as a TNT derivative in our isolate (Cabrera 
et al. 2020), the upregulation of peg.4934 suggests a plau-
sible mechanism for the oxidation of methyl groups in TNT 
metabolites.

Presuming that TNT derivatives are subject to biotrans-
formation in a manner analogous to ethylbenzene, a com-
pound structurally similar to denitrated TNT derivatives, 
the benzyl alcohol compound should then be oxidized to 
aldehyde and subsequently be further oxidized to carboxylic 
acid, ultimately entering the phenylacetate pathway (Luengo 
et al. 2001). Although the analysis of upregulated DEGs 
did not yield an alcohol dehydrogenase, we did identify a 
phenylacetaldehyde dehydrogenase encoded by peg.5362 
(log2FC = 2.7) that could be performing the latter step.

Considering the origin of our isolate, the possibility per-
sists that it may harbor novel enzymes or uncharacterized 
metabolic pathways responsible for the oxidation of methyl 
groups in TNT derivatives. Nonetheless, a more in-depth 
investigation is imperative to elucidate these potential enzy-
matic processes.

Another notably upregulated DEG was peg.3680, which 
encodes an oxidoreductase (Table 1; Table 2; Fig. S5). The 
enzyme sequence was analyzed using the InterPro server, 
revealing the presence of a FAD-binding conserved domain. 
Through a genomic context analysis of peg.3680, we identi-
fied adjacent genes encoding a “glutamine synthetase family 
protein” under the regulation of a “transcriptional regulator, 
MerR family.” Since glutamine synthetases are involved in 
nitrogen metabolism and oxidative stress response, the close 
proximity of peg.3680 to these genes implies its potential 
involvement in the assimilation of nitrogen (from the nitrite 
released during TNT biotransformation) via the GS-GOGAT 
pathway as proposed before (Brown et al. 2003; Habineza 
et al. 2017; Aldarini et al. 2017; Cabrera et al. 2020).

DEGs related to membrane transport

Another group of DEGs that responded to TNT exposure 
encoded for membrane transporters, including efflux pumps. 
Among these transporters, MexEF-OprN, YadGH, and 
EmrAB-OMF, which have been previously characterized 
in various organisms, are particularly noteworthy (Fig. 3; 
Table 1). The MexEF-OprN efflux pump, belonging to the 
resistance-nodulation-cell division (RND) family, is a tripar-
tite system composed of MexE, MexF, and OprN compo-
nents (encoded in an operon). This efflux pump can extrude 
a variety of antibiotics, such as the nitroaromatic compound 
chloramphenicol (Juarez 2017). Studies by Fetar et al. (2011) 
and Juarez (2017) have reported that the expression of this 
pump is induced by nitrosative and thiol stress caused by 
nitroaromatic compounds and quinones, respectively. Hence, 
the upregulation of the MexEF-oprN operon in response to 
TNT exposure may be attributed to the generation of reactive 
nitrogen species and quinones during TNT biotransformation. 
This finding is consistent with a previous study conducted on 
P. putida KT2440 exposed to TNT (Fernández et al. 2009).

Additionally, two genes encoding a YadGH efflux trans-
porter were also upregulated. YadGH is a member of the 
ATP-binding cassette (ABC) transporters superfamily, 
comprising two subunits, YadG and YadH, that translocate 
diverse substrates across the cell membrane, such as xenobi-
otics (Thomas and Tampé 2020). The promoter of the yadG 
gene has been shown to exhibit high sensitivity to TNT and 
its metabolite 2,4-dinitrotoluene in E. coli K-12 MG1655, 
which was constructed as a TNT biosensor (Tan et al. 2015). 
While the upregulation of the yadGH genes has not been 
previously reported in transcriptomic studies using TNT, 
increased levels of ABC transporter transcripts or proteins 
have been observed in bacteria exposed to TNT (Liao et al. 
2018; Yakovleva et al. 2022).

The third upregulated transporter was an EmrAB-OMF mul-
tidrug efflux pump, belonging to the major facilitator superfam-
ily (MFS), that is known to extrude various dyes, ionophores, 
and detergents (Zgurskaya 2009). Although EmrAB-OMF has 
not been linked to TNT degradation, its genic expression can be 
induced by 2,4-dinitrophenol, a nitroaromatic compound that 
possesses a very similar structure to 2,4-dinitrotoluene (2,4-
DNT), a TNT metabolite (Xiong et al. 2000; Esteve-Núñez 
et al. 2001). Hence, it is plausible that the upregulation of the 
gene encoding the EmrAB-OMF transporter in the isolate 
TNT3 is induced by 2,4-DNT.

Highly upregulated DEGs encoding hypothetical proteins

A third group of DEGs that exhibited significant upregula-
tion in this study are those that encode hypothetical proteins, 
as shown in Table 1. Notably, several of these proteins are 
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potentially associated with the cell membrane, and their log2 
fold-change values are comparable to those involved in cell 
detoxification and membrane transport, according to GO 
annotations. Consequently, these proteins were subjected to 
further scrutiny.

Examination of the gene context surrounding the most 
highly upregulated gene (peg.1879, log2FC = 4.7) that 
encodes a hypothetical protein (hp_1879), as presented in 
Table 1, revealed its proximity to genes linked to xenobiotic 
metabolism. For example, the gene encoding the transcrip-
tional regulator AcrR is located adjacent to this gene, as 
depicted in Fig. S6. This type of transcriptional factors is 
mainly involved in multidrug resistance (Perez-Rueda et al. 
2018) and, particularly, it has been described that AcrR 
represses the expression of the AcrAB-TolC efflux pump, 
which is involved in the extrusion of a variety of antibiotics 
such as chloramphenicol (Ramos et al. 2005). Moreover, 
a sequence homologous to the acrR gene was found to be 
close to the xenB gene in Pseudomonas fluorescens I-C, 
which encodes a xenobiotic reductase B that degrades TNT 
in this bacterium (Blehert et al. 1999). Additionally, another 
gene found nearby the gene peg.1879 is one encoding an 
uncharacterized protein YhjG, which is homologous to a 
monooxygenase from Bacillus subtilis that participates in 
the initial step of the degradation of aromatic compounds 
(Nogales et al. 2017; MyBioSource 2023). It is also impor-
tant to note that a transcriptional regulator of the LysR fam-
ily was close to the gene peg.1879. Members belonging to 
this family are involved in several process such as the oxida-
tive stress response and xenobiotic detoxification, including 
the regulation of genes encoding mexEF-OprN efflux pump, 
pirin, and dioxygenases that participate in aromatics degra-
dation (Hihara et al. 2004; Díaz et al. 2013; Juarez 2017; 
Perez-Rueda et al. 2018; Henshke et al. 2021).

Furthermore, homologous sequences to hp_1879 were 
identified in UniProtKB, which revealed that this protein 
shares 76% identity with an intrinsically disordered protein 
(IDP) from Pseudomonas sp. BG5 (A0A7X6IP65). IDPs 
are functional proteins that lack a stable three-dimensional 
structure under physiological conditions and can adopt 
multiple conformational states (Trivedi and Nagarajaram 
2022). IDPs often undergo induced folding upon binding to 
a specific partner such as proteins, nucleic acids, or small 
molecules (Uversky 2019).

The hypothetical protein hp_1879 is a low molecular 
mass protein with a theoretical mass of 17.5 kDa, which was 
calculated using the ExPASy’s ProtParam tool (Gasteiger 
et al. 2005). In addition to this, it possesses characteristics 
typical of IDPs, such as a low proportion of hydrophobic and 
rigid residues, and high proportion of negatively charged and 
disorder-promoting residues (e.g., Ala, Gly, Gln, and Ser). 
Given that IDPs have been implicated in membrane trans-
port, such as porins (Novikova et al. 2021), and considering 

the aforementioned features, we propose that hp_1879 may 
be part of a transmembrane transporter involved in the extru-
sion of TNT and/or its metabolites.

Regarding the upregulated genes, peg.1078, peg.1079, and 
peg.1080, they encode hypothetical proteins (Table 1; Fig. S7) 
with amino acid sequences containing domains or motifs 
associated with membrane proteins according to UniProtKB. 
Notably, these proteins are remarkably small, comprising 59, 
70, and 85 residues, respectively. Intriguingly, these genes 
are next to one encoding a 3-carboxymuconate cyclase, an 
enzyme involved in benzoate degradation through hydroxy-
lation, and another encoding a 4-carboxymuconolactone 
decarboxylase, participating in the protocatechuate catabo-
lism pathway, a route potentially involved in TNT degradation 
(Wells and Ragauskas 2012; Nogales et al. 2017; Xu et al. 
2021). A transcription factor belonging to the LysR family 
was also found in the vicinity of the genes encoding these 
three hypothetical proteins. As mentioned above, members 
of this LyrR family are related to xenobiotic detoxification 
(Juarez 2017; Perez-Rueda et al. 2018; Henshke et al. 2021). 
The presence of such genes and their association with specific 
enzymes leads us to speculate that these hypothetical proteins 
might belong to the category of small membrane proteins. 
These are a relatively new subset of small (≤ 100 residues) 
bacterial proteins located in the cell membrane that can inter-
act with and regulate other membrane proteins, such as drug 
efflux pumps, transporters, and receptors. Additionally, they 
play a regulatory role in various cellular processes, including 
stress response, signal transduction, respiration, and enzy-
matic activity (Yadavalli and Yuan 2022). Consequently, we 
believe that these hypothetical proteins in isolate TNT3 could 
be involved in the metabolism of TNT derivatives, potentially 
modulating the activity of enzymes participating in aromatic 
degradation pathways.

Downregulated DEGs in response to TNT exposure

Downregulation of multiple genes encoding pyrroloqui-
noline quinone (PQQ)-dependent enzymes associated with 
membranes, including alcohol and aldehyde dehydroge-
nases, and ABC transporters, was observed in TNT-treated 
samples (Table 3; Fig. S8). These proteins are involved in 
ethanol/aldehyde oxidation, a secondary pathway crucial 
for energy production and survival at low temperatures in 
certain bacteria, as evidenced in the Antarctic species Pseu-
domonas extremaustralis (Tribelli et al. 2015). It is plausible 
that the isolate TNT3 is unable to metabolize TNT and/or 
its metabolites via this pathway, leading to its downregula-
tion. However, further research is required to elucidate the 
corresponding metabolic implications.

Moreover, several genes encoding the cytochrome c oxi-
dase complex IV were significantly downregulated (Table 3; 
Fig. S8). Cytochrome c oxidase is a key enzyme in the electron 
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transport chain of bacteria, responsible for the final step in 
the aerobic respiration process (Hederstedt 2022). Previous 
studies have reported that exposure to xenobiotics can lead 
to the downregulation of cytochrome c oxidase expression in 
bacteria (Tribelli et al. 2015; Liu et al. 2017; Morales et al. 
2021). The metabolic reprogramming that inhibits the elec-
tron transport chain to diminish ROS production during TNT 
exposure is a possible explanation for this downregulation.

Additionally, a set of genes encoding cell motility proteins 
and secretion systems, including the pilus assembly protein 
TadZ and the type II secretion system proteins, were sig-
nificantly downregulated (Table 3; Fig. S8). Pilus-mediated 
motility machinery and translocation systems are closely 
interlaced, as the former entails the transportation of pro-
teins across the cell envelope (Sato et al. 2010). The expo-
sure to xenobiotics, in this case TNT, may incite changes in 
the bacterial cell membrane, thereby impacting intracellular 
signaling pathways of the regulatory cascade involved in the 
expression of genes related to motility. Moreover, xenobiotic 
exposure may activate stress response pathways in bacte-
ria, prompting a redirection of cellular resources from non-
essential processes (for survival) like pili formation to other 
critical cellular functions under these conditions. Thus, the 
expression of genes related to pili may be repressed to con-
serve energy and resources for more useful stress endurance 
routes. Consequently, the general motility of Pseudomonas 
sp. TNT3 may be affected when exposed to xenobiotics.

Concerning the downregulated DEGs encoding hypotheti-
cal proteins (Table 3), it was observed that the product of 
the gene peg.3894 shares 91% identity with a cytochrome c 
oxidase subunit from Pseudomonas sp. VI4.1 (UniProtKB: 
A0A1V4LGR9) and this gene is located within a cluster 
encoding proteins associated with the previously mentioned 
cytochrome c oxidase complex. Consequently, it is possible 
that this protein might have a structural role or be involved 
in the assembly of cytochrome c oxidase. Additionally, 
peg.3896 was found to encode a small protein comprising 
67 residues, which shares 100% identity with a twin trans-
membrane helix small protein from Pseudomonas sp. TH10 
(UniProtKB: A0A934T803). Notably, this hypothetical pro-
tein is situated adjacent to a methionine ABC transporter. 
These findings lead us to hypothesize that it could be a small 
membrane protein, as previously mentioned, potentially regu-
lating the function of this transporter.

Conclusions

Here, we present for the first time a transcriptomic study of 
the response of an Antarctic bacterium, Pseudomonas sp. 
TNT3, to the exposure to the xenobiotic TNT. The investi-
gation of the bacterium’s gene expression profile following 

exposure to this compound revealed significant changes in a 
small set of genes. Our analysis demonstrates that compared 
to the control group, a significant proportion of differentially 
expressed genes were related to the metabolism of aromat-
ics compounds, including phenylalanine, phenylacetate, and 
benzoate. These compounds are part of the “Xenobiotics 
biodegradation metabolism” pathway and were found to be 
overrepresented in both GO and KEGG enrichment analy-
ses. Additionally, genes encoding efflux pumps and enzymes 
to cope with oxidative and thiol stress were also upregulated, 
which reinforces the bacterium’s ability to adapt to the xeno-
biotic stress.

Notably, we identified an FMN-dependent NADH-azore-
ductase gene that was the most upregulated among all genes 
analyzed. This type of enzyme is known to be capable of 
degrading TNT and has been reported in a few transcrip-
tomic studies but has not yet been classified into any xeno-
biotic degradation pathway.

The present study’s results further highlight the complex-
ity of the metabolic machinery involved in the xenobiotic 
stress response, which is poorly understood due to the rapid 
reassignment of transcriptional elements from dispensable 
functions required for tolerance to environmental stressors. 
Our study’s findings add to the growing body of knowledge 
on bacterial responses to xenobiotic stress and pave the way 
for further research on the mechanisms involved in xenobi-
otic degradation pathways.
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